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a b s t r a c t 

It is widely known that the instantaneous average node speed for the random waypoint (RWP) mobility 

model may not reach a steady state regime due to velocity gradual decaying which can cause inaccurate 

results in simulations and communication protocol validations for wireless networks. This paper presents 

a modification to the RWP model, in which we propose to choose node speeds from a BETA( α, β) dis- 

tribution, demonstrating analytically and by simulations that depending on the values of α and β pa- 

rameters the instantaneous average node speed and consequently other important network metrics, like 

control overhead and number of dropped data packets may reach (or not) a steady state regime. There- 

fore, by allowing α and β to vary, a multitude of probability distributions for speed choice is obtained 

and the resulting limiting state behavior for the mobility model can straightforwardly be determined, of- 

fering to the research community a generalized BETA random waypoint mobility model. Accordingly, the 

generic analytical closed form for the instantaneous average node velocity V as V min → 0 is obtained as 

a function of α and β to be given by lim V min → 0 V = V max 
α−1 

β+ α−1 
in which V min and V max are the minimum 

and maximum velocities, respectively, that a node can select. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Wireless ad hoc networks require no base station and all the

ontrol and access tasks are distributed among nodes acting as

eers [1] . That is, there is no network infrastructure, while nodes

an be static or mobile. This makes such networks attractive in sit-

ations such as battle fields, catastrophe-relief efforts or environ-

ental monitoring. Accordingly, communication protocols for ad

oc networks must be decentralized and utilize few resources, like

nformation processing and energy. Such protocols must be tested

nder conditions reflecting various possible practical scenarios that

 user may confront. In this context, the mobility effect on ad

oc networks has been investigated by many authors [2–8] . These

tudies showed that the performance of mobile ad hoc networks is

ighly dependent on the mobility employed in simulations and its

haracteristics. 

On the other hand, in order to be considered valid, the results

rom any network simulation must be obtained under steady state
∗ Corresponding author. 
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ehavior, i.e., the convergence time shall be smaller than the total

imulation interval. It implies that the initial transient is discarded

or performance analysis. Therefore, mobility models that never at-

ain a stationary regime must be avoided. 

Among many mobility models used in the literature and in net-

ork simulators for ad hoc networks and wireless networks in

eneral, the random waypoint (RWP) model is one of the most

mployed as observed in [9] and for example used in [2,3,6,8,10–

7] . Its main features are the random choice of position and speed

or the nodes, as well as the use of pause time between di-

ection changes [2,10] . In [6] , Yoon et al. showed that the RWP

odel does not attain steady state regime under certain condi-

ions. More specifically, they proved that the instantaneous aver-

ge node speed consistently decreases over time for a given set

f parameters which interferes with the network performance and

herefore should not be directly used for simulations. Note that au-

hors unaware of this problem have analyzed communication pro-

ocols under such conditions [3,8,10–16,21–24,26–28] . Therefore, it

s of uttermost importance to discuss and disseminate the correct

ay of using the RWP mobility model as we do in this paper. 

Previous works have proposed new mobility models with sta-

le average node speed [38–41] ; however, they did not present

he impacts over networking performance metrics. In addition, the
bility model for wireless network simulation, Ad Hoc Networks 
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main features of the resultant models deviated from the princi-

pal characteristics of the RWP model, e.g., the average velocities

of the used distributions for choosing the node speeds differ from

the average value 
V max + V min 

2 of the uniform distribution employed

in RWP model, where V min and V max are the minimum and maxi-

mum velocities, respectively, that a node can select. In [42] , Boudec

and Vojnovic proposed a general mobility model called random trip

which contains as special case the random waypoint. Accordingly,

such work deals with a broader class of mobility models. On the

other hand, our work focus on the RWP model aiming to provide

the RWP with a stable average node speed, but preserving its orig-

inal features. 

In [43] , it was proposed an alteration in the way the node

speeds are chosen such that the RWP model always attains a

steady state. More specifically, it was proposed a modification to

the RWP model, in which node speeds are chosen from a BETA(2,2)

distribution [44] , demonstrating analytically and by simulations

that it stabilizes the instantaneous average node speed and con-

sequently other important network metrics, like control overhead

and number of dropped data packets. The proposal of alteration

not only eliminates the decaying problem of the average node

speed but also provides average values closer to the commonly

supposed average velocity 
V max + V min 

2 than those of the original RWP

model. 

This paper extends the work in [43] , generalizing the distribu-

tion employed to be a BETA( α, β) [44] in which we perform a

study of the mobility showing analytically and by simulations how

the use of a BETA distribution for node speed can stabilize (or not)

this model for utilization in performance analysis of mobile net-

works. The reason for choosing the BETA distribution is because it

does not change the RWP main features, like node spatial concen-

tration in the centre of the network area and average number of

neighbors [43] . In addition, this BETA distribution can be readily

incorporated into network simulators since it is available in com-

mon programming languages (see GSL [45] or SSJ [46] libraries, for

example). Furthermore, the BETA( α, β) distribution can reduce to

the previous cases depending on the α and β parameters; for ex-

ample, for α = 1 and β = 1 , BETA(1,1) is the uniform distribution

for the speed choice of the original RWP model [2,10] . On the other

hand, for α = 2 and β = 2 , BETA(2,2) is the distribution investi-

gated in [43] . In addition, for α = 2 and β = 1 , BETA(2,1) is the

linear distribution proposed in [39] and [7] . Therefore, by allow-

ing the α and β parameters to vary, a multitude of distributions

can be obtained and the resulting limiting state behavior for the

mobility model can readily be scrutinized, offering to the research

community a generalized BETA random waypoint mobility model

that can be used to explore numerous speed test scenarios. Also,

we find that by setting the parameter α ≥ 2 provides the BETA

RWP mobility model with stabilized average steady state speed for

the nodes. 

The rest of this paper is organized as follows. Section 2 pro-

poses the BETA RWP mobility model and presents its basic def-

initions together with a detailed steady state analysis leading

to a final closed formula for the average steady state speed as

a function of the BETA distribution parameters ( α, β). Accord-

ingly, it emphasizes the cases in which a stabilized RWP mobility

model is attained by appropriately choosing the BETA parameters.

Section 3 contains network performance results obtained in the ns-

2 simulator [ 47 ] comparing cases in which the α and β parame-

ters imply mobility models stabilized or not. Finally, Section 4 con-

cludes the paper. 

2. BETA random waypoint mobility model 

A mobility model governs node movements in a network. The

RWP model introduces pause time between changes in direction of
Please cite this article as: R.T. Silva et al., BETA random waypoint mo

(2016), http://dx.doi.org/10.1016/j.adhoc.2016.06.001 
he nodes and provides random choice of position and speed for

he nodes [2,10] . It has been widely used to validate wireless com-

unication protocols for mobile networks. Furthermore, the RWP

obility model is most employed due to its simplicity of imple-

entation in network simulators. 

In our proposal, we expand the random speed choice by allow-

ng its probability density function to be a BETA( α, β) in which

any distinct distribution shapes are possible according to the se-

ection of the α and β parameters. Beyond the BETA(1,1) resulting

n the uniform distribution, the BETA(2,1) producing the linear dis-

ribution case, and the BETA(2,2) generating the parabolic distribu-

ion behavior, by varying α and β , the model provides speed dis-

ributions to fit distinct simulation scenarios. For example, if α is

reater than β the upper speeds are reinforced compared to lower

peeds which may be the case for scenarios where the majority of

he nodes move with high velocities. Moreover, the reinforcement,

.e., the rate at which the upper speeds are chosen over the lower

peeds can be appropriately adjusted by the skewness of the dis-

ribution. The opposite behavior is obtained for β > α > 1. On the

ther hand, if α is equal to β ( α = β > 1 ) the distribution is sym-

etric with relation to its mean. Thus, upper and lower speeds are

venly chosen on average, however, the greater the value of α and

( α = β), a more impulsive shaped distribution centered at the

ean is obtained which can be used to test scenarios that avoid

he velocities near the extreme values V min and V max , for example. 

Here we introduce the BETA RWP model considering a rectan-

ular network area with dimensions X max × Y max . The BETA( α, β)

robability density function used by a node to randomly choose a

peed v is given by 

f V (v ) = 

(v − V min ) 
α−1 (V max − v ) β−1 

B ( α, β)( V max − V min ) α+ β−1 
, V min ≤ v ≤ V max (1)

or V min ≤ v ≤ V max , where 0 < V min < V max and B (α, β) =
 1 
0 x α−1 (1 − x ) β−1 dx = 

�(α)�(β) 
�(α+ β) 

, in which �(n ) = (n − 1)! for n in-

eger. The parameters α and β are positive integers. 

In order to simplify the upcoming analysis we expand the ex-

onential terms in (1) using the Newton’s Binomial Theorem (x +
 ) n = 

∑ n 
a =0 

(
n 
a 

)
x n −a y a to obtain 

(v − V min ) 
α−1 = 

α−1 ∑ 

a =0 

(
α − 1 

a 

)
(−1) a V 

a 
min v 

α−a −1 (2)

nd 

(V max − v ) β−1 = 

β−1 ∑ 

b=0 

(
β − 1 

b 

)
(−1) β−b−1 V 

b 
max v β−b−1 . (3)

eplacing (2) and (3) into (1) , the BETA( α, β) probability density

unction can be rewritten as 

f v (v ) = 

α−1 ∑ 

a =0 

β−1 ∑ 

b=0 

(
α−1 

a 

)(
β−1 

b 

)
(−1) β+ a −b−1 V 

a 
min 

V 

b 
max v α+ β−a −b−2 

B (α, β) (V max − V min ) α+ β−1 
. 

(4)

ssumption 1. BETA RWP model: (i) Each node randomly chooses

n initial position ( x , y ) in the network, where x and y are both

niformly distributed over [0, X max ] and [0, Y max ], respectively. (ii)

hen, every node selects a destination ( x ′ , y ′ ) uniformly distributed

n the network area and a speed v according to the BETA( α, β) dis-

ribution given in (1) . (iii) A node will then start travelling toward

he ( x ′ , y ′ ) destination on a straight line using the chosen velocity

 . (iv) Upon reaching the selected destination, the node remains

here for a pause time, either constant or randomly chosen from

 given distribution. Upon expiration of the pause time, the next

estination and speed are chosen in the same way as in (ii) and

he process repeats until the end of the simulation. 
bility model for wireless network simulation, Ad Hoc Networks 
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Fig. 1. Distance-speed graph. ( i ), ( ii ) and ( iii ) are the three regions (cases) of inter- 

est. 
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Note that the above model reduces to the original RWP model

2,10] , if α = β = 1 . 

.1. Steady state analysis 

The results from mobile wireless network simulations are

eaningful as long as they are obtained under steady state regime.

oon et al. [6] showed that the stationary regime is directly related

o the instantaneous average node speed of a mobility model. For

 mobility model, the instantaneous average node speed is defined

s [6] 

 (t) = 

∑ N 
i =1 v i (t) 

N 

(5) 

here N is the total number of nodes and v i (t) is the speed of

ode i at time t . 

In [6] , it was shown that a steady state for the original RWP

obility model cannot be attained in the cases where V min →
, i.e., v (t) decay to zero over time such that lim t→∞ 

v (t) = 0 . In

ractical terms, it means that if the range of (0, V max ] is used for

peed choices then the network simulation will never reach a sta-

ionary regime in terms of average node speed which may lead to

nconsistent results when this model is employed to validate com-

unication protocols in mobile networks. An intuitive explanation

or this fact is to observe that the original RWP model selects des-

ination and velocity for each node in a random and independent

ashion where each node will maintain the chosen speed until it

eaches the selected destination and then the process is repeated.

uring this procedure, the nodes that choose low speeds and long

istances will remain trapped for a long time to these trips and

epending on the total simulation period they may never reach

heir destinations. The nodes that select higher speeds and shorter

istances will rapidly reach their destinations and soon they can

hoose new courses and velocities. As they repeat the procedure,

hese other nodes can choose low speeds and far destinations and

hey will also remain confined to slow journeys which dominate

he average node speed, gradually taking the network to stagna-

ion. 

Note that it is possible to have the RWP stable as long as

 min > > 0 in simulations in order to quickly attain a stationary

egime, because the smaller V min , the longer the decay period until

he steady state is achieved [6,43] . On the other hand, a mobil-

ty model must be flexible and robust regardless the values of its

arameters. Also, the solution of setting V min > > 0 to avoid the

onsistent speed decay restricts the use of the RWP model, e.g.,

reventing its utilization in testing scenarios where node velocity

an be very low. Consequently, the following analysis will investi-

ate the RWP behavior for V min → 0. 

It was observed in [6] that pause times lead to fluctuations in

he beginning of simulations; however, such effect is gradually re-

uced and the average node speed decaying is not consequence of

ause time. Thus, we are going to assume zero pause time in our

nalysis. Accordingly, we propose the following BETA RWP model

o perform the steady state investigation. 

The destination of a node is uniformly chosen from a circle of

adius R max centered at the current location of the node. Therefore,

he cumulative density function of the travel distance R for this

ode can be obtained by 

 (R ≤ r) = 

∫ 2 π

0 

∫ r 

0 

1 

πR 

2 
max 

r ′ dr ′ dθ = 

r 2 

R 

2 
max 

, 0 ≤ r ≤ R max . (6)

he probability density function of the random variable R is 

f R (r) = 

∂P (R ≤ r) 

∂r 
= 

2 r 

R 

2 
max 

. (7)
Please cite this article as: R.T. Silva et al., BETA random waypoint mo
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onsequently, the expected value of R is given by 

[ R ] = 

∫ R max 

0 

r 
2 r 

R 

2 
max 

dr = 

2 

3 

R max . (8)

ssuming that the ensemble average equals time average as t →
 , it can be shown that the time average of the speed ( V ) for a

iven node can be obtained from v (t) in the following way [6] 

 = lim 

T →∞ 

1 

T 

∫ T 

0 

v (t) dt = 

E[ R ] 

E[ S] 
(9)

n which S is the random variable representing the travel time

rom one waypoint to the following waypoint and E [ S ] is its av-

rage. Consequently, V can be taken as the steady state expected

ode speed. 

Since we know E [ R ] from (8) , in order to derive a general ex-

ression for V , we need to obtain E [ S ]. Therefore, the following

evelopment focus on the description of the travel time random

ariable S . Starting from its cumulative density function P ( S ≤ s )

nd by noting that travel time, speed and distance are related by

 = 

R 
V , we can use Fig. 1 considering three possible cases s ≥ R max 

V min 
,

R max 
V max 

≤ s ≤ R max 
V min 

, and 0 ≤ s ≤ R max 
V max 

. Also, from Assumption 1 , R and

 are independent, thus, f R,V (r, v ) = f R (r) · f V (v ) . We now consider

ach possible case in detail. 

( i ) For the case s ≥ R max 
V min 

(i.e., R max ≤ V min s ), we have 

 (S ≤ s ) = 

∫ V max 

V min 

∫ R max 

0 

f R,V (r, v ) d rd v = 1 . (10)

( ii ) For the case R max 
V max 

≤ s ≤ R max 
V min 

(i.e., V min s ≤ R max ≤ V max s ), we

btain 

 (S ≤ s ) = 

∫ R max 
s 

V min 

∫ v s 

0 

f R,V (r, v ) d rd v + 

∫ V max 

R max 
s 

∫ R max 

0 

f R,V (r, v ) d rd v 

= 

∫ R max 
s 

V min 

∫ v s 

0 

f V (v ) f R (r) d rd v + 

∫ V max 

R max 
s 

∫ R max 

0 

f V (v ) f R (r) d rd v 

= 

∫ R max 
s 

V min 

f V (v ) dv 
∫ v s 

0 

f R (r) dr + 

∫ V max 

R max 
s 

f V (v ) dv 
∫ R max 

0 

f R (r) dr. 

(11) 

y noting that 

 v s 

0 

f R (r) d r = 

∫ v s 

0 

2 r 

R 

2 
max 

d r = 

v 2 

R 

2 
max 

s 2 (12)

nd 

 R max 

0 

f R (r) d r = 

∫ R max 

0 

2 r 

R 

2 
d r = 1 (13)
max 

bility model for wireless network simulation, Ad Hoc Networks 
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we rewrite (11) as 

P (S ≤ s ) = 

s 2 

R 

2 
max 

∫ R max 
s 

V min 

v 2 f V (v ) dv ︸ ︷︷ ︸ 
H 1 

+ 

∫ V max 

R max 
s 

f V (v ) dv ︸ ︷︷ ︸ 
H 2 

(14)

where 

H 1 = 

s 2 

R 

2 
max 

∫ R max 
s 

V min 

v 2 f V (v ) dv (15)

and 

H 2 = 

∫ V max 

R max 
s 

f V (v ) dv . (16)

Substituting (4) into H 1 , it follows that 

H 1 = s 2 
α−1 ∑ 

a =0 

β−1 ∑ 

b=0 

(
α−1 

a 

)(
β−1 

b 

) (−1) β+ a −b−1 V a 
min 

V b max 

∫ R max 
s 

V min 

v α+ β−a −b dv 

R 2 max B (α,β) (V max −V min ) α+ β−1 

= 

α−1 ∑ 

a =0 

β−1 ∑ 

b=0 

(
α − 1 

a 

)(
β − 1 

b 

)
(−1) β+ a −b−1 V a 

min 
V b max 

R 2 max B (α,β) (V max −V min ) α+ β−1 

×
( 

R 

α+ β−a −b+1 
max s 1 −α−β+ a + b − V 

α+ β−a −b+1 

min 
s 2 

α + β − a − b + 1 

) 

. (17)

Analogously, for H 2 we obtain 

H 2 = 

α−1 ∑ 

a =0 

β−1 ∑ 

b=0 

(
α − 1 

a 

)(
β − 1 

b 

)
(−1) β+ a −b−1 V a 

min 
V b max 

B (α,β) (V max −V min ) α+ β−1 

×
(

V 

α+ β−a −b−1 
max − R 

α+ β−a −b−1 
max s 1 −α−β+ a + b 

α + β − a − b − 1 

)
. (18)

Finally, substituting the expressions for H 1 and H 2 into (14) and

rearranging terms we arrive at 

P (S ≤ s ) = 

α−1 ∑ 

a =0 

β−1 ∑ 

b=0 

(
α − 1 

a 

)(
β − 1 

b 

)
(−1) β+ a −b−1 V a 

min 
V b max 

B (α,β) (V max −V min ) α+ β−1 

×
[ (

s 
R max 

)2 

( (
R max 

s 

)α+ β−a −b+1 − V 

α+ β−a −b+1 

min 

α + β − a − b + 1 

) 

+ 

(
V 

α+ β−a −b−1 
max −R 

α+ β−a −b−1 
max s 1 −α−β+ a + b 

α+ β−a −b−1 

)] 
= 

α−1 ∑ 

a =0 

β−1 ∑ 

b=0 

(
α − 1 

a 

)(
β − 1 

b 

)
(−1) β+ a −b−1 V a 

min 
V b max 

B (α,β) (V max −V min ) α+ β−1 

[ 
V 

α+ β−a −b−1 
max 

α+ β−a −b−1 

+ 

(
R 

α+ β−a −b 
max 

α+ β−a −b+1 
− R 

α+ β−a −b−1 
max 

α+ β−a −b−1 

)
s 1 −α−β+ a + b −

(
V 

α+ β−a −b+1 

min 

R 2 max (α+ β−a −b+1) 
s 2 

)] 
. 

(19)

( iii ) For the case 0 ≤ s ≤ R max 
V max 

, (i.e., 0 ≤ sV max ≤ R max ), it follows

that 

P (S ≤ s ) = 

s 2 
∫ V max 

V min 

∑ α−1 
a =0 

∑ β−1 

b=0 ( 
α−1 

a ) ( 
β−1 

b ) (−1) β+ a −b−1 V a 
min 

V b max v α+ β−a −b dv 
R 2 max B (α,β) (V max −V min ) α+ β−1 

= 

∑ α−1 
a =0 

∑ β−1 

b=0 ( 
α−1 

a ) ( 
β−1 

b ) (−1) β+ a −b−1 V a 
min 

V b max 

(
V 
α+ β−a −b+1 
max −V 

α+ β−a −b+1 
min 

α+ β−a −b+1 

)
s 2 

R 2 max B (α,β) (V max −V min ) α+ β−1 . 

(20)

From (10), (19) and (20) and using that the probability density

function can be obtained from the cumulative density function, i.e. ,
Please cite this article as: R.T. Silva et al., BETA random waypoint mo
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f S (s ) = 

∂P(S≤s ) 
∂s 

, we arrive at the following result: 

f S (s ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ α−1 
a =0 

∑ β−1 

b=0 ( 
α−1 

a ) ( 
β−1 

b ) (−1) β+ a −b−1 V a 
min 

V b max 

(
V 
α+ β−a −b+1 
max −V 

α+ β−a −b+1 
min 

α+ β−a −b+1 

)
2 s 

R 2 max B (α,β) (V max −V min ) α+ β−1 , 

for 0 ≤ s ≤ R max 

V max 
;∑ α−1 

a =0 

∑ β−1 

b=0 ( 
α−1 

a ) ( 
β−1 

b ) (−1) β+ a −b−1 V a 
min 

V b max 

B (α,β) (V max −V min ) α+ β−1 

[ (
2 R 

α+ β−a −b−1 
max 

α+ β−a −b+1 

)
s −α−β+ a + b 

−
(

2 sV 
α+ β−a −b+1 

min 

R 2 max (α+ β−a −b+1) 

)] 
, for R max 

V max 
≤ s ≤ R max 

V min 
;

0 , for s ≥ R max 

V max 
. 

(21)

rom the probability density function in (21) , the expected travel

ime is given by 

[ S] = 

∫ ∞ 

0 

s f S (s ) ds 

= 

α−1 ∑ 

a =0 

β−1 ∑ 

b=0 

(
α − 1 

a 

)(
β − 1 

b 

)
(−1) β+ a −b−1 V a 

min 
V b max 

B (α,β) (V max −V min ) α+ β−1 

×
∫ R max 

V min 

R max 
V max 

[ (
2 R 

α+ β−a −b−1 
max 

α+ β−a −b+1 

)
s −α−β+ a + b+1 

(
2 s 2 V 

α+ β−a −b+1 

min 

R 2 max (α+ β−a −b+1) 

)] 
ds 

+ 

α−1 ∑ 

a =0 

β−1 ∑ 

b=0 

(
α − 1 

a 

)(
β − 1 

b 

)
2(−1) β+ a −b−1 V a 

min 
V b max 

R 2 max B (α,β)(V max −V min ) α+ β−1 

×
∫ R max 

V max 

0 

( 

V 

α+ β−a −b+1 
max − V 

α+ β−a −b+1 

min 

α + β − a − b + 1 

) 

s 2 ds. (22)

eveloping the previous equation we arrive at 

[ S] = T 1 + T 2 + T 3 + T 4 (23)

n which the terms T 1 , T 2 , T 3 and T 4 are given, respectively, by 

 1 = 

∑ α−1 
a =0 

∑ β−1 

b=0 ( 
α−1 

a ) ( 
β−1 

b ) 2 R max (−1) β+ a −b−1 V a 
min 

V b max 

(
V 
α+ β−a −b+1 
max −V 

α+ β−a −b+1 
min 

α+ β−a −b+1 

)
3 V 3 max B (α,β)(V max −V min ) α+ β−1 

(24)

 2 = 

α−1 ∑ 

a =0 

β−1 ∑ 

b=0 
α+ β−a −b� =2 

(
α − 1 

a 

)(
β − 1 

b 

)
(−1) β+ a −b−1 V a 

min 
V b max 

B (α,β) (V max −V min ) α+ β−1 

× 2 R max 

(α+ β−a −b+1)(2 −α−β+ a + b) 

(
1 

V 
2 −α−β+ a + b 

min 

− 1 

V 
2 −α−β+ a + b 

max 

)
(25)

 3 = 

2 (−1) α−1 R max V 
α−1 

min 
V 

β−1 
max 

3 B (α,β) (V max −V min ) α+ β−1 ln 

(
V max 

V min 

)
(26)

 4 = 

∑ α−1 
a =0 

∑ β−1 

b=0 ( 
α−1 

a ) ( 
β−1 

b ) 2(−1) β+ a −b−1 V b max R max 

(
V 
α+ β−b+1 
min 

V 3 max 
−V 

α+ β−b−2 

min 

)
3 B (α,β) (V max −V min ) α+ β−1 (α+ β−a −b+1) 

. (27)

he special case α = 1 and β = 1 reduces to the well-known for-

ula for the RWP [6, Eq. (5)] 

[ S] = 

2 R max 

3 (V max − V min ) 
ln 

(
V max 

V min 

)
. 

f we now consider the condition V min → 0 in T 1 , T 2 , T 3 and T 4 
ielding 

lim 

 min → 0 
T 1 = 

2 R max 

3 V max B (α, β) 

β−1 ∑ 

b=0 

(
β − 1 

b 

)
(−1) β−b−1 

α + β − b + 1 

(28)

lim 

 min → 0 
T 2 = 

2 R max 

V max B (α,β) 

∑ β−1 

b=0 

(
β−1 

b 

)
(−1) β−b−1 

(α+ β−b+1)(α+ β−b−2) 
(29)
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Table 1 

V as V min → 0 for several values of α and β . 

α β lim V min → 0 V = V max 
α−1 

β+ α−1 

1 n ≥ 1 0 

n ≥ 2 n − 1 V max 

2 

2 2 V max 
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2 3 V max 
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2 4 V max 
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3 3 V max 
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Fig. 2. Instantaneous average node speed for the BETA RWP mobility model em- 

ploying speed range of (0,20] m/s. 
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lim 

 min → 0 
T 3 = 

{
0 , if α ≥ 2 

∞ , if α = 1 

(30) 

lim 

 min → 0 
T 4 = 

{
0 , if α ≥ 2 

−2 Rmax 
9 B (1 ,β) V max 

, if α = 1 . 
(31) 

his shows that choosing the node velocity from a BETA(1, β) dis-

ribution, E [ S ] → ∞ , as V min → 0, which implies that 

lim 

 min → 0 
V = 

E[ R ] 

E[ S] 
= 0 . (32) 

n this case, the BETA RWP will never achieve steady state, and this

esult agrees with the particular case for BETA(1, 1) distribution,

hat is, the original RWP. 

Hereafter, we consider α ≥ 2 and β ≥ 1. It follows from

23) and (28) and (29) that 

lim 

 min → 0 
E[ S] = lim 

V min → 0 
T 1 + lim 

V min → 0 
T 2 

= 

2 R max 

V max B (α, β) 

β−1 ∑ 

b=0 

(
β − 1 

b 

)
(−1) β−b−1 

α + β − b + 1 

×
(

1 

3 

+ 

1 

α + β − b − 2 

)
= 

2 R max 

3 V max B (α, β) 

β−1 ∑ 

b=0 

(
β − 1 

b 

)
(−1) β−b−1 

α + β − b − 2 

. (33) 

n order to develop (33) we need the following lemma. 

emma 1. Let β ≥ 1 and α ≥ 2 be integers. Then 

β−1 ∑ 

b=0 

(
β − 1 

b 

)
(−1) β−1 −b 

(β − 1) + (α − 1) − b 
= 

�(α − 1)�(β) 

�(α + β − 1) 

= B (α − 1 , β) . (34) 

Proof: See Appendix A . 

Using Lemma 1 in (33) , we get 

lim 

 min → 0 
E[ S] = 

2 R max 

3 V max 

B (α − 1 , β) 

B (α, β) 
(35) 

= 

2 R max 

3 V max 

(α − 2)! �(β) 

(α + β − 2)! 

(α + β − 1)! 

(α − 1)! �(β) 
(36) 

= 

2 R max 

3 V max 

(α + β − 1) 

(α − 1) 
(37) 

hich implies from (8), (9) and (37) that the average node speed

s V min → 0 is given by 

 = V max 
α − 1 

β + α − 1 

. (38) 

hus, the average node speed for the BETA RWP mobility model

hich employs the BETA( α, β) probability density function for ve-

ocity choice (with α ≥ 2) is a function of the parameters V max , α
nd β only, as V min → 0. It is clear that choosing node velocity

rom a BETA (n, n − 1) distribution, for n ≥ 2, the BETA RWP will

lways achieve steady state with V = 

V max 
2 . 

Table 1 shows the steady state average speed for several values

f α and β . Accordingly, if α is set to be one, irrespective of the

alue of β , the final average node speed is zero and agrees with

he original RWP model, confirming analytically the limitation de-

ected by Yoon et al. in [6] . Therefore, in order to avoid the in-

tantaneous average node speed decaying problem one has to set

≥ 2. Also, the result obtained of V = 

V max 
3 for BETA(2,2) agrees

ith [43] . It is possible to observe that for several chosen values
Please cite this article as: R.T. Silva et al., BETA random waypoint mo
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f α and β , V assumes values that demonstrate the stability of the

ETA RWP model when V min → 0, that is, V � = 0 . 

Fig. 2 illustrates the behavior of the instantaneous average node

peed for the BETA RWP model using the range of (0,20] me-

ers per second (m/s) with zero pause time for a rectangular area

ith dimensions 1500 m × 500 m containing 50 mobile nodes.

he presented curves are averaged over 30 distinct scenarios. It

s clear that for the cases of BETA(1,1) and BETA(1,2) the average

peed gradually decays with time, whereas the cases BETA(2,1) and

ETA(2,2) the average speed stabilizes around 10 m/s and 6.67 m/s,

espectively, as expected from (38) . 

. Network performance evaluation 

To verify the impact of the BETA RWP mobility model, we sim-

lated several distinct scenarios, each using different BETA param-

ters for node velocity. The distributions employed are the BETA(1,

), BETA(1, 2), BETA(2, 1) and BETA(2, 2). The ns-2 network simu-

ator [ 47 ] is used for our simulations. The simulation environment

onsists of a rectangle measuring 1500 m × 500 m, containing 50

odes employing speed range of (0,20] m/s. Simulation runs are

0 0 0 s long, and results are averaged over 30 runs, and calculated

t the end of each interval of 100 s, for each scenario. The data

raffic pattern employed is CBR (constant bit rate), with rates of

our packets per second, and packet lengths of 64 bytes. For rout-

ng, ad hoc on-demand distance vector routing protocol (AODV)

s employed [17] . Our purpose is to verify network performance

tabilization over several parameters of the BETA distribution. We

nvestigate two important network metrics: dropped data packets

nd routing overhead packets. 

• Dropped data packets: this performance measure quantifies dis-

carded data packets by routers along the path to destinations

due to errors. Fig. 3 illustrates the behaviour of dropped data
bility model for wireless network simulation, Ad Hoc Networks 
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packets. It is clear the influence of the instantaneous aver-

age speed decaying over the curves for the case of the orig-

inal RWP BETA(1,1) and the BETA(1,2), i.e., the unstable cases

which present dropped data packets decaying as simulation

time increases. However, in the stable cases of BETA(2,1) and

BETA(2,2), the number of dropped data packets stabilizes as

simulation time increases as consequence of instantaneous av-

erage speed reaching steady state. 

• Number of routing overhead packets: this performance met-

ric quantifies the amount of control routing packets used by

the AODV protocol to create and update routes in the network.

Fig. 4 illustrates the behaviour of overhead packets as a func-

tion of simulation time. It is also clear the influence from in-

stantaneous average speed decaying over the overhead packets

for the cases of the BETA(1,1) and the BETA(1,2), while the met-

ric attains stability for the cases of BETA(2,1) and BETA(2,2). 

In all simulated cases, it is clear the influence of the behavior of

the instantaneous average speed. Therefore, it is very important to

employ a mobility model that attains steady state regime as simu-

lation time evolves. Our investigation indicates that the BETA( α, β)

RWP mobility model can be used for simulation of wireless mobile

networks with any speed range (including V min = 0 ), as long as α
≥ 2. 

Another important observation from all figures in this paper

and also from the figures in [6] and [43] is that the investigated

network metrics keeps their relatives values as a function of the

average node speed. 
Please cite this article as: R.T. Silva et al., BETA random waypoint mo
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. Conclusion 

This paper proposed and analyzed a modification that stabi-

izes the random waypoint mobility model used to evaluate per-

ormance of mobile wireless networks. We showed that the use

f a BETA( α, β) distribution for choosing node speed, results a

teady state expected node speed equals to V max 
α−1 

β+ α−1 
as V min →

. Therefore, by choosing α ≥ 2, it avoids the gradual decaying

ith time of the instantaneous average node speed when the mini-

um velocity in the choice range is set to zero. On the other hand,

f α = 1 , irrespective of the value of β , the instantaneous average

peed decays to zero. Analytical and simulation results were pre-

ented which showed the impact of instantaneous average node

peed in network performance metrics. Beyond providing a RWP

obility model spanning a multitude of speed distributions, our

nvestigation corroborates the importance of using a stable mobil-

ty model when communication protocols are under evaluation in

ireless networks. 

Future work can extend our analysis to consider changing the

ETA Random Waypoint model to address the node concentra-

ion issue, as well as to investigate its behavior in other network

opologies like circle, torus and sphere. 
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ppendix A. Proof of Lemma 1 

The proof of Lemma 1 is by induction on β . For β = 1 , then

 (α − 1 , 1) = 1 / (α − 1) , and (34) holds. We suppose next that the

laim is satisfied for some β ≥ 1. Using the relation 

β

b 

)
= 

(
β − 1 

b 

)
+ 

(
β − 1 

b − 1 

)
e write the left-hand side of (34) for β + 1 as 

β∑ 

b=0 

(
β

b 

)
(−1) β−b 

β + (α − 1) − b 

= 

β−1 ∑ 

b=0 

(
β − 1 

b 

)
(−1) β−b 

β + (α − 1) − b 
+ 

β∑ 

b=1 

(
β − 1 

b − 1 

)
(−1) β−b 

β + (α − 1) − b

= −
β−1 ∑ 

b=0 

(
β − 1 

b 

)
(−1) β−1 −b 

(β − 1) + α − b 
+ 

β∑ 

b=1 

(
β − 1 

b − 1 

)
(−1) β−1 −(b−1) 

(β − 1) + (α − 1) − (b − 1) 

= −
β−1 ∑ 

b=0 

(
β − 1 

b 

)
(−1) β−1 −b 

(β − 1) + α − b 
+ 

β−1 ∑ 

b=0 

(
β − 1 

b 

)
(−1) β−1 −b 

(β − 1) + (α − 1) − b 
. 

sing the inductive hypothesis 

β
 

b=0 

(
β

b 

)
(−1) β−b 

β + (α − 1) − b 
= −B (α, β) + B (α − 1 , β) 

= −�(α)�(β) 

�(α + β) 
+ 

�(α − 1)�(β) 

�(α + β − 1) 
. 
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[  
ince �(x + 1) = x �(x ) , we get 

β
 

b=0 

(
β

b 

)
(−1) β−b 

β + (α − 1) − b 
= − (α − 1)�(α − 1)�(β) 

�(α + β) 

+ 

(α + β − 1)�(α − 1)�(β) 

�(α + β) 

= 

�(α − 1) β�(β) 

�(α + β) 

= 

�(α − 1)�(β + 1) 

�(α + β) 
. 

hus, Eq. (34) is satisfied for β + 1 . 
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