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a b s t r a c t

In this paper, we study the problem of efficient data recovery using the data mules ap-

proach, where a set of mobile sensors with advanced mobility capabilities re-acquire lost

data by visiting the neighbors of failed sensors, thereby avoiding permanent data loss in

the network. Our approach involves defining the optimal communication graph and mules’

placements such that the overall traveling time and distance is minimized regardless to

which sensors crashed. We explore this problem under different practical network topolo-

gies such as arbitrary graphs, grids and random linear networks and provide approxi-

mation algorithms based on multiple combinatorial techniques. Simulation experiments

demonstrate that our algorithms outperform various competitive solutions for different

network models, and that they are applicable for practical scenarios.

© 2016 Published by Elsevier B.V.

1. Problem formulation1

A data mule is a vehicle that physically carries a com-2

puter with storage between remote locations to effectively3

create a data communication link [21]. In ad-hoc networks,4

data mules are usually used for data collection [5] or mon-5

itoring purposes [11] when the network topology is sparse6

or when communication ability is limited. In this paper,7

we propose to extend the usage of data mules to the crit-8

ical task of network reliability. That is, using the advan-9

tages of mobility capabilities to prevent losing crucial in-10

formation while taking into consideration the additional11

operational costs. We propose to model the penalty of a12

sensor crash as the cost of restoring its information loss,13

and present several algorithms that minimize the total cost14

given any combination of failures. We use concepts from15

graph theory to model the deployment of the ad-hoc net-16

work and give special attention to linear and grid graph17

models, whose unique network characteristics makes them18
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well suited for many sensor applications such as monitor- 19

ing of international borders, roads, rivers, as well as oil, 20

gas, and water pipeline infrastructures [11,13]. 21

Let T be a data gathering tree rooted at root r span- 22

ning n wireless sensors positioned in the Euclidean plane, 23

where data propagates from leaf nodes to r. We model 24

the environment as a complete directed graph G = (V, E), 25

where the node set represents the wireless sensors and 26

the edge represents distance or time to travel between 27

that sensors. We assume the sensors are deployed in rough 28

geographic terrain with severe climatic conditions, which 29

may cause sporadic failures of sensors. Clearly, if a sensor 30

v fails, it is undesirable to lose the data it collected from 31

its children in T, δ(v, T ). Thus, a group of data gathering 32

mules must travel through δ(v, T ) and restore the lost in- 33

formation. We define this problem as (α, β)-Mule problem, 34

where α is the number of simultaneous node failures and 35

β is the number of traveling mules. 36

For α = 1, β = 1, the mule visits the children of v over 37

the shortest tour, t(m, δ(v, T )), starting and ending at node 38

m ∈ V, where the length of the tour is equal to the Eu- 39

clidean length of distances; the goal is to find a data gath- 40

ering tree T, the placement of the mule m, and the shortest 41

tours, t(m, δ(v, T )) for all v ∈ V, which minimize the total 42
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Fig. 1. Example for the mule tour when 2 nodes fail. The grey nodes rep-

resent sensors that experienced failure and the blue dashed lines repre-

sent the mule tour; the tour starts and ends at node m. (For interpretation

of the references to color in this figure legend, the reader is referred to

the web version of this article.)

traveling distance given any sensor can fail. Formally, find43

T and m such that
∑

v∈V |t(m, δ(v, T ))| is minimized. In a44

similar way, we can define the problem for α > 1, β = 145

(see example for α = 2 in Fig. 1, where the edges are di-46

rected towards the root). Formally, find T and m such that47 ∑
{F⊂V :|F |=α} |t(m,

⋃
v∈F δ(v, T ))| is minimized. We can ex-48

tend this scenario to the case where instead of a single49

mule, we have β mules m̄ = {m1, m2, . . . , mβ} deployed at50

different coordinates of the graph. When a node fails, its51

children must be visited by one of the mules to restore52

the lost data, which can be viewed as a mule assignment53

per node for the single node failure, or per unique node54

failure combination for the multi-failures case. In addition55

to T, we must find the location of all mules m̄, and an as-56

signment of each node v ∈ V to a mule mi ∈ m̄ that mini-57

mizes the total travel cost of all mules. Formally, for β >58

1, let t(mi, δ(v, T )) be the shortest path tour that includes59

mule mi and the children of node v that mule mi should60

visit. For α = 1, the optimization problem is to find T and61

m such that
∑ ∑ |t(m , δ(v, T ))| is minimized.62
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1.2. Paper outline 76

The paper is organized as follows. In the next section 77

we discuss the previous related work to our problem. We 78

analyze different variations of the mule problem under the 79

complete graph model and the unit disc graph model in 80

Sections 3 and 4, respectively. Section 5 outlines a possible 81

distributed implementation of our algorithms. In Section 6 82

we present simulations of our algorithms under different 83

network settings and conclude in Section 7. 84

2. Related work 85

Exploiting mobile data carriers (mules) in ad-hoc net- 86

works has received significant attention recently. The sub- 87

ject of major interest in most works is using the mules 88

to relay and collect messages in sparse network settings, 89

where adjacent sensors are far from each other, in or- 90

der to substantially reduce the cost of indeterminate sen- 91

sors communication and data aggregation. For example, 92

Wu et al. [22], investigate how to use the mule archi- 93

tecture to minimize data collection latency in wireless 94

sensor networks. They reduce this problem to the well- 95

known k-traveling salesperson with neighborhood and pro- 96

vide a constant approximation algorithm and two heuris- 97

tic for it. In a related paper by Ciullo et al. [8], the 98

collector is responsible for gathering data messages by 99

choosing the optimal path that minimizes the total trans- 100

mitted energy of all sensors subject to a maximum travel 101

delay constraint. In their model, each sensor sends differ- 102

ent amount of data. The authors also use the k-traveling 103

salesperson with neighborhood problem in their solution 104

technique and prove both analytically and through simula- 105

tion that letting the mobile collector come closer to sen- 106
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v∈V mi∈m̄ i

We consider two network models, complete graphs and

unit disc graphs. In the complete graph model, there is

directed edge between any pair of nodes in the graph

while in the unit disc graph model, there is an edge if and

only if d(u, v) ≤ 1, where d(u, v) is the Euclidean distanc

between nodes u and v.

A summary of symbols used throughout this papers ar

depicted in Table 1.

1.1. Our contribution

To the best of our knowledge, this is the first work ex

ploring the mule approach for avoiding data loss due t

communication failures. Our results are summarized in th

following table:

Table 1
Symbol table.

m The mule placement in T

δ(v, T ) The children of node v in tree T.

|t(m, δ(v, T ))| The cost of the shortest tour visiting the children of n

c(m, r) Total cost of the data gathering tree when mule is pla

for topologies for which the cost of the solution so

π (i, m, r) Number of times node i is visited by the mule for a g

c(T) The cost of a tree solution T when the placement of m

Please cite this article as: J. Crowcroft et al., Using data mules f
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sors with more data to transmit leads to significant re

duction in energy consumption. Cheong et al. [6] investi

gate how to find a data collection path for a mobile bas

station moving along a fixed track in a wireless senso

network to minimize the latency of data collection. Levin

et al. [17] considered the problem where the goal was t

minimize the mules’ traveling distance while minimizin

the amount of information uncertainty caused by not vis

ited a subset of nodes by the mule. A supplementary pa

per by Jea et al. [14] studies the practical advantages o

offloading the collection using multiple data mules. A sur

vey by Di Francesco et al. [9] covers the different aspects

methodologies and challenges for data collection in wire

less sensor networks (Table 2).

Another key aspect we discuss is using mules as backup

mechanism for data loss resiliency in case of senso

ode v in tree T starting from node m.

ced at node m and root is placed at node r. The notation is used
lely depends on m and r.

iven m and r.

and r is given in advance.

or sensor network data recovery, Ad Hoc Networks (2016),
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Table 2

Summary of results.

Underlying graph Problem Topology Approximation ratio

Complete (1, 1)-Mule Arbitrary 1 + 1/c, c > 1

(α, 1)-Mule min (3, 1 + s∗),
s∗ = minv∈V

max d(v,u)
min d(v,w)

(1, β)-Mule 2

UDG (1, 1)-Mule Line OPT

(α, 1)-Mule Line OPT

(1, 1)-Mule Random Line 4

(1, 1)-Mule Grid 1 + (2 +
√

2)/
√

n

failures. In [18], the authors propose a mechanism for123

b124

g125

d126

o127

is128

m129

a130

K131

a132

in133

p134

th135

th136

ti137

a138

fa139

140

m141

li142

p143

te144

e145

it146

b147

a148

lo149

e150

se151

e152

im153

a154

a155

su156

a157

3158

159

d160

st161

p162

3163

164

fo165

L 166

fo 167

ro 168

P 169

b 170

tr 171

|t

is 172

173

a 174

o 175

u 176

M 177

le 178

w 179

le 180

p 181

e 182

p 183

a 184

C 185

P 186

sh 187

fr 188

le 189

x 190

a 191

x 192

so 193

th 194

195

p 196

L 197

a 198

P 199

[1 200

w 201

is 202

203

C 204

th 205

P

h

acking up cell phone data using mobile sensor nodes. The

oal of their protocol and infrastructure is to prevent losing

ata when the cell phone is lost, malfunction or stolen. An-

ther approach for handling data loss in sensor networks

to construct a topology with path redundancy, where

ultiple paths connect each pair of nodes and serve as

backup mechanism in the case of node failure. In [15],

im et al. propose a new algorithm based on results from

lgebraic graph theory, which can find the critical points

the network for single and multiple failure cases. They

resent simulations that examine the correlation between

e number of critical points and sensor density. In [23],

e authors proposed to build a biconnected communica-

on graph where each pair of nodes in the network has

t least two node disjoint paths between them, and thus,

ilure at any single node does not partition the network.

Multiple works in ad-hoc network examine the perfor-

ance of graph related communication algorithms under

near or grid network topologies. The justification to ex-

lore such topologies is that multiple algorithms have been

sted under realistic network conditions. In [11], Fraser

t al. explore the usage of sensor networks for bridge mon-

oring. They build a continuous monitoring system, capa-

le of handling a large number of sensor data channels

nd three video signals and deployed on a four-span, 90-m

ng, reinforced concrete highway bridge. In [13], Jawhar

t al. consider a protocol for linearly structured wireless

nsors to decrease installation, maintenance cost, and en-

rgy requirements, in addition to increasing reliability and

proving communication efficiency. Their protocol takes

dvantage of the unique characteristics of linear networks

nd is well suited to be used in many sensor applications

ch as monitoring of international borders, roads, rivers,

s well as oil, gas, and water pipeline infrastructures.
. Complete graphs

In this section, we study the (α, β)-Mule problem un-

er the complete graph model, where the underlying graph

ructure is complete (i.e., there is an edge between any

air of nodes) and the network topology is arbitrary.

.1. (1, 1)-Mule problem in complete graphs

Let S be a star over V and r be its root. We claim the

llowing:

3

th

a

o

to

α

al

lease cite this article as: J. Crowcroft et al., Using data mules for
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emma 1. The optimal structure for the data gathering tree

r the (1, 1)-Mule problem on complete graphs is a star

oted in one of the nodes of V.

roof. For any data gathering tree each node in V�{r} must

e traversed at least once. The proof follows since the

avel distance of the mule for a star is:

(m, {v})| =
{

0 v �= r
Length of shortest tour otherwise
over V \ {r}

optimal. �

Lemma 1 implies that the (1, 1)-Mule problem is equiv-

lent to the problem of finding a node r ∈ V and a tour

ver V�r, such that the cost of the tour is minimized. We

se this fact to prove the NP-completeness of the (1, 1)-

ule problem. Consider the standard decision TSP prob-

m: Given a set S of n points, and length K, we need to find

hether exist a cycle that goes through all points in S whose

ngth is at most K? The decision version for the (1, 1)-Mule

roblem is as follows: given a set P of n points, and param-

ter L, we need to find whether we can remove one of the

oints so the cycle for the remained points will be of length

t most L?

laim 2. The (1, 1)-Mule problem is NP-complete.

roof. It is easy to see that the problem is in NP. We only

ow TSP ≤ P(1, 1)-Mule. Given n points and parameter K

om TSP instance, we construct the instance for our prob-

m as follows. We set P to contain S and one more point

. The parameter L will be equal to K. We put point x far

way from all other points of P so that the distance from

to any of them will be more than K. Clearly, there is a

lution to (1, 1)-Mule problem for P and L if and only if

ere is solution to TSP problem. �

Next, we present an approximation algorithm for the

roblem.

emma 3. For any fixed c > 1, there is an 1 + 1
c -

pproximation algorithm for (1, 1)-Mule problem.

roof. Using the 1 + 1
c -approximation algorithm for TSP

], we can search for r ∈ V that minimizes |t(m, δ(r))|,

here m is picked arbitrarily from V�{r}. The running time

O(n(log n)O(c)). �

We remark that alternative implementation can use

hristofides’s 3
2 -approximation algorithm [7] for finding

e tour. The running time is O(n3).
.2. (α, 1)-Mule problem in complete graphs 206

By similar argument as in Lemma 1, it is easy to see 207

at the optimal topology for (α, 1)-Mule is a star rooted 208

s some node r. We introduce Algorithm 1 . Let topt be the 209

ptimal tour, ropt be the root of the optimal tour, t be the 210

ur produced by Algorithm 1, and Pα be a permutation of 211

nodes.1 212

1 This step in the algorithm can be accomplished by any approximation

gorithm for TSP, e.g., [7].

sensor network data recovery, Ad Hoc Networks (2016),
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Algorithm 1: Build Tree 1.

1 For each node v ∈ V , calculates(v) = maxu∈V\{v} d(v,u)

minw∈V\{v}d(v,w)
, the ratio

between the maximum to the minimum edge with respect to v.

Set r to be the node that minimizes this ratio and let s∗ = s(r)

(ties are broken arbitrarily).

2 Set T to be a star rooted at r.

3 Pick an arbitrary node v �= r and set m = v.

4 Find tour C on V \ {r} using the algorithm from [1].

5 Emit T, m,C.

Lemma 4. Algorithm 1 is a (1 + s∗)-approximation algo-213
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f 292
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r 294
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r 296

cases: 297

1. i < m, the cost is 2(m − i + 1) regardless to the location 298

of r. 299
rithm for (α, 1)-Mule on complete graphs.

Proof. We prove the claim by mapping, showing that fo

each combination of node failures Pα , either the mul

travel costs of topt and t are the same, or that there ex

ists a bijection from a permutation in topt to a permu

tation in t such that the solution’s cost increases by a

most (1 + s∗), where s∗ is defined in Algorithm 1. Let V(Pα

be the nodes that are traversed when the nodes in Pα

fail. Clearly the solutions costs are the same if r �∈ Pα and

ropt �∈ Pα or r ∈ Pα and ropt ∈ Pα . For ropt ∈ Pα and r �∈ Pα

the cost of t is 0 (since the tree has a form of star), whil

the cost of topt is the optimal tour over V(Pα); the oppo

site stands for ropt �∈ Pα and r ∈ Pα . We show that for thi

case, for each combination Pα in t there is a combination

P
′
α formed by adding twice (forward and back) the edg

e(r, ropt) to the solution that the new cost is at most 1 + s

times the cost of topt. Clearly, each edge that connects

to the tour costs at least min u ∈ V�{r}d(r, u) and the new

edge costs at most max u ∈ V�{r}d(r, u). Therefore, the cos

of the new tour is at most |topt | + 2 maxu∈V\{r} d(r, u) =
|topt | + 2˜s∗ minu∈V\{r} d(r, u) ≤ |topt |(1 + s∗). Last equalit

holds since |topt| ≥ 2min u ∈ V�{r}d(r, u). �

An alternative approach to this solution, is to se

lect r that minimizes the length of minimum edg

e(r, w),∀w ∈ V \ {r} with r as one of the endpoints. Simi

lar analysis to the above yields (1 + 2s(r)
n−α )-approximation

ratio. This is because topt ≥ (n − α) minw∈V\{r} d(r, w) and

the cost of new tour is |topt |+2 maxu∈V\{r} d(r, u)=|topt |+
2s(r) minw∈V\{r} d(r, w)≤|topt |+2s(r)

|topt |
n−α = (1+ 2s(r)

n−α )|topt |.
Note that s(r) does not necessary minimize maximum

edge to minimum edge ratio.

Next, by carefully choosing r, we explain how to ob

tain a 3-factor approximation to our problem for a fixed

value of α. Select r that maximizes the average cost o

minimal edge (u, v) for each combination of α − 2 failures

That is, per each node u and every edge (u, v) we calcu

late the number of times t(u, v) (per each combination o

α − 2 failures) the edge (u, v) will be minimum edge from

u. Next, we compute ct(u) = ∑
v∈V d(u, v) · t(u, v). Take

to be the node that maximizes ct(r). If we consider th

optimal solution OPT (which, according to the definition

contains many tours), then we notice that the sum of al

edges’ lengths that connect r in all tours is larger than

ct(r), since it must be equal at least the sum of all mini

mums. Thus, the total traveling distance in OPT is |OPT| ≥
2ct(r). On the other side, by definition ct(ropt) ≤ ct(r). Th
Please cite this article as: J. Crowcroft et al., Using data mules f
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cost of new solution when adding ropt is |OPT | + 2c(ropt ) ≤
|OPT | + 2ct(r) ≤ 3|OPT |.
3.3. (1, β)-Mule problem in complete graphs

In this section, we show how to solve the (1, β)-Mul

problem on the complete Euclidean graph.

Lemma 5. Algorithm 2 produces is a 2-approximated solu

tion for the (1, β)-Mule problem.

Algorithm 2: Build Tree 2.

1 foreach v ∈ V do

2 Find optimal spanning tree Tv on V \ {v}
3 Let T 1

v , T 2
v , . . . , T

β
v be the set of trees created by removingthe

β − 1 heaviest edges from Tv
4 Assign the nodes in T i

v to mule mi .

5 end

6 Let v be the node that minimizes
∑β

i=1
|T i

v |.
7 Set T to be a star rooted at v.

8 Emit T, m̄ = {m1
v , . . . , m

β
v }.

Proof. Let Ci
OPT

be the optimal tour traveled by mule m

By the construction of the algorithm and by the definition

of minimum spanning tree:
∑β

i
|T i| ≤ ∑β

i
|Ci

OPT
| = OPT . Le

Ci be the tour constructed by traversing the nodes Ti us

ing a depth-first-traversal. We have
∑β

i
|Ci| ≤ ∑β

i
2|T i| ≤

2OPT . �

4. Unit disc graphs

In this section, we study the different variation of th

(1, 1)-Mule problem under the unit disc graph mode

where any two nodes u, v ∈ V, can communicate if and

only if d(u, v) ≤ 1.

4.1. (1, 1)-Mule problem in line topology

Here, n nodes, with unit distance between them, ar

placed in the Euclidean plane. The construction ensure

that a node can communicate only with its adjacent neigh

bors. For the line topology under those communication

constraints, only the placement of the root r is required t

define the structure and orientation of the tree. Thus, th

cost of a solution is solely determined by the placemen

of r and m. For clarity, we number the nodes from 1 to

and use m and r as the indices of the mule and the roo

in the solution. From symmetry, we assume r ≥ m, sinc

c(m, r) = c(n − m + 1, n − r + 1), where c(m, r) is the cos

of the optimal solution when the mule is located at m and

the root is placed at r when the topology is entirely deter

mined by the location of r (e.g., line). A sample instance o

the problem is depicted in Fig. 2.

Lemma 6. For the line topology, the optimal placement fo

the root r is n − 1.

Proof. Assume m < r, if a node i ∈ V fails, we have fou
or sensor network data recovery, Ad Hoc Networks (2016),
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(a) c(m, r) = 0 + 10 + 8 + 6 + 4 + 2 = 30
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(b) c(m, r) = 0 + 4 + 2 + 0 + 2 + 4 = 12
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(c) c(m, r) = 0 + 4 + 4 + 4 + 6 + 0 = 18
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(d) OPT. c(m, r) = 0 + 4 + 2 + 0 + 6 = 12.

g. 2. Line topology illustration. The figure contains 6 nodes with two

fferent solutions for T and two different choices for locating the mule.

ch value in sum represents the cost of failing node i, i ∈ {1, . . . 6}.

. i < m < r, the cost is 2(r − m − 1).

. r < i, i �= n, the cost is 2(r − m + 1).

. r < i, i = n, the cost is 0 (since i has no children).

The claim follows since we want to minimize the num-

er of nodes that are placed after r, but can use the fact

at the cost is zero for r < i = n. �

emma 7. For line topology, the optimal placement for the

ule is � n
2 �.

roof. For optimality r = n − 1. Then c(m, r) = 2(
∑m−1

i=1 i +
n−m−1
i=1 i + 2) is maximized for � n

2 �. �

.2. (α, 1)-Mule in the line topology

In this section, we show how to handle α simultane-

us failures on the line topology. We show a formula for

lculating c(m, r) and prove that the values that minimize

m, r) are m = n
2 and r = n − 1. The highlights of the proof

re as follow: we show that for r = n, c(m, n) is mono-

nically decreasing for m < n
2 and monotonically increas-

g for m > n
2 , which implies a global minimum for m = n

2 .

ext, we extend the proof and show that this global mini-

um for r = n − 1 is still m = n
2 . To illustrate the concepts

ehind the proof, the costs of c(m, n) and c(m, n − 1) for

arying values of m are given in Fig. 3.

2 4 6 8 10 12 14
1.4

1.6

1.8

2

2.2
·104

m

c(
m

n
)

c(m,n)
c(m,n − 1)

(a) c(m,n) for n = 14.

Fig. 3. c(m, r) for
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First, we introduce some basic definitions. We define a

irect visit when the mule visits node i where i is the left-

ost node if i < m or the rightmost node if i > m. Let

(i, m, r) be the number of times the mule at placement

directly visits node i for root placement r. We separate

etween left and right movement and define πl(m, r) =
m−1
i=1 π(i, m, r) and πr(m, r) = ∑n

i=m+1 π(i, m, r) to be the

umber of times that the mule must travel left or right

hen placed at location m ∈ [1, n].

We begin by showing an optimal but inefficient algo-

thm for the problem:

emma 8. For m ∈ [1, n − 2], c(m, n − 1) has a closed for-

ula, which can be calculated in polynomial time.

roof. First note that we only visit node at i, when node

t i + 1 fail. For m < i < n − 2 we have π(i, m, n − 1) =
n−i−2
j=1

(
i−1
α− j

)
+ ∑n−i−1

j=1

(
i−1

α− j−1

)
. The left expression repre-

nts the case where node at placement n did not fail

nd the right expression represents the case where node at

lacement n did fail. For i = n − 2 we have π(n − 2, m, n −
) =

(
n−3
α−2

)
+

(
n−3
α−1

)
. For i = n: π(n, m, n − 1) =

(
n−2
α−1

)
. The

xpression π(i, m, n − 1) for i < m represents the case

here j consecutive nodes from the right side of i failed

nd equals
∑min(α−1,i−1)

j=1

(
n−(i+1)

j

)
. Let d(m, i) be the Eu-

lidean distance between m and i, the cost is c(m, n −
) = ∑n

i=1 π(i, m, n − 1) · d(m, i). which we can calculate in

olynomial time. �

From Lemma 6 we know that the optimal placement

r the root is n − 1. Therefore, to find the optimal so-

tion, we can search for the value of m that minimizes

(m, n − 1). Using dynamic programming and the memo-

ation table, in O(n2) time we can compute the values of

i, j), and calculate the total cost. Thus, the running time

f the algorithm is O(n2).

Now we show that the optimal cost is obtained for m =
and r = n − 1. First we claim the following:

emma 9. For m < i, π(i, m, r) = π(i, m + 1, r) and for

> i, π(i, m, r) = π(i, m − 1, r).

roof. As long as m �= i the orientation of the mule with

spect to i does not change. �

5 10 15

6.5

7

7.5

8

8.5

·105

m

c(m,n)
c(m,n − 1)

(b) c(m,n) for n = 20.

g values of m.
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Lemma 10. c(m + 1, r) = c(m, r) + πl(m, r) + π(m, m +361

1, r) − πr(m, r) and c(m − 1, r) = c(m, r) − πl(m, r) +362

π(m, m − 1, r) + πr(m, r).363

Proof. Let d(m, i) be the distance between m to i. Thus,364

c(m, r) = ∑m
i=1 π(i, m, r)d(m, i) + ∑n

i=m+1 π(i, m, r)d(m, i).365

Assume we place the mule at location m + 1. From366

Lemma 9 we have c(m + 1, r)= ∑m−1
i=1 π(i, m, r)(d(m, i) +367

1) + π(m, m + 1, r) + ∑n
i=m+1 π(i, m, r)(d(m, i) − 1). Since368

d(m, m)=0 we get c(m + 1, r) − c(m, r) = πl(m, r) +369

π(m, m + 1, r) − πr(m, r). And when placing the370

mule in m − 1 we obtain c(m − 1, r) − c(m, r) =371

−πl(m, r) + π(m, m − 1, r) + πr(m, r). and the claim372

follows. �373

Next, we show that:374

Lemma 11. For r = n, πl(
n
2 , n) = πr(

n
2 , n).375
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Proof. When r = n, we show that for each node on th

right side r, there is a bijection to a node on the lef

side l, such that π(r, m, n) = π( j, m, l). This means tha

the number of times the mule travels specifically to l i

equal to the number of times it travels to r (note that thi

does not necessarily imply that the distances of l and

from m are the same or that they equally contribute t

c(m, r)). To see this, we look at the number of permuta

tions when some node r > n
2 fails. We travel directly to

when a set of j consecutive nodes with respect to r fai

(i.e., r + 1, r + 2, . . . , min r + j, α) and α − j nodes that ar

on the left hand side of r fail. Formally, this is equal t

π(r, m) = ∑n−r
j=1

(
r−1
α− j

)
. For some node l < n

2 , we travel t

l when a set of j consecutive nodes from the leftmos

node fail (i.e., 1, 2, . . . , min j, α), and another j node tha

are on the right hand side of l fail. Formally, this is equa

to π(l, m) = ∑l−1
j=1

(
n−(l+1)

α− j

)
. We have the expressions equa

for l = n − i + 1 and the claim follows. �

Lemma 12. For increasing m π l(m, r) is monotonically in

creasing and π r(m, r) is monotonically decreasing.

Proof. Regardless of the mule placement, from Lemma 9

and as long as i > m, the number of times the mule trave

to a specific node is constant. Since increasing m mean

less nodes are on the right hand side, with no change in

orientation with respect to m, π l(m, r) is increasing. Sinc
more nodes are added from the left side of m, π r(m, r) is

decreasing. �

Lemma 13. For r = n, the function c(m, n) has global mini-

mum at � n
2 �.

Proof. Follows from Lemmas 11 and 12. �

We have shown that for c(m, n) yields optimal value for

m = n
2 . To complete the proof, we turn to handle the case

of r = n − 1.

Lemma 14. For r = n − 1, the function c(m, n − 1) has

global minimum at � n
2 �.

Proof. For l < m, π (m, l) is not impacted by this change.

However, for each node r < n − 2 on the right of m,

we separate to two cases: directly visiting r when

node n fails or nodes n and n − 1 do not fail. For-

mally, π(r, m, n − 1)= ∑n−r−2
j=1

(
r−1
α−j

)
+ ∑n−r−1

j=1

(
r−1

α−j−1

)
=

Please cite this article as: J. Crowcroft et al., Using data mules f
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∑n−r−2
j=1

(
r−1
α−j

)
+∑n−r

j=2

(
r−1
α−j

)
= ∑n−r−2

j=1

(
r−1
α−j

)
+∑n−r

j=n−r−1

(
r−1
α− j

)
+∑n−r−2

j=2

(
r−1
α− j

)
= ∑n−r

j=1

(
r−1
α− j

)
+ ∑n−r−2

j=2

(
r−1
α− j

)
. For r = n − 2

we have π(n − 2, m, n − 1) =
(

n−3
α−2

)
. Finally, for r = n

π(m, m, n − 1) =
(

n−2
α−1

)
. Thus, we obtain πr(m, n) −

πr(m, n − 1) =
(

n−3
α−1

)
− ∑n−3

r=m+1

∑n−r−2
j=2

(
r−1
α− j

)
= �. To com

plete this proof, all we have to show is that the function

c(m, n − 1) is monotonicity increasing when m > n
2 and

monotonicity decreasing when m < n
2 , which means tha

the minimum is achieved at m = n
2 .

Combining Lemmas 10 and 11, we have to show

that: 0 ≤ c(m + 1, n − 1) − c(m, n − 1) = πl(m, n − 1) −
πr(m, n−1)+π(m+1, m, n−1)=πl(m, n−1)−(πr(m, n) −
�) + π(m + 1, m, n − 1) = π(m + 1, m, n − 1) + � and

that: 0 ≤ c(m − 1, n − 1) − c(m, n − 1) = −πl(m, n − 1) +
πr(m, n − 1) + π(m − 1, m, n − 1) = π(m − 1, m, n − 1) −
�.

Clearly the first expression is true since π(m + 1, m, n −
1) + � is positive. To complete the proof, we show tha

� ≤ π(m − 1, m, n − 1). Reversing the order of summa

tion yields � =
(

n−3
α−1

)
− ∑n−m−3

j=2

∑n−3−( j−1)
r=m+1

(
r−1
α− j

)
. Usin

the binomial coefficient identity:
∑n

i=0

(
i
c

)
=

(
n+1
c+1

)
w

get � =
(

n−3
α−1

)
− ∑n−m−3

j=2 (
(

n−3−( j−1)
α− j+1

)
−

(
m

α− j+1

)
) =

(
n−3
α−1

)
−∑n−m−5

j=0 (
(

n−4− j
α− j−1

)
−

(
m−2

α− j−1

)
). Using the binomial coefficien

identity
∑c

i=0

(
n−i
c−i

)
=

(
n+1

c

)
and assuming n − m − 5 ≥ α

we obtain � =
(

n−3
α−1

)
−

(
n−3
α−1

)
+ ∑n−m−5

j=0

(
m−2

α−1− j

)
. Settin

m = n
2 , we have � = ∑ n

2
−5

j=0

( n
2

−2

α−1− j

)
. Finally, by setting m =

n
2 in π(m − 1, m, n − 1) it results in: π(m − 1, m, n − 1) =
π( n

2 − 1, n
2 , n − 1) = ∑ n

2
−1

j=1

(n−( n
2

−1+1)

α− j

)
= ∑ n

2
j=0

( n
2

α−1− j

)
≥

� and the proof is complete. �

We conclude with the following:

Theorem 15. The optimal placement for (α, 1)-Mule on th

line topology is r = n − 1 and m = n
2 .

4.3. (1, 1)-Mule problem in the random line topology

In this section, we solve the (1, 1)-Mule problem on

the random line, where n nodes are placed on a line with
length n 
 L such that the distances between adjacent 451

nodes are sampled from a predefined distribution function, 452

i.e., the maximum distance is 1. The communication model 453

is unit disc graph, which means that an edge is formed be- 454

tween two nodes u, v if and only if d(u, v) ≤ 1. Note that 455

this implies that the graph is connected. In what follows, 456

we use the simplified assumption that the mule m and 457

root r are positioned in the leftmost node of the line and 458

that L ∈ N. 459

Let T be the tree produced by Algorithm 3, Topt be 460

the optimal tree and c(T) and c(Topt) be their costs, respec- 461

tively. We define TL as the tree over exactly L nodes such 462

that the distance between adjacent nodes is exactly one; 463

let c(TL) be its cost. Observe that in the algorithm, the set 464

B represents the “backbone” nodes in T that are not leaves. 465

We claim: 466

Lemma 16. c(TL) ≤ c(Topt). 467

or sensor network data recovery, Ad Hoc Networks (2016),
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Fig. 4. Placement where approximately 2L n

Algorithm 3: Build Tree 3.

1 V ′ = B = C = {r}
2 E′ = ∅
3 while |C| �= n do

4 Let C be all nodes reachable by nodes in B.

5 Find furthest node v that is reachable by nodes in B .

6 Find node u ∈ B that minimizes d(u, v).

7 Add v to B.

8 Add the edge e(v, u) to E
′
.

9 For each w ∈ C \ {v}, add a directed edge e(w, v) to E
′
.

0 V ′ = V ′ ∪ C ∪ {v}.

1 end

2 Emit T = (V ′, E′).

roof. Note that at least L nodes are required to cover an

rea of length L and that each unit interval on the line

ust contain at least one node. Therefore, we can convert

ny tree to TL by mapping one of the nodes in interval

, i + 1] to the node at location i in T, and drop all other

odes in that interval. Since m = 0, this conversion reduces

e overall cost of the solution. This implies, a fortiori, that

TL) ≤ c(Topt). �

emma 17. |V(T)| ≤ 2L.

roof. Let v and l be two non-leaf nodes that are selected

two consecutive iterations of Algorithm 3, and vx and lx
e their x coordinates on the line, respectively. The algo-

thm will converge in most slowest rate when lx is closest

s possible to vx, but since l is the furthest node in the

nge [vx, vx + 1] it means the non-leaf node that will be

lected after l must be in [vx + 1, vx + 1 + ε]. Thus, in the

orst case, the algorithm covers a unit distance in two it-

rations, which means that it completes after at most 2L

eps. See the illustration in Fig. 4. �

emma 18. c(T) ≤ 4c(TL).

roof. By definition c(TL) = 2
∑L

i=1 i = L(L + 1). Let ix be

e coordinate of non-leaf node selected in iteration i in

lgorithm 3, we have: c(T ) ≤ 2
∑2L

i=1 ix ≤ 2
∑2L

i=1 i = 2L(2L +
). The last inequality follows since we stretch a line of

ngth L to a line of length 2L. �

Therefore, we have:

emma 19. Algorithm 3 yields a 4-approximation for the (1,

)-Mule problem.

.4. (1, 1)-Mule problem in grid topology

Next, we assume that the nodes of the graph are de-

loyed on a
√

n × √
n grid and have unit transmission

dius.

Let dv be the degree of node v ∈ V and dmax be the

aximum degree of any node in the input graph G and

i, j be the location of node at coordinates i, j, we claim:
lease cite this article as: J. Crowcroft et al., Using data mules for

ttp://dx.doi.org/10.1016/j.adhoc.2015.12.009
2 + 22 + 2 2 + 3 3

required to cover an area with length L.

(a) Stars step

r

(b) Orientation step

Fig. 5. Illustration of Algorithm 4.

m

r

Fig. 6. Zig-zag tree with cost 2
∑√

n
i=1

∑√
n

j=1
d(vi, j, m).

emma 20. For a specific mule placement m, the approxima-

on ratio of any tree to the (1, 1)-Mule problem is at most

max .

roof. Clearly, for any algorithm all non root nodes must

e visited by the mule. In the worst case, that incurs the

ast value is when a node v has a single child in T. Then,

e mule’s tour only covers one node. In the best case,

ach tour includes all children of v in G, which is oblivi-

usly bounded by its degree. The claim follows since the

tio between the cost node v incurs in the worst solution

nd the optimal solution is at most dv and since all chil-

ren of v must be visited by the mule in the algorithm

ig. 5). �

Next, we show a lower bound on OPT.

emma 21. OPT ≥ 2

∑√
n

i=1

∑√
n

j=1
d(vi, j ,v √

n
2

,

√
n

2

)

3 .

roof. Let mx, y be the location of the root, and assume

at we use a zig-zag tree as a solution (see Fig. 6). Clearly,

e cost is 2
∑√

n
i=1

∑√
n

j=1
d(vi, j, mx,y), which is optimized by

=
√

n
2 and y =

√
n

2 . The proof follows by combining the

ct that except from the root, for any tree in the grid

max = 3, and from Lemma 20. �

Next, we present Algorithm 4 that constructs a tree

ith almost optimal cost. To maximize the number of

odes visited per failure we try to produce a tree with
sensor network data recovery, Ad Hoc Networks (2016),
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Algorithm 4: Build Tree 4.

1 Stars Build adjusted stars for all nodes with coordinates(x, y) such

that 1 ≡ y mod 3(Fig.˜??a).

2 Orientation Connect stars with grid orientation (Fig. 5b).

maximum number of leaves. We use the principals pre-527

sented at [3] and build the tree on the top of multiple con-528

secutive stars.529

Let c be the cost of Algorithm 4 and s be the cost of the530

zig-zag tree. We show:531

Lemma 22. Algorithm 4 is a 1 + 2+
√

2√
n

-approximation algo-532

rithm.533

Proof. On the one side c = 2
∑√

n
i=1

∑√
n

j=1|1≡ j mod 3
(d(vi, j,534

m) + (1 +
√

2)) + 2
∑√

n
j=1|1≡ j mod 3

j≤2

∑√
n

i=1

∑√
n

j
d(vi, j ,m)

3 +535 ∑√
n ∑√

n
√

2 2
√
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e537
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572

in this paper. We have implemented all algorithms de- 573

scribed throughout the paper using standard simulation 574

software written in C# and conducted multiple experi- 575

ments on different topologies. For each experiment, we 576

have calculated the mean solution cost after conduct- 577

ing 50 iterations. For large networks, for which calculat- 578

ing the shortest TSP is not computationally feasible, we 579

have used a TSP heuristic framework based on a genetic 580

algorithm [16]. 581

To show the clear advantages of using this paper al- 582

gorithms we introduce the notation of lower bound OPT, 583

�OPT�, which is calculated based on the different bounds 584

we provide under the different network settings. In all 585

simulations we compare the ratio of the proposed algo- 586

rithm to the lower bound on OPT. In the first simulation 587

(Fig. 7), we investigated the variance of initiating differ- 588

ent input trees in step 1 of Algorithm 2. To produce the 589

mule’s tours we used the heuristic genetic algorithm from 590

[4]. We compared our results to the following variations: 591

Tour, finding the optimal approximated tour over n − 1 592

nodes using the heuristic algorithm from [4] and then tak- 593

ing the minimum spanning tree over those nodes, Ran- 594

dom, building a random tree, and �OPT�, using the min- 595

imal spanning tree instead of tours (thereby making its 596

cost a lower bound on OPT). We provide results for 5 and 597

10 sensor failures, correspondingly. From the simulations, 598

we can see that the rival algorithms substantially suffer 599

from the increase in failures, which means higher cost of 600

traveling tours with respect to Algorithm 2. The results 601

show that the bound proved in Lemma 5 holds and that 602

in practice, might be even better. In the second simulation 603

(Fig. 8), we explored how different leader selection in step 604

4 of Algorithm 3 impacts the total cost of the algorithm. 605

e 606

e 607

- 608

- 609

- 610

- 611

f 612

- 613

614

615

s 616

- 617

e 618

r 619

e 620

. 621

f 622

: 623

- 624

- 625

e 626

- 627

s 628

- 629

- 630

e 631

632
2
i=1 j=1|1≡ j mod 3

(1 + 2) + 3 n = OPT + 3 n(2 + 2).

On the other side, since we can project all nodes in th

zig-zag tree solution to the x-plane and place m at (
√

n
2 , 0

we have s = 2
∑n

i=1(i −
√

n
2 ) ≥ n2 − n

√
n ≥ 2n

√
n. The las

inequality holds for n > 9. Since the projection reduce

the travel cost of the solution, together with Lemma 20

we have OPT ≥ s
3 ≥ 2n

√
n

3 Hence, c ≤ (1 + 2+
√

2√
n

)OPT . �

5. Distributed implementation

In order to make our solutions feasible, i.e. to allow

them to work in real life node deployments, we outlin

how it is possible to implement them in a decentralized

(distributed) (without the need for coordination by a cen

tral unit) and local, based on neighbor knowledge manner

In the proposed distributed implementations we make

use of the work [2]. The paper [2] shows how to find

leader in a distributed fashion (and also minimum span

ning tree) in a network with n nodes in O(n) time us

ing O(nlog n) messages. To establish connectivity, can fol

low two different approaches as described in [19]. Th

first, described in Dolev et al. [10] forms a temporary un

derlying topology in O(n) time using O(n3) message. Th

second (better) approach is given by Halldórsson and Mi

tra [12] that shows how to do this in O(poly(log γ , log n))

where γ is the ratio between the longest and shortest dis

tances among nodes. After the topology is established, w

can use leader-election algorithm by Awerbuch [2] that can

compute all other relevant information in the network, i.e

choose an appropriate root r or find the tour. Given each

sensor knows the total number of nodes in the network

the distributed implementation of Build Tree 4 algorithm

only requires the local GPS coordinates of each sensor. T

retrieve this information, we can apply Peleg et al. [20

distributed algorithm for finding the graph’s diameter and

propagate it to all sensors.

6. Simulations

In what follows, we describe the simulation result

of the various algorithms and network models proposed
Please cite this article as: J. Crowcroft et al., Using data mules f

http://dx.doi.org/10.1016/j.adhoc.2015.12.009
We compared the results of our algorithm against thre

competitive algorithms: Greedy1, randomly selecting on

of the nodes as leader, Greedy2, selecting the node clos

est to the rightmost leader and �OPT�, changing the dis

tances between the adjacent nodes to L/n. In the simula

tions, we tested how the distribution function of the adja

cent distance between nodes impacts the performance o

the algorithm. In Fig. 8a, we used the exponential distribu

tion with mean 0.1 and in Fig. 8b, the uniform distribution

with mean 0.5. Reviewing the experiment data, we noticed

that the burstness of the exponential distribution cause

increases the travel distance of the mule, thereby increas

ing the overall cost of the solutions. Finally, note that th

actual approximation ratio of Algorithm 3 is much lowe

than the one proved in Lemma 18, which may indicat

that we can theoretically tighten the approximation ratio

In the final simulation (Fig. 9), we compared the results o

Algorithm 4 against the following competitive algorithms

Zig-zag, using the zig-zag tree (see Fig. 6), Greedy, us

ing the minimum spanning tree and �OPT�, using the zig

zag tree but diving the cost by 3 (see Lemma 20). W

study two variations, placing the mule at the leftmost cor

ner coordinate and placing the mule at the center. It

interesting to note that although the ratio between al

gorithms in both simulations remains the same, the ac

tual cost was much higher when placing the mule at th

corner.
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st of alternative efficient tree construction solutions.
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(b) Results for uniform distribution with mean 0.5.

3 against competitive algorithms.
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b) Results when mule is placed at corner coordinates.

4 against competitive algorithms.
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7. Conclusions and future work633

This work address the topological design of data mules634

usage for improving resiliency to data loss caused by net-635

work disasters. Our solutions involve constructing the op-636

timal data gathering tree and finding the optimal node637

placement under multiple network structures, such as gen-638

eral graph, linear and grids. We use the topology charac-639

teristic to produce multiple approximation algorithms and640

validate their performance using simulations.641

This paper emphasizes on the problem of minimizing642

the sum of distances the mule travels. Instead, we can ex-643

plore minimizing the maximum traveling distance or time644

of the mule. Formally, we can define the (1, 1)-Mule prob-645

lem as follows: minT,m maxv∈V |t(m, δ(v, T ))|. Interestingly,646

the given objective completely changes the complexity and647

algorithms of the problem. For example, while the opti-648

mal topology in the min-sum version was a star, in the649

min-max version it is a line that traverse all the nodes in650

the graph. In addition, we can find the optimal solution by651

carefully selecting the location of the mule, which means652

the problem is not NP-hard. It will be interesting to fur-653

ther explore this objective under different network criteria654

and to compare the solutions to the ones proposed in this655

paper.656

Although we study the problem under varying net-657

work structures, we did not measured the impact of ge-658

ographical surrounding or diverse hardware on the sensor659

durability. In the future, we intend to add varying sensor660

resistances to our model by applying different failure prob-661

ability function per sensor, which can help in modeling un-662

even and rough geographic conditions. Another interesting663

variation can explore the impact of transmission radius on664

the mule tour. That is, given some minimal transmission665

radius for the sensor, instead of visiting the actual sen-666

sor placement, the mule only visits the sensor surround-667

ing. This work can reuse existing results [8,22] to extend668

the algorithms proposed here.669
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