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A defective sidewalk inhibits the walkability of a street and may also cause safety accidents (slips, trips,
and falls) for pedestrians. When a pedestrian walks along a sidewalk, his/her behaviors may vary accord-
ing to the condition of the sidewalk—e.g., whether the surface is normal, holed, cracked, tilted, or sloped.
As a result, the pedestrian’s stability may also change according to the built environment’s conditions.
Accordingly, this paper examines the feasibility of using pedestrians’ physical behaviors to detect defects
in a sidewalk. Pedestrians’ physical responses and paths over a sidewalk are collected using an inertial
measurement unit (IMU) sensor and a global positioning system (GPS). Then, after aggregating the pedes-
trians’ bodily responses and locations, the irregularity of multiple pedestrians’ responses are calculated in
relation to their locations. The locations that show irregularities in the pedestrian-response patterns pre-
sent a high correlation with the existence of a defect. The results of this study will help improve the con-
tinuous diagnosis of defects in sidewalks, thereby enhancing these built environment systems’
serviceability.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Built environments, including civil infrastructure and buildings,
are designed to provide specific services to users [1]. Maintaining a
sufficient service level for users is thus critical for achieving each
built environment’s designed objectives [2–4]. Of the numerous
types of built environments, the sidewalk is one of the most influ-
ential infrastructures for humans since it is an integral part of sus-
tainable transportation, and supports pedestrian travel as well as
healthy physical activity [5]. What is more, the quality of sidewalks
is a significant indicator of the perceived safety and quality of the
pedestrian environment [6].

Correspondingly, injuries from defective sidewalks have
become a crucial problem. In the city of New York, more than thirty
million dollars per year was paid out for settlements and judg-
ments resulting from defective sidewalks from 2008 to 2012. Dur-
ing this period, the cost per defective sidewalk claim was over
fifteen thousand dollars. Besides the cost of settling these claims,
the detection of defective sidewalk is important for enhancing
the safety of pedestrians, including disabled and elderly persons.
According to the Americans with Disabilities Act of 1990 (ADA),
pedestrian infrastructure is legally considered part of the ‘‘public
right of way,” and governmental agencies can be liable for injuries
resulting from inadequate maintenance of infrastructure, including
sidewalks. For these reasons, addressing the problems caused by
defects in sidewalks is valuable not only for pedestrians, who
deserve access to safe sidewalks, but also for those who are legally
responsible for defects, such as governments or owners. Govern-
mental agencies in the United States have thus taken various
approaches to addressing such issues, including performing peri-
odic inspections using experts [7,10] and transferring liability of
sidewalk maintenance from the city to property owners. Nonethe-
less, claims related to defective sidewalks continue to grow in
terms of both frequency and payout amounts [8,9]. Thus there is
a clear need for identifying and locating sidewalk defects in a con-
tinuous and automated fashion.

To this end, this paper investigates the feasibility of harnessing
pedestrians’ bodily responses to their environment as a means of
detecting defects in a sidewalk. According to several studies [10–
13], humans physically respond to the changes in their physical
environment. For example, when a pedestrian walks along a side-
walk that includes a defect, his balance or gait stability changes at
the moment of stepping on or over the defect. Therefore, human
responses to the surrounding environment may offer information
that lets us estimate the condition of the environment. To examine
the feasibility of such a people-centric sensing approach, we
collected data from inertial measurement unit (IMU) sensors to
measure pedestrians’ bodily responses and data from global
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positioning systems (GPS) to locate pedestrians; these data are
used to analyze pedestrians’ bodily responses to their location.

The paper is organized as follows: first, we review current prac-
tices and related techniques. Next, we introduce challenges in
detecting sidewalk defects using pedestrians’ bodily responses,
and then propose a hypothesis for the relationship between pedes-
trians’ bodily responses and defect existence. To examine the sug-
gested hypothesis, an outdoor experiment is performed on an
actual sidewalk. The discovered relationship between the pedestri-
ans’ bodily responses and the defect’s existence is expected to pro-
vide a basis for developing a proactive monitoring system that
empowers the stakeholders who are responsible for injuries caused
by defective sidewalks to be able to continuously monitor and
maintain the quality and the function of their sidewalks.
2. Background

2.1. Current efforts for defective sidewalk detection

Although there are many people who use vehicles as a trans-
portation method, walking is still the best method of moving short
distances, making sidewalks an integral component of human
movement. According to [14], there are several objectives for side-
walks, including linking buildings, setting up facilities, and provid-
ing an emergency escape route. To fulfill these objectives, sidewalk
defects should be well managed. A management process for side-
walks includes several steps, among which the detection of defects
is the first step. A common practice for detecting a sidewalk defect
is a user survey that focuses on a user’s evaluation/satisfaction
with a particular facility [15]. A user reports detected defects to a
governmental agency, and then the agency checks the status of
the defect and manages it. However, outcomes of surveys and
reports are often affected by respondents’ temporary emotions,
recent experiences, and familiarity with the facility. Surveys are
also not efficient in terms of time and cost, nor are they very effec-
tive in providing detailed analysis of defect existence, which ulti-
mately causes a decrease in sidewalk quality [16].

Consequently, many governmental agencies rely on visual
inspections to identify violations of pre-defined regulations that
may degrade the quality of a sidewalk (see Table 1). Visual inspec-
tions are quite labor-intensive and often inaccurate due to the lim-
ited set of pre-defined defects [17]. In addition, the governmental
regulations that provide guidelines on defects are often very out-
dated; for example, the regulations on defective sidewalk elements
used in several states in the US (e.g., Iowa, Nebraska, and Califor-
nia) originated from engineering studies conducted before 1902
[18] and do not take the dynamic nature of human-physical system
interactions into consideration. Even for the same defect, the
Table 1
Defective-sidewalk regulations.

Description of Defective-Sidewalk Standard

Vertical or horizontal separations equal to or greater than a specific range

Holes or depressions equal to or greater than a specific range

Spalling over fifty (50%) percent of a single square with a depression equal to or greate

range
A single square cracked into more than three (3) pieces OR sections distorted equal to

specific range

Sidewalk is raised (or depressed) more than a specific range from the normal grade o

Water stop box is raised or lowered equal to or greater than a specific range and/or li
missing

a No specific regulation.
impacts of a defect are greatly affected by users’ individual charac-
teristics (e.g., users’ physiological conditions) and usage patterns
(e.g., user traffic). For example, regulations for pedestrian side-
walks in Iowa define a sloped sidewalk of more than 200 in an 8–
100 length as a defective sidewalk, but the risk level of the sidewalk
slope will vary by users’ physiological conditions (e.g., agile or dis-
abled), user traffic, and weather (e.g., snowy, icy, etc.). Further-
more, the defective sidewalk standard for each state is different.
Although this difference parallels the different conditions of each
state, the variability highlights the fact that there is no universal
regulation for defects in sidewalks. Therefore, inspections based
on current, predefined defective sidewalk regulations may not be
sufficient to guarantee the quality of a sidewalk.
2.2. People centric sensing

Considering the fact that sidewalks are meant for pedestrian
use, the involvement of actual users is very important when eval-
uating the quality, function, and defects of sidewalks. Recent
efforts have sought to transform human users into sensors—a con-
cept called ‘‘people-centric sensing.” This approach mainly focuses
on collecting targeted information about users’ daily patterns and
interactions [24,25]. Although the sensory coverage of spaces
[21], events [19], health [22,23], and social interactions [24–26]
is beneficial for people or citizens [20], people-centric sensing is
an immature research area for detecting built environment system
defects because most current people-centric sensory research has
focused on humans or the interaction between humans, not on
the interaction between users’ responses and external systems.
One representative method that estimates external system condi-
tions using user responses is pothole detection on a motor vehicle
road. This method detects potholes using a vehicle response, such
as the abnormal vibrations observed when driving over a pothole
[27]. Additionally, there are other, similar studies utilizing bicycles
[28] and wheelchairs [29,30]. Although these prior works provide
evidence of the viability of detecting unstable conditions [27,31–
33] from wheel-based equipment, to the best of the authors’
knowledge, no one has attempted to detect sidewalk defects
through pedestrian responses. Furthermore, while the approach
of mounting an IMU on wheeled equipment would provide more
reliable measurements for the levelness and evenness of sidewalk
surfaces, it may not directly represent the effect of sidewalk defects
on pedestrians’ walking patterns. Human behaviors are more com-
plicated than mechanical equipment usage, and are thereby diffi-
cult to measure due to variability. Therefore, humans’ response
variability should be considered before adopting a people-centric
sensing technique, and thus we chose to focus on pedestrian
behavior in this study.
IA (Dubuque) NE (Omaha) CA (San Francisco)

3/400 100 1/200

3/400 3/800 1/200

r than a specific 3/400 3/800 1/200

or greater than 3/400 1/200 1/200

f the sidewalk 200 in an 8–100

length
200 in an 80

length
1/200 per foot of
transition

d is cracked or 3/400 Nonea Nonea



Table 2
Physical subject information.

Statistical parameters Height (ft) Weight (lb) Age (years)

Mean 5.76 153.24 26.4
Median 5.8 159 27
Standard deviation 0.33 25.9 3.17
Minimum value 5.2 110 22
Maximum value 6.4 187 33
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2.3. Challenges and hypothesis

Pedestrian walking entails an interaction between the surface of
a sidewalk and a human body. As such, the surface of a sidewalk
affects the pedestrians’ bodily responses. Every stride of a pedes-
trian is the result of the interaction, which means that responses
may include crucial information on defect existence. If changes
in pedestrians’ bodily responses are collectively observed in a
specific location, we can assume that an external condition change
(including a defect in the sidewalk) may be causing the pedestri-
ans’ responses to change. The collective responses could thereby
be used to identify defects in sidewalks.

However, the magnitude of variability in pedestrians’ responses
to a defect in a sidewalk is a technical hurdle. The magnitude of a
response to a defect during walking is generally smaller than other
activities the pedestrian may perform—such as running, swinging
an arm, slipping, and falling [34]. Prior work has employed diverse
techniques for detecting these assorted larger-magnitude bodily
responses. For example, researchers have applied vision techniques
to analyze human body motions to identify the risk of injury [35–
37]. While such research has numerous strengths, distinguishing
the subtle movements of a pedestrian using visual information is
difficult. Recently, diverse research projects using sensory tech-
niques have been performed to analyze such bodily responses as
muscular engagement [38], fatigue [39], and gait stability
[38,39]. Problematically, to obtain the information required for
these projects, devices must be attached to the body, which in turn
can affect human bodily response. Additionally, pedestrians may
not be familiar with or hospitable to these devices since they can
inhibit the pedestrians’ daily life.

Therefore, there are two requirements for a data-collection
method of the proposed people-centric sensing approach: (1) a
method must capture subtle body responses and (2) a sensory
device should not inhibit humans’ daily life. An IMU sensor is
one option for capturing subtle body responses that satisfies the
first requirement. In clinical domains, IMUs have been used to
measure human body stability [42]. Several researchers have pro-
posed the applicability of IMUs to measure subtle response
changes during walking [43,44]. Among devices capable of mount-
ing an IMU to a subject, a smartphone works well and can satisfy
the second requirement as well as the first. These devices usually
already include built-in IMU sensors, and many pedestrians keep
a smartphone on their body. In addition, a smartphone has addi-
tional advantages in its ability to not only detect a defect using
pedestrians’ bodily responses, but also to locate detected defects
and transfer whole information (e.g., existence and location) to
help develop a proactive sidewalk management process.

In summary, pedestrians’ bodily responses may include crucial
information that can identify the existence of defects. Pedestrians
often keep a smartphone on their person, allowing researchers to
observe subtle body responses in daily life. Consequently, we
hypothesize that changes in pedestrians’ bodily responses col-
lected from their smartphones are highly correlated with defects
in a sidewalk. We test this hypothesis by analyzing experimental
results performed on an actual sidewalk.
3. Experiment design and method

3.1. Experiment design

Outdoor experiments were performed on a sidewalk. Seventeen
subjects—nine males and eight females—were recruited and asked
to walk on a sidewalk at a comfortable velocity with a smartphone
in their right front pants pocket. None of the subjects had any clin-
ical problems. Table 2 summarizes their physical information.
Fig. 1 illustrates an overview of the experiment and its location.
The experiment was performed in front of a city street in Lincoln,
NE, in the US. This location would be considered a ‘‘light traffic”
street in terms of the number of pedestrians regularly accessing
it, and the experiment was performed when subjects’ walking
was not interfered by the traffic of other pedestrians. During the
experiment, each subject was asked to carry a smartphone and
to use the sidewalk to walk from the starting point to the ending
point in Fig. 1a ten times. All subjects were asked to wear tight
pants (preferably jeans) to minimize any movement within their
pockets, and running shoes to reduce any bias caused by a less
stable shoe. During this experiment, subjects’ bodily responses
were collected via an IMU sensor, and their locations were
recorded using GPS.

Table 3 provides visual evidence of the terrain at the experi-
ment site (sidewalk). There were 16 defects on the sidewalk,
including 13 holes that were greater than 3/400, three cracked sur-
faces, and one vertical separation surface. The pedestrians’ bodily
responses were then compared to the existence of defects.

3.2. Data analysis method

To collect subtle body responses, this study uses a signal vector
magnitude (SVM) that is calculated based on three axes of acceler-
ation. An SVMmeasures the extent to which a body moves by aver-
aging the acceleration’s signal power [45]. In several previous
studies [43,44], an SVM was used to measure the severity of
response. However, in these studies, the accelerations were mea-
sured according to time, not location, so here there is a need to
convert an SVM calculated by time into an SVM by location. To
achieve this conversion, we calculate an average (mean value) of
observed SVM values in a specific location (the location window
size is defined as one foot). Using Eq. (1), the SVMij and SVM values
of jth subject on ith segment (each segment is one foot) are calcu-
lated as the root of the square sums of three axes’ acceleration
signals.

SVMij ¼
Xn
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k þ y2k þ z2k

q" #,
n; ð1Þ

where n is the total number of IMU measurements of jth subject on
ith segment, xk is kth acceleration of anterior-posterior axis, yk is kth
acceleration of horizontal axis, and zk is kth acceleration of vertical
axis.

Although an SVM has the potential to detect a subtle bodily
response [47], an SVM range varies by subject because each sub-
ject’s physical characteristics are unique. This difference may make
it difficult to integrate multiple subjects’ bodily responses using an
SVM. The relative ratio to the average has been used to deal with
this difference [46–48]. To compare how a bodily response in a
particular location differs from an average of each subject’s SVM,
a relative SVM (RSVMij) is suggested in this study. RSVMij values
compare how an individual’s body’s movement in a specific loca-
tion differs from the individual’s average movement. An RSVMij

is defined as the ratio of the SVM by location to the average SVM
of each subject and can be calculated as Eq. (2).



Fig. 1. Experiment overviews: (a) Experiment location; (b) device and subject; and (c) experiment location and subject.

Table 3
Sidewalk defects at the experiment site.

Defect location
(ft)

Description Figure Defect location
(ft)

Description Figure

24 Hole greater than 3/400 199 Hole greater than 3/400

36 Hole greater than 3/400 227 Hole greater than 3/400

62 Hole greater than 3/400 232 Hole greater than 3/400

79 Water stop box is down equal to or greater
than the 3/400

254 Hole greater than 3/400

Hole greater than 3/400

A single square cracked into more than three
pieces

105 Hole greater than 3/400 271 Hole greater than 3/400

120 Hole greater than 3/400 295 Vertical separations greater than 100

144 A single square cracked into more than three
pieces

328 A single square cracked into more than
three pieces

173 Hole greater than 3/400 373 A single square cracked into more than
three pieces
Hole greater than 3/400

H. Kim et al. / Advanced Engineering Informatics 30 (2016) 660–671 663
RSVMij ¼ SVMijXN
i¼1

SVMij

" #,
N

; ð2Þ
 where N is the total number of segments (in this experiment,
N = 421).

Fig. 2 illustrates the raw data from the experiment, the scatter
plot of RSVM values of all subjects, and the dispersion of three



Fig. 2. Data overview: (a) Example of two subjects’ RSVM values; (b) scattered data plot of whole subjects; (c) histograms of RSVM values in three cases (hole, vertical
separation, and non-defect surface) and images of corresponding terrain.
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locations. Collected raw data are converted into RSVM values by
following Eq. (2). In Fig. 2a, two subjects’ experimental data are
shown. It is difficult to detect the defect existence and location
with this data due to the individualized nature of the data. These
two subjects have different responses even on the same defect.
However, the collective data from multiple subjects can be more
meaningful in detecting a defect. In Fig. 2b, most data are within
a range from 0.5 to 1.5 (approximately 90%). However, several
locations have higher RSVM values, such as at section (1) in
Fig. 2b. It can be assumed therefore that there is a response change
in these locations. If viewed in detail, we may find an element that
can intensify a pedestrian’s responses. However, although these
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higher values can indicate a defect’s existence, a higher value itself
does not guarantee a defect’s existence. In the case of (2) in Fig. 2b,
though the location includes vertical separation, no higher RSVM
value is found. The brief data overview confirms that simply using
the response magnitude cannot guarantee a reliable detection of
sidewalk defects. Fig. 2c shows the RSVM histograms of three typ-
ical locations. Investigating the data at specific locations provides
several interesting points. The first (a hole defect) and second (a
vertical separation defect) histograms in Fig. 2c show a negatively
and a positively skewed distribution, respectively. Comparatively,
responses in a location where there are no defects (e.g., Fig. 2c)
usually follow a normal distribution. This means that unlike with
response magnitude, the normality of responses at a specific loca-
tion can be used as an indicator for detecting the existence of a
defect.

From this brief overview, two metrics are selected: (1) the
average of RSVM values by location, which is used to
analyze response severity and (2) the Shapiro-Wilk (W) statistic
of RSVMs by location, which is used to analyze response normality.
TheW statistic identifies how likely a specific distribution is to be a
normal distribution [51], and can be calculated by following
equation:
W ¼
Xn
i¼1

aixðiÞ

 !2,Xn
i¼1

ðxi � �xÞ2; ð3Þ
where xi is the ith order statistic; �x is the sample mean
(�x ¼ ðx1 þ x2 þ � � � þ xnÞ=n); ai is the set of constants are given by

ða1; . . . ; anÞ ¼ mTV�1=ðmTV�1V�1mÞ1=2; m is the expected values of
the order statistic of independent and identically distributed ran-
dom variables sampled from the standard normal distribution and

given by m ¼ ðm1; � � �mnÞT; and V is the covariance matrix of those
order statistics.
Fig. 3. Calculation results of whole subjects: (a) Average
4. Results

The results of the experiment are shown in Fig. 3. Each result
was calculated respectively based on the average of the RSVM val-
ues and theW statistic of RSVM values collected from a total of 170
tests (17 subjects and 10 experiments from each subject). The 16
locations marked in grey indicate existing defects, as determined
by existing defective sidewalk regulations. In several grey loca-
tions, the average RSVM values are much higher than those of
non-defective sidewalks (see Fig. 3a). This indicates that pedestri-
ans’ bodily responses at those locations are highly affected as com-
pared to non-defective sidewalk locations. There are 11 peak
points at grey locations. However, several defects do not display
distinguishable differences in terms of the average RSVM. For
example, defects located at 62 ft (hole), 144 ft (cracked into more
than three pieces), 254 ft (hole), 295 ft (vertical separation), and
328 ft (cracked into more than three pieces) do not manifest in
the data in a way that would serve as crucial information for
detecting a defect in sidewalks.

Fig. 3b illustrates the results of the W statistic of RSVM by loca-
tion. In non-defective sidewalks, the range of theW statistic is from
0.92 to 0.99. Such high W statistics mean that pedestrians’ collec-
tive responses in non-defective sidewalks follow a normal distribu-
tion with a very high probability. On the other hand, the
distribution of pedestrians’ responses is very disordered in defect
locations. In some defect locations, W statistics range from 0.78
to 0.88. There are 14 peak points below 0.9 at grey locations. In
particular, the defects located at 144 ft and 295 ft can be detected
byW statistics, but cannot be detected by only using the average of
RSVM values. The low normality of pedestrians’ collective bodily
responses are well matched to the defect existence except for
defects located at 62 ft and 328 ft. However, unlike the average
of RSVMs, a low W statistic was observed on a stretch of non-
defective sidewalk located between two identified defects, which
were located very close together (between 227 ft and 232 ft).
of RSVM values; and (b) Shapiro-Wilk statistic (W).
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The RSVM values by location are continuous variables, whereas
the existence of defects can be represented as a binary variable
(existence as 1 or nonexistence as 0). To analyze the relationship
between a defect’s existence and pedestrians’ bodily responses in
a statistical manner, this study used the point biserial correlation
coefficient (rpb). (The point biserial correlation coefficient is used
when one variable is dichotomous and the other is not.) The point
biserial correlation coefficients between a defect’s existence and
pedestrians’ responses are calculated by using the following
equation.

rpb ¼ ðM1 �M0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn1n0=n2Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðXi � �XÞ2

q ; ð4Þ

where M1 is the mean value on the continuous variable X (the aver-
age of RSVM or the W statistic of RSVM) for all data points in group
1 (Defect Existence); M0 is the mean value of the continuous vari-
able X (the average of RSVMs or the W statistic of RSVMs) for all
data points in group 2 (Defect Nonexistence); n1 is the number of
data points in group 1; n0 is the number of data points in group
2; and n is the total sample size.

Based on the point biserial correlation, the correlation between
each metric and a defect’s existence were compared. The coeffi-
cients of each metric are 0.65 (for the average of RSVM values)
and �0.79 (for the W statistic of RSVMs), respectively. According
to previous research [49,50], a correlation coefficient over 0.7 indi-
cates a high degree of correlation. In the results, we find that theW
statistic (of pedestrians’ collective bodily response) and defect
existence are highly correlated. It can be thus concluded that the
normality of pedestrians’ collective responses shows a higher cor-
relation with a defect’s existence in sidewalks.

To estimate the location of defects in the sidewalk, k-means
clustering was used to classify data into two groups based on
nearest-centroid sorting. In this method, data are classified into a
predetermined number of groups (clusters). Data (e.g., the subjects’
bodily response data) observed within a certain location (a foot) is
assigned to the cluster with the smallest distance between the data
and the center of the cluster, or centroid [54]. Since the condition
of a sidewalk can only be classified into eitherwith a defect or with-
out a defect, the value of k (the number of clusters) is determined to
be 2. As can be seen in Fig. 4, each location’s data are classified into
two groups: (1) locations determined to be ‘‘normal” conditions
(true negative (n = 372) and false negative (n = 14)) and (2) loca-
tions determined to have defects (true positive (n = 33) and false
positive (n = 2)). Based on this result, the accuracy is 0.962, the pre-
cision is 0.943, and the recall is 0.702.

Although the high degree of accuracy, including precision and
recall, may indicate that the suggested clustering result is feasible
Fig. 4. Clustering results and images of corresponding terrain: (a) k-Means clustering res
(d) examples of false positive points.
for detecting and locating defects, it would be valuable to conduct
further investigation into the reasons why the false negative (falsely
estimated defective sidewalk) and false positive (falsely estimated
normal sidewalk) points appear. Comparing true negative points
to true positive points and false negative points, true negative
points generally show lower W statistic values and higher average
RSVM values than the false negative points. The reasons why sev-
eral defects are determined to be false negative points can be as fol-
lows: First, even though defects determined to be false negatives
fulfill defective sidewalk regulations, these defects may not affect
pedestrians’ bodily responses since the defects could be diminutive.
For example, two holes which formed a defect cluster were identi-
fied as false negatives (see Fig. 4c); these holes had an average size
of 3.500 by 600, notably smaller than general holes (whose average
size is 41.200 by 9.600). The diminutive size of these defects might
not be significant enough to affect pedestrians’ bodily responses.
Second, it is possible that there are errors in the study. The vertical
separation (see Fig. 4c) has an average RSVM value under 1.0 and a
W statistic value under 0.9. The range of values presented on the
vertical separation is located between true negative points (cluster
1) and true positive points (cluster 2). This result maymean that the
vertical separation does not cause enough magnitude or dispersed
distribution to be identified as a defect.

Within our results, two locations were determined to be false
positives. These two locations provide a great opportunity to con-
sider the relationship between an actual defect and the sidewalk
regulations. In the regulations, a sidewalk square cracked into
more than three pieces is identified as a defect. However, a crack
that divides a single square into just two pieces can also affect
pedestrians’ bodily responses. In Fig. 4d, cracks (false positives)
caused pedestrians’ bodily responses to disperse obviously in
terms of low W statistics. This finding may indicate that defective
sidewalk regulations do not cover all defect types in actuality, and
that there are some conditions not identified as defects by regula-
tions which affect pedestrians’ walking as much as do identified
defects. It also indicates that regulations should be improved by
taking into consideration the interaction between a defect and a
pedestrian. Even though, the clustering results show acceptable
accuracy, future studies are required to minimize the number of
false positives and false negatives for enhancing the accurate
detection of sidewalk defects.
5. Discussions

The previous section demonstrates that the W statistic can be
used to detect defects in sidewalks by utilizing pedestrians’ collec-
tive bodily responses. This section will provide further discussion
ults; (b) examples of true positive points; (c) examples of false negative points; and
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about (1) needs for collective sensing to detect defects in side-
walks; (2) walking patterns for defective sidewalks; (3) the effect
of pedestrian familiarity with particular sidewalks; (4) the possi-
bility of people centric sensing to detect defects; and (5) limita-
tions and future research.
5.1. Needs for collective sensing

In this paper, results are deduced based on the collective sens-
ing approach, and we have shown that the normality of pedestri-
ans’ response distribution is highly correlated with defect
existence. Response differences between subjects are the key for
performing this analysis. If there is no response difference between
subjects, we can estimate the location of a defect by using the mag-
nitude of responses. However, each individual presents his or her
bodily response differently from another. Fig. 5 illustrates two sub-
jects’ data in order to examine the reason why individuals present
different bodily responses from each other. Comparing two sub-
jects’ bodily responses at the defect locations, we find that subject
A’s bodily responses are generally smaller than those of subject B.
In particular, subject A’s bodily responses at the defect locations
are lower than his/her responses in other locations, which could
mean that the subject moves carefully in the defect location. On
the other hand, subject B’s bodily responses at the defect locations
are much higher than at non-defective locations. Considering the
differences between these two subjects, we see that while bodily
responses can indicate defects, there is no specific response that
acts as a guaranteed indicator since either a high or a low response
can indicate defects.

However, the response distribution obtained from collective
sensing can provide another perspective for analyzing responses.
Every pedestrian has different, individual traits such as their level
of observation, their risk-taking tendencies, and their physical
characteristics. The differences between subjects can explain why
the collective sensing approach is required to detect a defect in
sidewalk. As shown in Fig. 5, two subjects’ bodily responses differ
as they walk along the sidewalk, but especially differ at the defect
location. Subject A exhibits precautionary behaviors (e.g., he
decreases his velocity before walking on defect) and avoids most
defects (e.g., steps over defects). On the other hand, subject B’s
behavior showed no consideration of the defect’s existence in the
experiment as he did not adjust his velocity. One explanation is
that he may not perceive the specific defect (defined by the gov-
ernmental regulations) as being personally hazardous. As the num-
ber of subjects increases, the diversity of responses gradually
Fig. 5. Example of different bodily
increases. Collective sensing is a method that can capture both
the diversity of responses and the normality of response distribu-
tion, which can indicate a defect’s existence.
5.2. Detecting defective sidewalks

As mentioned in the previous section, the key factor in detect-
ing sidewalk defects is pedestrians’ bodily responses, which are
the result of the interaction between sidewalk surfaces and pedes-
trians. Specifically, this study found the interesting point that the
distribution of bodily responses (normality) can be used to esti-
mate the existence of sidewalk defects. However, the reason why
the degree of normality differs by whether or not a defect exists
has not yet been explained. This section will discuss the reason
in terms of walking patterns.

When a pedestrian walks along a sidewalk, a sidewalk defect
can affect the pedestrian’s bodily responses. If there are no factors
that disturb the maintenance of his or her walking pattern, the
walking pattern is regular; i.e., under normal walking conditions,
a pedestrian does not change his or her walking patterns fre-
quently within a short time period [55]. The overlapped regular
patterns collected from various pedestrians in a specific location
may create a distribution of bodily responses with high normality.
Because each individual has a different stride length, the foot loca-
tion (the start and end points of a stride) in a specific location may
be different. If the patterns are regular and repetitive, the walking
pattern (represented as RSVM values in this study) tends to be sim-
ilar to the average walking patterns. Because the RSVM values are
calculated based on location (segment length)—not the cycle of
gait—the calculated RSVM values are not always same, even if
the walking pattern is exactly same. For example, if the pattern
length is 3.5 ft and the segment length is 1 ft, the RSVM value
can be distributed by each foot. These distributed RSVM values,
collected in a non-defective location, are similar and have a normal
distribution. Unlike in the non-defect situation, however, a defect
can change the walking patterns of a pedestrian [56]. When a
pedestrian encounters a defect on the route, he or she may deter-
mine where the next foot location should be. For instance, there
may be several options available, such as increasing a stride length
to step over the defect, decreasing a stride length to prepare to
bypass the defect, changing the route (moving away from the
defect) to avoid the defect, or ignoring the defect and stepping
on it. These pattern changes can cause irregular responses, which
are represented as abnormal acceleration values. The irregular
responses for responding to a defect cause the distribution of the
responses from two subjects.
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collective responses within a specific location to be dispersed (low
normality).

In addition to the cases mentioned above, there are other pos-
sibilities by which a defect can affect pedestrians’ walking pat-
terns even though there is no direct interaction (contact)
between the pedestrian and defect. For example, pedestrians tend
to walk in the middle of a sidewalk unless passing others [57].
Thus, we might assume that a defect located at the edge of the
sidewalk would not affect pedestrians’ behavior on a sidewalk
with no one else around. However, humans often have a strong
sense of personal space [58,59]. When a pedestrian expects that
someone or something will intrude into this personal space, the
pedestrian usually moves to avoid the intrusion if there is enough
space to do [60]. This common avoidance behavior can be directly
applied to this study. Some subjects may not want to allow a
defect to intrude into their personal space. Consequently, bodily
response changes may occur in order to maintain their personal
space (moving a certain distance from a defect). A second possi-
bility is skipping a defect by happenstance. Each pedestrian has
a walking pattern, including a walking pace. If each pace is three
feet and the last point of contact between the foot and sidewalk is
one foot behind the defect, the next footfall will naturally be
located two feet in front of the defect. In this case, the data
may not be able to indicate the existence of a defect, and would
read very similarly to data observed at non-defect locations. Cases
such as these, caused by individual differences, may provide a
challenge to this study. Therefore, we need to address them
through data aggregation and collective analysis. The data
observed at a particular defect location may include various types
of behaviors such as stepping, skipping, and avoiding the defect;
these behaviors make it difficult for pedestrians to maintain their
regular walking patterns. The abnormal behaviors caused by
responding to this defect may disperse the distribution at this
location. Consequently, reviewing collective bodily responses
from all pedestrians can indicate the existence of a defective
sidewalk.
Fig. 6. Calculation results of the average of RSVM val
5.3. Effect of pedestrians’ familiarity on defective sidewalk detection

Although there is promise in the idea that pedestrians’ collec-
tive bodily responses can indicate the existence of defects, there
is another factor that should be considered before applying the
suggested method to practical use. According to various studies
[61–63], familiarity with a place or a space affects pedestrian
behaviors. Each sidewalk has a different user base, however. For
example, a sidewalk near a tourist attraction (e.g., Times Square,
which is traversed by more than 400,000 pedestrians per day)
would have a relatively minimal number of pedestrians who are
familiar with the sidewalk, but a large number of pedestrians
who are unfamiliar with the sidewalk. On the other hand, a side-
walk in a suburb community is likely to have a higher percentage
of pedestrians who are generally familiar with the sidewalk. To
ascertain the effects of the familiarity of pedestrians with side-
walks, we perform a comparison between two groups by classified
by familiarity level. Among the 17 subjects who participated in the
experiment, nine subjects (the ‘‘familiar” group) are the residents
of the nearby Nebraska hall and are familiar with the experiment
sidewalk. The other eight subjects (the ‘‘unfamiliar” group) are
unfamiliar with the sidewalk.

Fig. 5 illustrates the average of the RSVM values of the two
groups respectively. Comparing the two groups’ average RSVMs,
the unfamiliar group (see Fig. 6a) displayed higher peak points
than did the familiar group (see Fig. 6b). In particular, the unfamil-
iar group presented much higher average RSVM values at 36 ft,
232 ft, and 271 ft. The point biserial correlation coefficients of each
group are 0.68 (unfamiliar group) and 0.44 (familiar group).
Because familiarity can be understood as predictability (e.g.,
already having knowledge of a defect’s existence or location), sub-
jects in the familiar group showed a lower RSVM value average.
This result may indicate that responses collected from a group of
subjects who are unfamiliar with the terrain in question could be
much more suitable for detecting a defect on sidewalks than
responses from subjects with familiarity.
ues: (a) unfamiliar group and (b) familiar group.



Fig. 7. Calculation results of the Shapiro-Wilk statistic: (a) the average of RSVM values and (b) the Shapiro-Wilk statistic (W).
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In a comparison of Shapiro-Wilk statistic (W), the difference
between the two groups is less than the difference of the average
of RSVMs (see Fig. 7). Unlike the average of RSVMs, the Shapiro-
Wilk statistics of the two groups on defects located from 79 ft to
295 ft have similar features. Although the comparison of the point
biserial coefficients of the average of RSVMs between the two
groups showed differences, the point biserial correlation coeffi-
cients of the two groups are very similar (unfamiliar group:
�0.85; familiar group: �0.81). The point biserial coefficients of
both groups are significantly correlated with defect locations. This
result indicates that the normality of pedestrians’ bodily responses
can provide information related to the existence of a defect. Even if
pedestrians are familiar with a sidewalk, their responses are dis-
persed at a defect location. This response dispersion, which can
be observed in both groups, does not make a noticeable difference
in the collective response patterns of either group.

5.4. The possibility of using people-centric sensing to detect defects

Current defective sidewalk detection is usually conducted by
trained inspectors from governmental agencies. Because of staffing
and budget limitations, the intervals between inspections are
generally long. For example, in Dubuque (Iowa) and Omaha
(Nebraska), sidewalk inspections only occur once a year. If a defect
forms in a location between scheduled checks, the defect is not
registered in the management process. In contrast to this practice,
the suggested approach in this paper inspects the condition of
sidewalks based on participatory pedestrians’ bodily responses.
Whenever a participating pedestrian walks along a sidewalk, the
sidewalk is continuously estimated without an overlong inspection
interval. Compared to current inspector-led practices, this
approach will reduce the time needed to detect a defect.

Moreover, the suggested approach can provide another advan-
tage related to regulation development. According to the Occupa-
tional Safety and Health Administration, the duration of the
regulation-formation process is 52–138 months [64]. Considering
the significant effort needed to develop regulations, a people-
centric sensory approach could be regarded as a part of a solution
that is user-oriented and time-effective. Focusing on the detection
of defective sidewalks, this people-centric sensory approach can
reduce the need for regulation development. By collecting and ana-
lyzing pedestrians’ bodily responses, we can automatically detect a
defect that causes abnormal responses. Consequently, a sidewalk
condition that actually functions as a defect—whether it meets
the current criteria for a regulated defect or not—can be found
without additional regulation development.

Despite these advantages, however, there are several challenges
that must be overcome for a people-centric sensory approach to be
feasible, including ensuring consistent sensor calibration [65],
recruiting and sampling participants [66], and protecting the pri-
vacy of participants [26]. Although research related to people-
centric sensing is still in its infancy, it is expected that the sug-
gested challenges will be addressed in the near future [67].

5.5. Limitations and future research

This study focused on investigating the feasibility of utilizing a
people-centric sensing technique for detecting sidewalk defects.
Although the results supported the feasibility of the approach,
there may be several hurdles such as diverse pedestrians and their
behaviors as well as complex environment in the way of applying
the proposed approach to the real world. Moreover, pedestrians’
walking behaviors and the conditions of sidewalks are too compli-
cated to have been fully incorporated into the experiment we con-
ducted. Despite these acknowledged limitations, however, the
authors’ primary task in this study was to investigate the feasibility
of the proposed approach, since that feasibility had not yet been
reviewed. Although the selection of scale and the fixed carriage
type may limit us from generalizing our research findings to other
situations such as pedestrian crowds, uneven or sloped sidewalks,
or sidewalks with more diverse components, we needed to control
all these other independent variables mentioned above in order to
conduct a baseline study on the feasibility of response-based
detection in any setting.
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However, future study requires further incorporation of pedes-
trians’ various behaviors and diverse elements on a sidewalk. For
example, in this study, each subject (pedestrian) remained on the
experiment path alone. In future studies, the interaction between
pedestrians should be considered as well as that between a single
pedestrian and the existence of a defect. On a crowded sidewalk,
pedestrians’ behaviors may differ from those displayed under the
experiment conditions. Moreover, diverse external physical condi-
tions such as the existence of trees, the velocity of vehicles passing
near the sidewalk, sidewalk width, and surrounding built environ-
ment [68,69] should be considered in the future study. An addi-
tional line of inquiry could involve disabled persons or the
elderly, who may be more sensitive to the existence of a defect
than younger or more able-bodied people. The different physical
abilities of pedestrians should be investigated. In future studies,
these diverse situations will be further investigated. Besides situa-
tions related to pedestrians, a deeper look at the applicability of the
proposed approach is required. In this study, the collected data are
stored in a smart phone. This means that the collected data would
need to be transferred to a local server manually. This process may
be a time-consuming task, thus it should be handled. Fortunately,
the recent development of techniques like crowd-sourced sensing
networks can solve this problem. This study utilized a smartphone,
which included data transfer methods in a real-time manner. As
the next stage of this research, a crowd-sourced system will be
developed to enhance the applicability of this approach to real-
world applications. Once the system is developed, diverse external
physical conditions and pedestrians’ behaviors will be further ana-
lyzed to apply the system to a large scaled city district.
6. Conclusions

Sidewalk quality is a crucial factor impacting the built environ-
ment. However, current defective-sidewalk regulations and detec-
tion procedures are limited due both to the fact that they do not
incorporate interaction in human-physical systems, and to their
labor-intensive methodologies. This study investigates the feasibil-
ity of harnessing pedestrians’ bodily responses to sidewalks as a
means of detecting defects in sidewalks. To test the feasibility of
this idea, an experiment with 17 subjects was conducted, and their
bodily responses were collected using IMU sensors and GPS
devices installed in smartphones. The collected pedestrians’ bodily
responses were analyzed in the concept of average and W statistic
at a certain location. The results demonstrate that the normality of
responses—represented as the W statistic—at a certain location is
highly correlated with a defect’s existence.

The main contribution of this paper is our finding that the exis-
tence of a defect is highly correlated with the abnormality
observed in the distribution of collective pedestrians’ bodily
responses. In particular, the distribution of pedestrians’ bodily
responses to a defective location is irregular in comparison to the
distribution of responses to a non-defective portion of sidewalk.
Moreover, this study demonstrates the feasibility of participatory
sensing based on smartphone use, which can let users easily par-
ticipate in the process of sidewalk evaluation. If pedestrians’ bodily
responses are collected, a particular location can be evaluated
based on the suggested method. The suggested method can thus
be used to detect defects in sidewalks and will also help establish
a proactive approach to managing the quality of sidewalks.
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