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a b s t r a c t 

This paper presents a data sink node election algorithm for multi-hop Wireless Sensor Networks (WSNs) 

with multiple data sink nodes. For energy-saving considerations, these nodes should be evenly (spatially) 

distributed on the network area. To achieve this objective, it proposed a distributed and iterative algo- 

rithm, which periodically re-assigns the data sink roles to selected WSN nodes. The main innovation of 

the algorithm is that, even if it does not need to explicitly compute the Voronoi partition of the WSN 

at each iteration, it eventually partitions the network according to a Centroidal Voronoid Tessellation, 

which leads to a spatially well-balanced distribution of the data sink nodes. Analytical proofs as well as 

simulation results validate the approach. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Management of Wireless Sensor Networks (WSNs) is a widely

esearched topic in the literature, since an efficient operation of

SNs is relevant to many applications, e.g., just to mention a few,

rocess control monitoring [31] , critical infrastructure monitoring

26] , health care monitoring [21] , environmental sensing [19] , air

uality monitoring [30] . WSNs are basically composed by sensor

odes and data sink (DS) nodes; the sensor nodes, spread over the

onitored area, collect the measures of interest and send them

o one or more DS nodes, which elaborate the received measures

nd convey the elaborated data to a remote data center. Usually,

he sensor nodes are directly connected to the DS nodes (one-

op communication), but the application of WSNs with multiple

S nodes and supporting multi-hop communications is becoming

ore and more frequent: when the area to monitor is wide, multi-

op communications are used to extend the network coverage and

ach DS node collects data from the sensor nodes nearby, i.e., from

he sensor nodes in its cluster (see [22] and references therein). 

Two of the main problems that a WSN has to face are the en-

rgy autonomy of the nodes and, especially in the case that the

SN is deployed in a harsh environment, its tolerance to node fail-

res. The DS nodes are likely to suffer from faster energy depletion

ith respect to the other nodes, since they have to collect all the
∗ Corresponding author. Tel.: + 390677274040; fax: + 390677274033. 

E-mail address: pietrabissa@dis.uniroma1.it , 

ntonio.pietrabissa@gmail.com (A. Pietrabissa). 

D

D

i

a

c

ttp://dx.doi.org/10.1016/j.adhoc.2016.03.008 

570-8705/© 2016 Elsevier B.V. All rights reserved. 
ata from the surrounding sensor nodes and to perform schedul-

ng and data fusion tasks [27] . Therefore, in many applications it

s crucial that the role of DS can be played by any nodes, so that,

f a DS node is becoming depleted or it is experiencing a failure,

nother node can be selected as the new DS node; this procedure

s referred to as data sink election , and the fact that the role of DS

s exchanged between two nodes is referred to as data sink migra-

ion . Energy and fault tolerance considerations also favor the de-

loyment of multi-sink multi-hop WSNs. In fact, the presence of

ultiple DS nodes shortens the paths between each sensor node

nd the closer DS node, whereas the impact of the additional com-

unications due to the fact that multiple DS nodes have to upload

heir data to the data center is alleviated by data fusion algorithms,

hich reduce the size of the exchanged data. Moreover, if multiple

S nodes are deployed, the fault of a single DS node does not im-

ly that data of all the sensors are lost. 

The problem dealt with in this paper is the data sink node elec-

ion problem in WSNs and includes the general case of multi-hop

nd multi-sink networks 1 . In multi-sink WSNs, the DS migration

roblem has also to consider that the spatial distribution of the DS

odes over the mission area impacts on the WSN performances.
1 Even if this paper focuses on the DS election, it is necessary to underline that 

S migration requires the ‘old’ DS nodes to send the collected data to the ‘new’ 

S nodes: the effectiveness of the DS migration strategy is then dependent on the 

mplemented data fusion algorithms, which reduce the size of the exchanged data, 

nd on the frequency with which the DS nodes upload their data to the remote 

entre, which reduces the amount of data that each DS node has to store. 

http://dx.doi.org/10.1016/j.adhoc.2016.03.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2016.03.008&domain=pdf
mailto:pietrabissa@dis.uniroma1.it
mailto:antonio.pietrabissa@gmail.com
http://dx.doi.org/10.1016/j.adhoc.2016.03.008
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Then, the problem of selecting the best new DS node to migrate

to can be formulated as a network partitioning problem. The pro-

posed algorithm, based on Voronoi partitioning concepts, is per-

formed on-line and converges to a balanced mission area parti-

tioning known in the literature as Centroidal Voronoi Tessellation

(CVT). 

The research presented in this paper has been performed

within the European project SWIPE, aimed at developing a WSN

suitable for planetary exploration [23] , which has to face (to the

highest degree) the problems outlined above, and which, therefore,

highly benefits from energy saving and fault tolerant approaches. 

The paper is organized as follows: Section 2 presents the state

of the art the innovations of the proposed algorithm, Section 3 pro-

vides the basic Voronoi partitioning concepts; Section 4 presents

the algorithm, the convergence proof and some implementation

details; Section 5 shows some simulation results; Section 6 draws

the conclusions. 

2. State of the art and paper contributions 

2.1. Data sinks election and mission space partitioning 

Explicit data sinks election algorithms have not been studied

intensively in the literature. This is mainly due to the fact that re-

searchers have focused their attention to networks composed by

only one DS. In [4] , multiple DS nodes are used to optimize the

energy consumption of a single-hop sensor network, where the DS

nodes are deployed along the periphery of the sensing area. An

optimization problem is built and solved off-line to decide the best

placement for the DS nodes, in order to minimize the overall trans-

mission power of the sensor nodes. A genetic algorithm optimiza-

tion is performed in the case of two DS nodes, whereas a heuristic

algorithm is used in the case of three DS nodes. Differently, the

algorithm proposed in this paper is applicable to multi-hop WSNs

as well, and finds on-line a balanced placement of the DS nodes by

means of an iterative approach which migrates the DS role among

the WSN nodes. 

A problem similar to the data sink election and extensively

studied in the literature is the Cluster Head (CH) election problem.

CH election problems refer to WSNs in which nodes are grouped

in clusters, each managed by a CH node. In clustered WSNs, the

objective is typically that of efficiently conveying the information

(e.g., sensed data) from each node to one or more gateway nodes

(GWs) serving as collection points in communication with a re-

mote control center or unit. That is achieved through a combina-

tion of intra-cluster (i.e., from a node to the corresponding CH)

and inter-cluster communication (i.e., multi-hop CH-CH commu-

nication). In this context, the problem of intelligent CH election

has been addressed by several works in literature, with the main

objective of achieving a balanced configuration of the clusters (in

terms of energy consumption, workload distribution, etc.). More-

over, similarly to what done in this paper, it has been widely rec-

ognized in literature that the CH role could be periodically ro-

tated among the network nodes, in order to balance and to share

in time the additional communication and processing effort s re-

quired by the CH role. The key difference between the CH and the

DS election problems is that the DS node election problem does

not require the DS nodes to form a connected subset of nodes,

whereas CHs have to form a connected subnet in order to fully

support inter-cluster communication. A brief review of relevant

papers dealing with CH election is reported in the following. In

LEACH [12] , few nodes are randomly selected as CHs. The CH role

is rotated periodically to distribute the effort among the nodes in

the network. Each CH compresses the data coming from the nodes

of the cluster and sends an aggregated packet to the GW. Dealing

with the CH election process, at each turn a fraction p of nodes
lect themselves as CHs, in the following way. Each node i chooses

 random number r between 0 and 1: if r < T (i ) , then the node be-

omes a CH for the current round, where T (i ) is computed based

n (i) the desired fraction p of nodes to become a CH, (ii) the cur-

ent round and, (iii) the set G of nodes that have not been selected

s a CH in the last 1 /p rounds. The election rule is the following

ne: 

 ( i ) = 

{
p 

1 −p·mod ( r, 1 /p ) 
if i ∈ G 

0 , otherwise 
, (1)

here mod( ·, ·) denotes the modulo operator. An extension of

EACH is HEED [29] . It introduces limits on the communication

ange and cost terms in the intra-cluster communication. More-

ver, the probability to become a CH in HEED also depends on

he residual battery of the nodes. The main problem of LEACH-

ased approaches is that, since the election is random, without po-

ition or distance considerations, the elected CHs are not necessar-

ly well-distributed over the network. In this sense, EECS [28] is

 LEACH-like algorithm for single-hop WSN, which introduces a

ovel distance-based method to balance load among CHs. EECS is

ivided in two main phases: the CH election phase and the cluster

ormation phase. In the CH election phase, WSN nodes become CH

andidate nodes according to a certain probability. Then, each CH

andidate broadcasts its candidacy to nodes falling within a cer-

ain radius R ; each candidate actually assumes the CH role only

f no other CH candidate he is aware of (i.e. falling within R ) has

igher battery level (thus ensuring an energy-fair election). In the

luster formation phase, the remaining nodes are assigned to the

Hs to form the clusters. In EECS, both the distances of the nodes

rom their CH and from the GW are considered; in this way, clus-

ers which are far from the GW have less nodes compared to clus-

ers closer to the GW ( unequal clustering ). As a result, in [28] it

s shown that network lifetime, defined as the time until one of

he nodes runs out of energy, is significantly prolonged compared

o LEACH and HEED. In [10] , a centralized extension of the LEACH

lgorithm is proposed, called partition-based LEACH (pLEACH), in

hich each node sends to the sink node information on its loca-

ion and battery level, and the sink node then partitions the net-

ork into a given number of clusters and, for each cluster, se-

ects as CH the node with the highest energy level. The draw-

ack of this algorithm lies in the communication burden implied

y its centralized nature, which may be unsustainable in case of

arge WSNs. Advancements of HEED have been proposed as well,

s for instance UHEED (G. [5] ), which is a clustering modification

f HEED aimed at optimizing HEED in multi-hop WSNs. To this

nd, UHEED modifies HEED formula so that clusters close to the

W are smaller than the ones far from it (the opposite behavior of

ECS, which is designed for single-hop communication). Advanced

H election strategies are continuously being developed based on

he basic concepts explained above. The interested reader may find

dditional surveys on WSN clustering in [1,24] . 

The algorithm proposed in this paper takes some ideas from the

H election strategies described above, namely the round-based

pproach and the strategy of network partitioning, and relies on

raph-theory concepts, namely, on Voronoi partitioning [7] . Some

orks recently appeared in the literature propose the Voronoi par-

ition as the fundamental structure for WSN clustering, mainly be-

ause: (i) if the number of Voronoi regions is appropriately se-

ected, data inside the same region tend to be homogeneous and

hus can be fused, (ii) in single-hop networks, Voronoi partition-

ng is functional to transmission power control (i.e., the nodes ad-

ust their transmission power in function of the diameter of the

oronoi cell). 

A fundamental problem in this chapter of literature regards

he computation of the Voronoi partition of a WSN. The paper

2] presents a distributed approach for computing the Voronoi par-
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Table 1 

Paper contributions. 

Paper Main features Key differences/im provements brought by the proposed approach 

[2] Distributed computation of the Voronoi partitioning of the WSN 

sensor field by means of geometrical techniques. 

It is not required to compute explicitly the Voronoi partitions. 

[25] The CHs are the Voronoi generator points and they move across 

the WSN under the action of virtual forces in order to keep the 

energy consumption balanced. 

WSN nodes are fixed and the data sink role is played by different 

WSN nodes in time. 

[17] Centralized algorithm. Distributed algorithm. 

Voronoi partition is computed by considering a distance metric 

including both nodes’ position and energy level. 

A similar metric is considered, but it is used to determine the 

probability that a node becomes a candidate to the data sink 

role, not to compute the Voronoi partition. 

[14] Heterogeneous WSN with fixed CHs considered. Homogeneous WNS considered. 

The cluster region extension is varied in time to balance CHs’ 

energy consumption. 

Both the DS roles and the cluster regions deriving from the DS 

node locations are varied in time. 
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ition of the WSN sensor field (i.e., of the area monitored by the

SN) based on geometrical considerations and aimed at minimiz-

ng the energy consumption. In (J. [6] ), the authors propose a dis-

ributed algorithm for achieving energy-aware Voronoi partitioning

f the WSN. The approach consists in an off-line partitioning of the

etwork, based on the knowledge about the nodes’ deployment. In

25] , a Voronoi partitioning-based clustering algorithm for WSNs

s presented, in which mobile CH nodes move across the sensor

eld under the action of so-called virtual forces, computed so as

o minimize the variance of the load (i.e., the number of nodes)

f each cluster. The clustering algorithm is energy-aware since the

irtual forces depend also on the energy level of CHs. The algo-

ithm proposed in [25] requires the explicit computation of the

oronoi diagrams after each iteration. Recently, [17] presented a

uzzy C-means clustering algorithm in which membership func-

ions are calculated based on the Voronoi partitioning of the WSN.

o compute the Voronoi partition, a distance metric is used which

akes into account both Euclidean distance and the residual energy

f the nodes. The algorithm is centralized, since clustering is com-

uted by the (single) DS node. 

Reference [13] proposes an energy-aware distributed topology

ontrol for the optimization of the network lifetime. The algorithm

ssumes a heterogeneous WSN (i.e., CHs have different hardware

nd software properties than regular nodes). CHs are then assumed

o be fixed and the objective is to control the cluster regions in or-

er to preserve CHs’ energy. That is achieved in [14] by iteratively

arying the extension of the cluster regions to balance CHs’ energy

onsumption. 

.2. Paper contributions 

Summarizing, the present paper proposes a new approach to

lect the DS nodes in such a way that the network is partitioned

ccording to the so-called Centroidal Voronoi Tessellation. Distinc-

ive characteristics of the algorithm are that it is decentralized,

t does not need to know the node positions at the deployment

hase, it does not need to explicitly compute the Voronoi parti-

ion and it is performed on-line by means of migrations of the DS

odes. 

The main contributions to Voronoi-based WSN clustering re-

iewed in Section 2.1 are summarized in Table 1 , as well as the

ey differences with respect to the approach proposed in this pa-

er. 

. Preliminaries on Voronoi partitioning 

Mission space partitioning relies on the definition of Voronoi

artition. Let us consider a Euclidean domain A ∈ R 

2 , and n points

ndexed by the set S = { 1 , 2 , .., n } , with positions x (s ) ∈ A , s ∈ S .
he Voronoi regions are therefore defined as: 

(s ) = { p ∈ A : ‖ p−x (s ) ‖ ≤ ‖ p−x ( s ′ ) ‖ , ∀ s ′ ∈ S } , s ∈ S, (2)

here ‖ p − x (s ) ‖ is the Euclidean distance between p and x (s ) . Eq.

2) states that each point p ∈ A belongs to the Voronoi region P(s )

uch that the distance between p and x (s ) is the minimum among

ll the distances between p and the points in S . The Voronoi re-

ions P(s ) are such that ∪ s ∈S P(s ) = A and ∩ s ∈S P(s ) = ∅ , i.e., they

orm a partition of the mission space A , referred to as Voronoi

artition or tassellation and denoted with P(S) = { P(s ) } s ∈S . The

oints x (s ) are the generating points of the Voronoi partition. 

Depending on the position of the generating points in the mis-

ion space A , specific partitions can be generated. In particular,

e are interested in the generalized Voronoi Centroidal Tassella-

ion (CVT), whose generating points are the centers of mass of the

oronoi regions, and which is regarded as an optimal partition cor-

esponding to an optimal distribution of generators [7] : 

efinition 1. The generalized centroid of a set P(s ) with respect

o a density function ϕ is m = arg min p∈ R 2 
∫ 
P(s ) p − q 2 ϕ(q ) dq . 

In Definition 1 , the density function ϕ : A → R ≥0 is an abso-

utely continuous spatial distribution, with bounded and convex

upport within A (i.e., there is a bounded and convex subset Q
f A such that ϕ(q ) > 0 if q ∈ Q , and ϕ(q ) = 0 if q ∈ A \ Q ). 

The resulting Voronoi partition is the generalized CVT: 

efinition 2. A Voronoi Tessellation P(S) = { P(s ) } s ∈S of a set A is

alled a Centroidal Voronoi Tessellation with respect to the density

unction ϕ(q ) , q ∈ A , if each generator s ∈ S is equal to the gener-

lized centroid of its partition P(s ) with respect to ϕ. 

. Data sink election algorithm 

Section 4.1 describes the data sink node election algorithm;

ection 4.2 presents the proof of convergence to the CVT;

ection 4.3 describes some practical implementation details. 

.1. Algorithm description 

Let the mission space be a finite, convex Euclidean domain A ⊂
 

2 . The sensor network is deployed on the area A , and the sen-

or nodes connections build a communication graph G = { V, E } ,
here V = { 1 , 2 , . . . , n } is the set of the n vertices or nodes of the

etwork, and E ⊆ V × V is the set of edges or links between node

ouples: ( i, j ) ∈ E if nodes i and j are connected. We assume that

he graph is connected (i.e., there exists at least a path between

very node couple), and that the node position on the mission

pace is not time-varying (as common in sensor networks). The

osition of node i is defined by the mapping function x : V → A .

et X = { x (i ) } i ∈V be the set of node positions. The degree of node

 ∈ V , i.e., the number of its neighbor nodes, is denoted with d(i ) . 
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Let n ds be the number of DS nodes to be set-up in the sensor

network. The value of n ds is decided at planning level, based, e.g.,

on fault tolerance considerations. The algorithm relies on control

agents which, at any time of the mission, are associated to each DS

node. The set of control agents is denoted with S = { 1 , 2 , . . . , n ds } .
We consider that the DS functionality is not permanently associ-

ated to a given node: at each time t , the DS control agents are

associated to a given set of n ds nodes. We then define a time-

varying mapping function πt from the control agent set S to the

node set V . This mapping function determines the set of DS nodes

at time t: πt (s ) is the network node which, at time t , is associated

to the DS agent s ∈ S . The set of the n ds DS nodes is denoted with

V ds 
t = { πt (s ) } s ∈S ⊆ V . At different time instants, the set of the n ds 

DS nodes, is, generally, different; at time t , let D t = { x ( πt (s ) ) } s ∈S ⊂
A be the set of the positions of the DS nodes. 

In sensor networks, the DS nodes are likely to suffer from faster

energy depletion, due to the fact that they have to collect and pro-

cess all the data sent by the sensor nodes. Then, there is the need

of changing the DS nodes, i.e., of varying the mapping πt . The role

of the data sink election algorithm is then to dynamically map the

set of DS nodes S onto the subset of nodes V ds 
t , i.e., to compute

the mapping function πt , at any time t . The proposed algorithm is

distributed, since each DS agent takes the decisions independently

from the other agents. However, the agents communicate and, in

particular, the assumption is that, each time a migration of a given

DS agent occurs, the agent in question communicates to the other

agents the position of its new DS node. 

To choose a sensor node as a candidate new DS, we consider

three normalized metrics: 

1. Uniform metric : all the nodes have the same weight: w (i ) =
1 , i ∈ V . 

2. Connectivity degree metric : each node i computes its own weight

as w (i ) = 

d(i ) 
d MAX 

∈ ( 0 , 1 ] , where d MAX is a maximum metric value

selected for normalization purposes; for instance, d MAX can be

selected as the maximum degree of the graph. 

3. Leftover energy metric : each node i computes its own weight as

w (i ) = 

e t (i ) 
e MAX 

∈ [ 0 , 1 ] , where e t (i ) is the leftover energy of node i

at time t , and e MAX is a maximum metric value selected for nor-

malization purposes; for instance, e MAX can be selected as the

maximum node energy. Note that this metric is time-varying

due to the progressive energy depletion of nodes. 

Different metrics may be considered; for instance, in [11] the

metrics 2 and 3 proposed above as well as a linear combination

of those are evaluated in the framework of cluster-head election

algorithms. 

At given time instants, each node i ∈ V decides whether to be

a candidate DS node or not, based on its metric w (i ) (the larger

w (i ) , the higher the probability). This paper does not specify how

the decision time of each node is determined; the algorithm can

use any of the analogous mechanisms used in the similar cluster-

head election problems, e.g., periodic, random with a Poisson time

distribution, decided by a back-off algorithm. In the following, to

say that a node decides to be a candidate node, we will write that

the candidate node appears (for similarity to the target appearance

in the routing problems). 

The DS nodes election algorithm is described hereafter. The al-

gorithm is inspired by the routing algorithm for multiple vehicles

developed in [3] . 

For each DS agent s ∈ S , let B t (s ) be the set of the k + 1 posi-

tions of the nodes which played the role of DS s up to time t: 

B t ( s ) = { x ( πt s, 0 (s ) ) , x ( πt s, 1 (s ) ) , . . . , x ( πt s,k (s ) ) | 0 

= t s, 0 < t s, 1 < . . . < t s,k ≤ t} ⊂ A , 
here πt s, 0 (s ) is the position of the initial DS node, with t s, 0 = 0 ,

 s, j denotes the time when the j th migration of the DS node s oc-

urs, and t s,k ≤ t is the time of last migration, i.e., k is the number

f migrations of DS agent s up to time t . Let T s,k = { t s,i } i =1 , ... ,k de-

ote the set of the first k th migration instants of DS agent s . 

Let i ∈ V be the new candidate DS node appearing at time t ′ .
he DS agents decide which DS node has to migrate to the new

ode based on the position of the current candidate nodes and on

he sets of the past positions, collected in the sets B t (s ) , s ∈ S . Let

 t (s ) ∈ A denote the reference point of the set B t (s ) , s ∈ S , defined

s the point which minimizes the average squared distance to the

ast positions of the DS agent s up to time t: 

 t ( s ) = arg min 

p∈ R 2 
1 

k + 1 

∑ 

q ∈ B t ( s ) 
‖ p − q ‖ 

2 , s ∈ S. (3)

Given that the functions y t (s ) : S → R 

2 defined by

q. (3) are strictly convex in R 

2 , there is a unique reference

oint y t (s ) for each s ∈ S , and, since B t (s ) ⊂ A , with A convex,

e have also that y t (s ) ∈ A . The DS election algorithm is based

n the Voronoi partition generated by the reference points ( 3 ) of

he DS agents. Let P t (s ) ⊂ A denote the Voronoi region generated

y the reference point y t (s ) of the agent s at time t . At time t ,

he candidate node i belongs (necessarily) to one of the Voronoi

egions, say region P t ( s 
′ ) . Then, it becomes the new DS node of

he agent s ′ , i.e., the DS agent s ′ migrates to node i . 

.2. Convergence of the reference points to the CVT 

We are interested at showing that the sequences of the refer-

nce points converge to the generating points of the CVT, i.e., to

he generalized centroids, as the set of migration instants T s,k =
 t s,i } i =1 , ... ,k of each DS agent s ∈ S grows for k → ∞ . 

The generalized centroids, in the discrete spatial distribution

ase, are defined as follows: 

efinition 3. The generalized centroid of a region P ∈ R 

2 with re-

pect to a discrete density function ϕ defined in R 

2 with support

iven by the discrete set X P ⊂ P is 

 X P = arg min 

p∈ R 2 
∑ 

q ∈P 
‖ p − q ‖ 

2 ϕ ( q ) 

= arg min 

p∈ R 2 
∑ 

q ∈ X P 
‖ p − q ‖ 

2 ϕ ( q ) . (4)

Note that a given Voronoi partition P(S) = { P(s ) } s ∈S in-

uces an associated graph node partition, denoted with V P (S) =
 V P (s ) } s ∈S , and defined as: 

 P ( s ) = { i ∈ V| x ( i ) ∈ P ( s ) } , ∀ s ∈ S. (5)

Then, we will denote the generalized centroid of a Voronoi re-

ion P(s ) with respect to a discrete density function ϕ with sup-

ort given by the discrete set of the positions of the nodes in V P (s )

s 

 V P ( s ) = arg min 

p∈ R 2 
∑ 

q ∈P ( s ) 
‖ p − q ‖ 

2 ϕ ( q ) 

= arg min 

p∈ R 2 
∑ 

i ∈ V P ( s ) 
‖ p − q ‖ 

2 ϕ ( x ( i ) ) . (6)

As shown in [3] , since the cardinality of V is finite, the se-

uences of reference points y t s,k (s ) of each DS converge to well-

efined limit generation points, denoted as ˆ y (s ) = lim 

k →∞ 

y t s,k (s ) , s ∈
; the corresponding limit Voronoi regions are denoted as ˆ P (s ) .

he following property holds: 

roperty 1. [3] . The sequence of the Voronoi partitions

 P t s,k 
(S) } k =0 , 1 , 2 , ... generated by the sequences of reference points
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{ y (s ) } s ∈S to the new DS node π ( s ) . 
 y t s,k (s ) } k =0 , 1 , 2 , ... , s ∈ S , converges, almost surely, to the Voronoi

artition 

ˆ P (S) generated by the limit reference points ˆ y (s ) , s ∈ S . 

Thanks to Property 1 , to study the steady-state properties of the

lgorithm we just need to check the properties of the limit Voronoi

artition 

ˆ P (S) = { ̂  P (s ) } s ∈S . Also, from Property 1 , it follows that,

s k → ∞ , the network graph is partitioned in n ds subsets of nodes

 ˆ P (s ) , s ∈ S , defined as in Eq. (5) , and that the node set partition

 t s,k 
(S) = { V t s,k (s ) } s ∈S converges, almost surely, to the limit node

et partition V ˆ P (S) = { V ˆ P (s ) } s ∈S . 
heorem 1. Under the assumption that the probability distribution of

he appearances of the candidate nodes is stationary, the limit refer-

nce points ˆ y (s ) of the sequence of reference points ( 3 ) coincide with

he generalized centroids of the limit Voronoi regions ˆ P (s ) , ∀ s ∈ S . 

roof. Let ϕ be the distribution of the candidate node appear-

nces. The distribution, stationary by assumption, is defined over

he discrete set of node positions X . 

We are interested in the limit generating points of the

imit Voronoi partition, which, given the update rule of

q. (3) , are defined as 

ˆ 
 ( s ) := li m k →∞ 

y t s,k ( s ) 

= li m k →∞ 

⎛ 

⎝ arg min 

p∈ R 2 
1 

k + 1 

∑ 

q ∈ B t s, k 
( s ) 

‖ p − q ‖ 

2 

⎞ 

⎠ , 

 ∈ S. (7) 

By Property 1 , V t s,k (s ) converges to the limit set V ˆ P (s ) as k

rows. It follows that, since each agent s can migrate only to nodes

elonging to its own Voronoi region, as k → ∞ , the new DS nodes

elected by agent s are all in V ˆ P (s ) , i.e., the new elements πt s,k 
(s )

f the set B t s,k 
(s ) are all such that πt s,k 

(s ) ∈ V ˆ P (s ) . Thus, eventu-

lly, as k → ∞ , the probability that a given node i ∈ V ˆ P (s ) is the

ew DS node s is described by a density function, denoted with

ˆ  s , with support given by the discrete set { x (i ) } i ∈ V ˆ P (s ) : 

ˆ  s ( q ) = ϕ 

(
q | q ∈ 

ˆ P ( s ) 
)

= 

{
1 
ˆ c s 
ϕ ( x ( i ) ) if q = x ( i ) and i ∈ V ˆ P ( s ) 

0 otherwise 
, (8) 

here ˆ c s = 

∑ 

i ∈ V ˆ P (s ) ϕ( x ( i ) ) is a normalization constant. 

Eq. (8) states that, eventually, a node i ∈ V ˆ P (s ) is a new element

f the set B t s,k 
(s ) with probability ϕ( x ( i ) ) 

ˆ c s 
, whereas the probability

hat a node i ∈ V \ V ˆ P (s ) is a new element of B t s,k 
(s ) is null. Hence,

he following equation holds for the limit reference point ˆ y (s ) of

q. (7) : 

ˆ 
 ( s ) = arg min 

p∈ R 2 

( 

lim 

k →∞ 

1 

k + 1 

∑ 

q ∈ B t k ( s ) 
‖ p − q ‖ 

2 

) 

= arg min 

p∈ R 2 

∑ 

i ∈ V ˆ P ( s ) 
‖ p − x ( i ) ‖ 

2 ϕ ( x ( i ) ) 

ˆ c s 
. (9) 

This last equality holds thanks to the assumptions that the spa-

ial density distribution ϕ is stationary. 

By comparing the definition in Eq. (6) with the last term of Eq.

9) , it turns out that the limit reference point ˆ y (s ) is the general-

zed centroid m V ˆ P (s ) of the limit set V ˆ P (s ) . �

Theorem 1 demonstrates that the limit Voronoi partition ob-

ained by the proposed algorithm is a generalized CVP, and shows

hat, eventually, each DS agent s, s ∈ S migrates only among the

odes of the Voronoi region generated by its limit reference point

ˆ  (s ) (see Eq. (9) ). 
emark 1. In practice, there is no need to solve the optimization

roblem ( 3 ) at each migration or to store all the values of the past

S node positions, since iterative algorithms exist, as, for instance,

he MacQueen’s k -means method described hereafter. Let c t (s ) be

 counter of the number of migrations of the DS agent s up to

ime t; the following iterative algorithm eventually converges to

he same minimizer of ( 9 ) (see [7, 8] ): 

 t s, k +1 
( s ) = 

c t s, k 
( s ) y t s, k 

( s ) + x 
(
πt s, k +1 

( s ) 
)

c t s, k 
( s ) + 1 

e 

= ( 1 − γk ) y t s, k 
( s ) + γk x ( πt s, k +1 

( s ) ) , s ∈ S, (10) 

ith γk = 

1 
c t s, k 

(s )+1 
and c t s,k (s ) = k . To compute Eq. (10) , it is suffi-

ient that each agent s stores the last reference point y t s, k 
(s ) and

he last counter value c t s,k (s ) . 

emark 2. If a time-varying candidate metric is used (as the left-

ver energy metric), the distribution of the candidate node ap-

earances (i.e., the function ϕ in the proof of Theorem 1 ) is non-

tationary, and, according to Definition 3 , the generalized CVT is

ime-varying as well. In this case, Eq. (10) , can be modified in order

o weight the more recent reference points more than the older

nes, e.g.: 

 t s, k +1 
( s ) = ( 1 − γ ) y t s, k 

( s ) + γ · x 
(
πt s, k +1 

( s ) 
)
, s ∈ S, (11)

here γ is now a constant real number between 0 and 1 . Depend-

ng on the dynamics of the distribution, this new rule might be

ble to ‘follow’ the variations of the CVT. A similar remark holds if

he network graph is time-varying, e.g., due to mobility and/or due

o the occurrence of node failures. 

.3. Practical implementation 

The proposed algorithm is distributed, since it is executed sep-

rately by each DS node. In practice, each sensor is eligible as a

S node; when a node is elected, beside the procedures needed to

erform the DS tasks, it also runs the algorithm for the DS election

i.e., it acts as a control agent), which, as detailed below, requires

egligible computational and storage resources and limited com-

unications among the agents. 

As detailed below, the DS election procedure assures that, at

ny time t̄ , each DS agent knows the positions of all the current

eference points; moreover, each DS agent is aware of the posi-

ions of the current candidate DS nodes, since they communicate

heir position to all the DS nodes. Let k ′ be the number of migra-

ions of agent s ′ up to time t̄ , let us assume that a new migra-

ion occurs at time t̄ , i.e., t̄ = t s ′ , k ′ +1 , and let the old DS node be

t 
s ′ , k ′ ( s 

′ ) = i . The proposed algorithm requires the following tasks

o be performed by DS node i : 

1. New DS node selection . DS node i selects the new DS node

πt̄ ( s 
′ ) , without computing the Voronoi partition explicitly. In

fact, for each candidate node p, the DS node i just checks if it

lies within its own Voronoi region or not: if s ′ = arg min 

s ∈S 
y t̄ (s ) −

x (p) , it means that the candidate node p lies in the Voronoi

region P t̄ ( s 
′ ) generated by the reference point of agent s ′ at

time t̄ . DS node i simply selects the best candidate node (ac-

cording to the used metric, e.g., one of the metrics defined in

Section 4.1 ) among the ones in P t̄ ( s 
′ ) . 

2. New reference point computation . DS node i computes the new

reference point y t̄ ( s 
′ ) by using Eq. (10) , which, as discussed

in Remark 2 , has negligible storage and computational require-

ments. The new reference point is then communicated to the

other DS nodes. 

3. Migration of the information . DS node i communicates its data

(likely, fused data) and the list of the current reference points
′ 
t̄ t̄ 
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Fig. 1. Simulation 1, upper plots: trajectories of the generating points until time-step h = 200 : (a) uniform metric, (b) node degree metric, (c) leftover energy metric. Lower 

plots: reference points and Voronoi regions at the end of the simulation: (d) uniform metric, (e) node degree metric, (f) leftover made energy metric. 
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2 In a real implementation, a different policy is needed: with the described one, 

e.g., in the uniform metric case, with w (i ) = 1 , ∀ i ∈ V , on average half of the fully 

charged nodes are candidate ones, which leads to excessive control traffic. 
Finally, also the routing algorithm has to be updated; this point

is however specific to the routing algorithm implemented in the

WSN. 

5. Simulations 

Simulation results of the proposed data sinks election algorithm

are presented in this Section. The simulations are aimed at com-

paring the proposed metrics and at showing the qualitative results

of the algorithm in terms of network partitioning. 

Simulations are organized in time-steps. In each simulation run,

a given number of nodes n and a given number of DS nodes n ds are

defined; the links between nodes are set-up depending on the po-

sition of the nodes on the mission space: if the distance between

two nodes is below a given transmission radius r tx , the link is set-

up. The node positioning is either random or deterministic, to ob-

tain a random network topology and a grid network topology, re-

spectively. 

The node energy depletion due to the routing of packets heavily

depends on the routing algorithm implemented (see, e.g., [20] and

references therein), whereas this paper focuses on the evaluation

of the migration policy; therefore, the implemented routing algo-

rithm uses a simple hop-count metric. Similarly, since the algo-

rithm does not make any assumption on the node energy model,

the energy model of the nodes is kept as simple as possible. Each

node has an initial energy level equal to 1. At every time-step, the

energy level of the DS nodes is decreased by a constant quantity

�e = 0 . 01 . Also, at every time-step, the min-hop path from every

node to the nearest DS node is computed: the energy depletion

of a node belonging to a given number n p of paths (i.e., a node

that has to relay packets for n p paths during a round) is equal to

n p · �e r , where �e r is the energy depletion for relaying packets

and is set equal to �e/ 100 . As the energy of a node becomes 0 ,
ay at time-step τ f , the simulation terminates and the minimum

ode lifetime is τ f . 

The metrics presented in Section 4 are used by the data sinks

lection algorithm: the weights w (i ) , i ∈ V , are computed accord-

ng to the uniform metric, the node degree metric and the leftover

nergy metric. 

The nodes take the decision on being a candidate node peri-

dically, with period h , and the probability that node i is a can-

idate node is 0 . 5 · w (i ) : in practice, each node i randomly ex-

racts a number ξ ∈ [ 0 , 1 ] from a uniform probability distribution:

f ξ < 0 . 5 · w (i ) , the node is eligible as a new DS node 2 . Thus, at

very time-step h , the nodes decide about candidating as a new DS

ode. In the simulation, at time-step h , either no nodes or one or

ore nodes are candidate nodes. If there are no candidate nodes,

othing happens. If there is one candidate node, it is (clearly) in

he Voronoi region of a given DS agent, which therefore simply

igrates to the new node. If there are more candidate nodes, each

gent has to decide which candidate node to migrate to, among the

nes in its own Voronoi region (recall that each agent s considers a

ode i as a candidate sink node s if it lies in its Voronoi region). In

his last case, the probability of a candidate node of being selected

s set as proportional to its weight. 

The reference points of the DS nodes are updated according to

he iterative Eq. (10) . 

In the first two simulations, the proposed algorithm is com-

ared to the performance of a DS node election algorithm which

ses the LEACH rule ( 1 ) to select the DS nodes at every time-step;

he parameter p of Eq. (1) is set in order to have an expected num-

er of DS nodes equal to n ds . 

The results of the simulations are evaluated in terms of: 
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Fig. 2. Simulation 2, upper plots: trajectories of the generating points until time-step h = 200 : (a) uniform metric, (b) node degree metric, (c) leftover energy metric. Lower 

plots: reference points and Voronoi regions at the end of the simulation: (d) uniform metric, (e) node degree metric, (f) leftover energy metric. 

Table 2 

Simulation 1 results. 

Output Proposed partitioning (metric) LEACH 

Uniform Node degree Leftover energy 

Minimum node lifetime 1238 .9 1175 .5 1521 .2 873 .0 

Mean leftover node energy 0 .31 0 .35 0 .14 0 .34 

Std. dev. leftover node energy 0 .14 0 .16 0 .07 0 .19 

Average path length 3 .61 3 .60 3 .72 5 .74 

Average n. of DS nodes 4 .00 4 .00 4 .00 4 .07 

Std. dev. % of nodes per DS node 2 .43% 2 .54% 3 .24% –
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• Minimum node lifetime , which is the time-step when the first

node energy is depleted; this parameter shows the effectiveness

of the DS election protocol to save the nodes energy. 

• Mean leftover node energy , which is the average energy level of

the nodes at the end of the simulation, and standard deviation

of node energy , which is the standard deviation of the energy

level of the nodes at the end of the simulation; these parame-

ters show how the DS election protocol manages to balance the

energy depletion of the nodes. 

• Standard deviation of the % of nodes per data sink node , which

indicates how well balanced is the distribution of the sensor

nodes among the DS nodes (this statistic is not applicable to

the simulations with the LEACH selection rule since the number

of DS nodes varies in time). 

In the first simulation, a 12 × 12 grid topology with n = 144

odes and with n ds = 4 DS nodes is simulated. The transmission

adius r tx is set to 1.4, and the distance between two nodes is 1;

he resulting topology is an equispaced grid (see Fig. 1 ). The re-

ults are averaged over 20 simulation runs. In each run, the initial

ositions of the DS nodes are chosen randomly, and the simulation

s executed with the three proposed metrics. 
Table 2 shows the simulation results. With all the metrics, the

lgorithm manages to distribute the workload of the sensor nodes

mong the DS nodes, as shown by the small values of the standard

eviation of the % of nodes per DS node. Concerning the network

ifetime, the leftover energy metric outperforms both the random

etric, by 21%, and the node degree metric, by 34%, thanks to the

act that it achieves a better balancing of the leftover energy levels,

s shown by the values of the standard deviation of leftover node

nergy. The LEACH selection rule obtains much smaller lifetimes

about 70%, 74% and 57% of the lifetime of the algorithm with the

niform metric, node degree metric and leftover energy metric, re-

pectively), since it cannot control the spatial distribution of the

S nodes and, therefore, the average path length is larger. 

The upper plots of Fig. 1 show, for one of the simulation runs

nd for the three metrics, the simulated grid topology, the ini-

ial position of the DS nodes and the trajectories of the refer-

nce points during the first 100 time-steps. The lower plots of

ig. 1 show the final reference point positions and the resulting

oronoi regions. 

If the spatial distribution of the candidate node appearances

ere a continuous and uniform spatial distribution on the mis-

ion square area, the CVTs would define 4 regions with similar area



44 A. Pietrabissa et al. / Ad Hoc Networks 46 (2016) 37–47 

Table 3 

Simulation 2 results. 

Output Proposed partitioning (metric) LEACH 

Uniform Node degree Leftover energy 

Minimum node lifetime 751 .6 771 .0 919 .3 416 .3 

Mean leftover node energy 0 .60 0 .60 0 .50 0 .71 

Std. dev. leftover node energy 0 .16 0 .19 0 .10 0 .18 

Average path length 3 .33 3 .25 3 .52 5 .09 

Average n. of DS nodes 4 .00 4 .00 4 .00 4 .04 

Std. dev. % of nodes per DS node 2 .35% 2 .56% 2 .93% –
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Fig. 3. Simulation 3, reference points of the DS nodes and Voronoi regions at the 

end of the simulation. 
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(e.g., the 4 quadrants). The figures clearly show that, even with

the time-varying energy metric, the algorithm well approximates

a CVT. In this respect, we note that the energy metric is able to

produce a balanced node discharging during the mission, which, in

turn, makes the probability distribution balanced over the nodes. 

Then, non-regular topologies with n = 136 nodes and with

n ds = 4 DS nodes are simulated. The results are averaged over 20

simulation runs; each run is executed with the proposed metrics.

In each run, the initial DS node positions are randomly chosen. 

Table 3 shows the simulation results, analogous to the ones of

the first simulation runs. 

The upper plots of Fig. 2 show, for one of the simulation runs

and for the three metrics, the simulated grid topology, the ini-

tial position of the DS nodes and the trajectories of the refer-

ence points during the first 100 time-steps. The lower plots of

Fig. 2 show the final reference point positions and the resulting

Voronoi regions. 

The figure of the result of a third simulation is added just to

show qualitatively how the algorithm works in larger networks

and with more DS nodes: Fig. 3 shows an example of network

partitioning resulting from the DS node election algorithm with

the energy metric, with n = 575 nodes and with n ds = 7 DS nodes.

The figure suggests that the dynamic partitioning is effective also

in this case; the workload is in fact well balanced among the DS

nodes, since the standard deviation of the % of nodes per DS node

is about 1.78%. 

Finally, we take into account a 12 × 12 grid scenario, where the

initial node energy is different among the nodes (see the upper-left

plot of Fig. 4 ). In this scenario, the energy metric tries to balance

the leftover node energy and, by doing so, it changes the relative

energy distribution among the nodes; therefore, the spatial distri-

bution ϕ is time-varying. As discussed in Remark 2 , the iterative
q. (11) is used, with the parameter γ set equal to 0 . 1 (tuned by

imulation runs). Fig. 4 shows the energy distribution among the

odes (which is proportional to the node weights) during the sim-

lation, and the reference point positions: the algorithm is able to

follow’ the distribution variation and, at the end of the simula-

ion at time h = 1070 s , the leftover energy is balanced among the

odes and the final Voronoi partition is similar to the one obtained

n Fig. 1. 

The plots at intermediate time-steps are suitable for showing

he algorithm behavior. Since the initial node weights (proportional

o the leftover node energy levels) are larger for larger values of y

see the right plot at h = 0 ), the elected DS nodes are initially dis-

ributed in such a way that the Voronoi regions including the less

harged nodes have a larger number of nodes (see the left plots

t h = 250 and, especially, at h = 500 ). By so doing, the energy of

he nodes is already fairly balanced at h = 500 , as shown by the

orresponding right figure. 

. Conclusions 

The proposed data sinks election algorithm manages to orga-

ize the data sink node migrations in such a way that, during

he network lifetime, the data sink nodes are positioned within a

etwork partition which is proved to converge to the Centroidal

oronoi Tessellation. As shown by numerical simulations, the re-

ult is a balanced positioning of the data sink nodes within the

ensor network area, which is capable of balancing the load of data

ink nodes and, especially if coupled with an energy-based metric,

f prolonging the lifetime of the nodes. The problem dealt with in

he paper is similar to other problems in WSNs, such as the clus-

er head election, and with some awareness can be regarded as

 generic method to perform partitioning in ad-hoc wireless net-

orks. 

On-going work is devoted at analyzing the impact of energy

arvesting approaches (see, e.g., [9] ) and the impact of the pro-

osed procedure in presence of all the other network management

lgorithms of a WSN, as, in particular, the routing algorithm and

he data-fusion techniques proposed in the project SWIPE ( [16,

5] and [18, 27] , respectively): energy-aware routing algorithms af-

ect the energy depletion of the nodes and may also cause a com-

lex interaction with the data sink election algorithm, and data-

usion techniques affect both the computational requirements of

he data sink nodes (and therefore their energy consumption) and

he traffic load on the network. Moreover, the proposed algorithm

s being implemented in the sensor nodes which the SWIPE project

ill integrate and demonstrate. 
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Fig. 4. Simulation 4, left plots: reference points of the data sink nodes and Voronoi regions during the simulation, right plots: leftover node energy during the simulation. 

In the figure, the node energy level is represented by a bar on the z-axis starting from the node position on the ( x, y ) plane; the figure also shows an envelope plane for 

presentation clarity. 
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