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Abstract

Wireless networks are more and more envisioned to be used as a support
for critical safety applications. It is notably the case for large scale wireless
networks such as vehicular networks, for which safety is one of the main mo-
tivations for their development. In this context, the system designer must be
able to predict bounds on Quality of Service (QoS) parameters such as delay
and delivery ratio. Nevertheless, obtaining strict bounds on such parameters
is often difficult because of the unpredictability of the environment (electro-
magnetic interference, user mobility, etc). Even when the environment is
well characterized, the derivation of the bound might be impractical because
of the complexity of the models and techniques (the combinatorial explosion
problem of model checking is an example) or the bound derived might not be
tight (for example with Network Calculus). On the other hand, classic net-
work performance evaluation techniques (stochastic modeling, discrete event
simulation, experimentation, etc) usually focus on parameter averages and
give very few insights on the extreme deviations from these averages which
are of paramount importance for critical applications.

In this paper, we propose to use the Extreme Value Theory (EVT) in
order to investigate worst case delays in wireless networks. EVT is a statis-
tical tool which allows to make predictions on extreme deviations from the
average. These statistical predictions can be made based on data gathered
from simulation or experimentation. We first briefly introduce the technique.
Then we discuss its application to the study of delays in wireless networks
and we illustrate our discussion with a case study: safety applications in
vehicular networks.
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1. Introduction

Real time critical applications are applications which have strong timing
requirements. If they miss a deadline it can have dramatic consequences on
the environment or even on human lives. More and more of these critical ap-
plications are now distributed and thus rely on networks. One example, that
will be considered through this paper, is safety applications for connected
cars. These applications are one of the main motivation for the deployment
of Vehicular Adhoc NETworks (VANETs) [1] for cars. These road safety
applications mainly aim at providing an assistance to the driver in order to
avoid car accidents and are described in more details in section 5.1. Such crit-
ical applications have strong timing requirements. It is thus of paramount
importance to design network protocols which can provide bounded worst
case delays. But more importantly, the bounds have to be known and have
to comply with the requirements of the target application.

Unfortunately, most of the performance evaluation techniques of the lit-
erature such as stochastic models, simulation and experimentation focus on
parameter averages [2] and give very few insights on extreme cases. To ad-
dress this issue, formal methods have been developed specifically to study
real-time critical systems [3] [4]. These methods aim at deriving bounds on
the response time of the system and prove that the system will never miss a
deadline. Nonetheless, many problems may arise when using these methods.
First, it is often difficult to define and predict the behavior of the system
because it may depend on complex probabilistic environmental events. For
example, a packet may be lost because of unexpected electromagnetic inter-
ferences or mobility. Most of the classic formal methods of the literature
do not allow to model efficiently this kind of events [3] [4]. Even when it is
possible to handle such probabilistic events, formal methods allow to prove
properties only on a model of the system. The level of details of the model
is often limited because if it is too complex, the use of formal methods can
become impractical or even impossible. It is the case, for example, for the
model checking [3] technique whose combinatorial explosion is a well known
limitation (this issue is evoked in Section 2).

In this paper, we propose to estimate the probabilistic worst case delay
in a network using statistical tools. The probabilistic worst case delay is
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defined as the probability that the maximum delay is less than a given value
(the delay can be a packet end-to-end delay, an inter packet delay, a one-hop
delay, etc.). The main advantage of the statistical approach is that it allows
to evaluate directly the real studied system (or a highly detailed simulation
model) instead of working on an abstracted theoretical model. Moreover, the
obtained probabilistic worst case delay has good chances to be less pessimistic
than the worst case derived using classic formal methods as it is the case for
worst case execution times in the literature [5].

The statistical method used in this paper is Extreme Value Theory (EVT)
[6]. It is presented in details in sections 3 and 4. The method can be summed
up in the three following steps:

1. Produce/Gather data (by simulation or experimentation).

2. Extract extreme values from the data (maxima or values over a thresh-
old).

3. Fit extracted values to a probability distribution predicted by the the-
ory.

In this paper, in order to demonstrate the effectiveness of the method in
the context of probabilistic worst case delay estimation in networks, we apply
EVT to the case of VANETs safety applications. This choice is motivated by
the fact that classic formal methods have difficulties to handle such networks
because of the scale and the high mobility of the network and the error-prone
wireless medium. We gather the data from extensive simulation of a large
scale realistic urban vehicular network.

The key contributions of this paper can be summed up as follows. This
work represents, up to our knowledge, the first attempt to apply EVT to
the study of probabilistic worst case delays in wireless networks. Moreover,
we simulate the vehicular network safety applications using a realistic large
scale mobility trace [7]. This paper is with [8] one of the first evaluation
of vehicular critical applications using the 802.11p [9] standard in a realistic
large scale urban environment ([8] focuses on the probability of delivery, and
we focus on the probabilistic worst case delay).

We can notice that even if we consider VANETs safety applications in this
paper, the method and discussions we develop are in principle applicable to
any computer network.

This paper is an extension our previous work [10] and explore in more
details the EVT techniques and its applicability to the study of delays wireless
networks. We notably add the description and the application of a second
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theorem of EVT and we study the parametrization of the method, whereas
[10] is more focused on the application.

The remainder of the paper is organized as follows. In section 2, the
related work is presented and commented. In section 3, we introduce EVT’s
main theorems. Section 4 consists in a discussion on the application of EVT
to the study of large delays in wireless networks. In section 5, we introduce
safety applications for VANETs, we present the simulation setup and we
apply EVT to study the delays of vehicular networks safety applications.
Section 6 provides the conclusion remarks and lists future works.

2. Related work

The scientific literature concerning network performance analysis focuses
mostly on parameter averages [2]. Indeed, performance evaluation techniques
such as theoretical modeling (notably stochastic models), simulation and
experimentation mainly deal with throughput, loss rate (or delivery ratio)
and delay averages metrics. Nevertheless, for critical applications, averages
are not sufficient [11]. In the case of critical real-time applications, if a packet
delay deviates from the average and misses a deadline, the consequences
on the environment or even on human lives can be catastrophic [11]. To
deal with this issue, over the last decades, the real-time systems research
community has developed methods and models to formally derive worst case
delays and formally prove that a system respects timing constraints.

The main formal methods used to check timing behaviors of systems
and derive the worst case response time are theorem proving and model
checking [12]. Theorem proving consists in expressing the system behavior
as mathematical formulas and proving that the system satisfies a desired
set of properties. Process algebras [13], for instance, fall into this category.
In the case of computer networks, Network Calculus [4] provides a powerful
formalism to derive worst case end-to-end delays. Nevertheless, it suffers
from some limitations: the derived bound can be pessimistic which leads
to design oversized systems. Moreover, Network Calculus is not adapted to
dynamic networks: it cannot easily handle load balancing or mobility for
instance [4].

On the other hand, timed model checking proposes a method to automat-
ically and exhaustively explore all the behaviors (executions) of the modeled
system in order to assess that its timing behavior is correct (that it respects
a set of properties) [3]. As this method explores all the possible behaviors of
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the system, the exact worst case delay can be found. Nevertheless, the main
drawback of this method is what is called the combinatorial explosion prob-
lem: the number of possible behaviors of the system increases exponentially
with the number of variables and clocks [3]. This problem is the main limita-
tion of the technique, in the literature [14] [15] the model checking technique
allows to verify timing properties on wireless networks composed of at most
a dozen of nodes which is not sufficient for most of modern networks.

In the literature, most of the formal verifications of real-time systems
rely on predictability of the behavior of the system. Nevertheless, in reality,
unexpected errors such as packet losses can occur. In order to handle this
issue, probabilistic formal methods have been proposed. Probabilistic model
checking [16] allows to assess that a system model respect some probabilistic
properties (for example, ”with probability higher than 0.9995 the end-to-end
delay is lower than 1 second”). This method have been applied to network
protocol verification [15], but suffers from the same scalability problem as
classic timed model checking. Network Calculus also possesses its probabilis-
tic or stochastic counterpart [17] [18]. It allows to express stochastic delay
bounds instead of deterministic ones. Nevertheless, it sufferers from the same
drawbacks as the classic formalism (bounds might not be tight and it lacks
a representation of the network dynamic).

To sum up, the presented methods to derive worst case delays in networks
either do not scale up or do not provide tight bounds. In the past few
years, the real-time computing community have made the same observation
concerning the study of worst-case execution times of programs, and develop
an alternative statistical approach [19] [5] based on EVT [6].

In the literature, EVT has been extensively used in very different contexts:
extreme rainfalls [20], forest fires [21], wind speed [6], financial crashes [22]
studies. EVT has also been used in the context of computer networks for
the estimation of traffic peaks or bursts [23] [24] [25]. In [24], the author
proposes to study the traffic on an Ethernet network in order to predict
traffic peaks. The author shows that the gathered extreme deviations fit
very well to a Generalized Pareto distribution as predicted by the theory. In
another study [23], the authors apply EVT to the study of traffic throughput
in wireless networks and show that the generalized EVT distribution is a
better match for large deviation prediction than exponential, gamma or log-
normal distributions. In [25] the authors fit Ethernet traffic throughput data
to a Weibull distribution (also predicted by EVT). Nevertheless, in these
applications of EVT to network traffic throughput, the authors arbitrary use
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only one of the two theorems of EVT and this choice is not clearly motivated.
Moreover, the authors of these works do not focus on the study of large delays,
but only on throughput.

Another interesting reference on the use of EVT in a networking context
is [26]. The authors focus on opportunistic packet scheduling in wireless net-
works in which the scheduler chooses the node with the best current channel
condition to transmit a packet in order to maximize the throughput. A de-
lay analysis of this scheduling technique is proposed using EVT. The authors
notably derive the packet delay distribution. Nevertheless, this distribution
is not focused on large delays and it is then used to compute a metric based
on the average delay. This metric is included in an alternative scheduling
algorithm proposed by the authors which reduces the average packet delay,
but no insight on large delays is provided.

As we stated previously, in order to find applications of EVT to the study
of large delays in computer science, we have to look to the field of worst
case execution times. Works such as [19] [5] make use of EVT to derive
probabilistic worst case execution times. In this field, the Block Maxima
(BM) is usually used and the data is fitted to the Gumbel distributions
family.

The novelty of our work comes from the fact that we specifically discuss
the application of EVT to delays in wireless networks. In particular, we dis-
cuss the validity of the hypothesis of EVT in this context. On the contrary of
several papers of the literature, we explore the two available EVT techniques
and discuss their pertinence to characterize large delays in networks. Up to
our knowledge, this work represents the first attempt to apply EVT to the
analysis of worst case delays in wireless networks.

3. A brief introduction to EVT

Extreme Value Theory have been developed during the 20th century and
is now a well established tool to study extreme deviations from the average
of a measured phenomenon [6]. EVT is built around two main theorems:
the Fisher-Tippett-Gnedenko theorem and the Pickands-Balkema-de Haan
theorem. As we detail below, the former is interested in the maximum value
of a sequence of variables, whereas the latter focuses on the values of a
sequence which are above a given threshold.

The Fisher-Tippett-Gnedenko theorem states that given {X1, ..., Xn} a
sequence of independent and identically distributed (i.i.d.) variables, the
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distribution of Mn = max{X1, ..., Xn} the variable representing the maxi-
mum value of the sequence converges (for large n) toward the extreme value
distribution characterized by its CDF (Cumulative Distribution Function)
denoted G:

G(x) = e(−1+γx)
1
γ
, with − 1 + γx > 0 (1)

with γ a shape parameter of the distribution.
Depending on γ, G belongs to one of these three distribution families:

• Frechet:
G(x) = e−(x−m

s
)−α , for x > m (2)

if the distribution has a heavy tail;

• Gumbel:

G(x) = e−e
−x−m

s (3)

if the distribution has an exponential tail;

• Weibull
G(x) = e−(−(x−m

s
))α , for x < m (4)

if the distribution has a finite maximum;

with m, s and α the distribution parameters and α > 0 in all cases.
The second theorem of EVT is the Pickands-Balkema-de Haan theorem.

It states that given {X1, ..., Xn} a sequence of i.i.d. variables, the conditional
distribution Fu(y) = P (Xi − u < y|Xi > u) of each random variable Xi of
the sequence converges toward a generalized Pareto distribution for large u:

{
G(y) = 1− (1 + (y−m)γ

s
)−

1
γ , if γ 6= 0

G(y) = 1− e− y−m
s , if γ = 0

(5)

with γ the shape parameter of the generalized Pareto distribution.
Proofs for both of these theorems are provided in [6]. In this paper, we

are interested in how to apply them to the study of large delays in wireless
networks. To each theorem corresponds a method which can be applied to
characterize the distribution of extreme variations of a phenomenon. For
the first theorem the method is the Block Maxima (BM) method in which
the sequence of measured data is divided into blocks and the maximum of
each block is computed. The maxima data is then fitted to one of the three
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previously mentioned distributions. The second theorem of EVT corresponds
to the Peak Over Threshold (POT) method. In this method, a threshold
value is chosen (the choice of the value is a difficult question that will be
discussed in section 5.4.3) and the data points which are above the threshold
are collected and fitted to a generalized Pareto distribution. We can note
that this description of EVT only considers univariate analysis, the interested
reader might refer to [6] for a description of the multivariate case.

In the next section, we discuss how these methods can be applied to the
study of delays in wireless networks.

4. Applying EVT to the study of delays in networks

In this section, we discuss the application of EVT for the study of worst
case delays in wireless networks. By delays, we mean the measure of time
between two events in the network. The delays studied in networks are of
different kinds: end-to-end delays, one-hop delays, round-trip times, inter-
packet delays, etc. In this section we discuss the applicability of EVT to
these measures. In section 5, in order to give an example of the application
of EVT, we will focus on the case of inter-packet delays in VANETs.

4.1. Gathering data

The first element needed in order to apply EVT is a set of data which
is a realization of the sequence of random variables {X1, ..., Xn} mentioned
in the previous section. In our case it will be measures of time. Essentially,
the data set is going to be similar as the one represented in Figure 1(a): a
sequence of delays (y axis) measured at different points in time (x axis). We
can notice that unlike many data sets found in the literature [6] [20], delay
measures are not regularly spaced in time because events in a network may
not occur on a regular basis (notably because of the sporadic nature of data
traffic).

We can also notice that, in this paper, we do not make special assumption
on the data gathering technique. Nevertheless, in the case study section
(section 5), we specifically use discrete-event simulation.

As stated in section 3, in order to apply the EVT theorems the data
variables have to be i.i.d.. We have to remark that this hypothesis may
influence the data gathering strategy. This issue is discussed in the next
subsection and illustrated in section 5.
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4.2. The i.i.d. hypothesis

According to Fisher-Tippett-Gnedenko and the Pickands-Balkema-de Haan
theorems, to apply EVT, the sequence of variable must be independent and
identically distributed. The question then is: can it be the case for delays in
wireless networks?

Let’s first consider two packet flows A and B, following different paths.
Can we assume that their packet end-to-end delays, measured at the des-
tinations, are identically distributed? We would tend to answer yes if the
network environment and measure conditions are the same for both A and B
(same channel conditions, same protocols, fair access to the medium, same
class of traffic, same number of hops, etc). This leads us to believe that to
apply EVT on network delays we have to be careful not to have great dis-
parities in the studied network like very dense and very sparse areas in the
same network.

Concerning the independence hypothesis, we can argue that the hypoth-
esis will hold if we consider networks in a globally stable state. For example
if congestion in the network changes too much over time we will observe
successive delay measures as correlated in subsets of the sequence. On the
contrary if the parameters which influence the network are stable, even if we
have local correlations, the sequence of measured delays in the whole network
should appear as uncorrelated.

These qualitative statements will be experimentally verified in the case
study in Section 5. In the next subsections, we discuss the applications of
the two EVT techniques: BM and POT to delays in networks.

4.3. Block Maxima

As explain in section 3, the Block Maxima method corresponds to the
Fisher-Tippett-Gnedenko theorem. It focuses on the distribution of the max-
ima of sequences of measures. In this section we discuss the practical details
of the application of BM to the study of the maximum delay in wireless
networks.

The principle of the BM technique is to divide the data sequence into
blocks and to take the maximum of each block. In the literature, a block
is often defined as a time interval [6]. Figure 1(b) shows an example of
application of BM: it is the same data set as Figure 1(a) divided into blocks
of size 20 seconds. In each block the maximum is boxed. Then, according to
the Fisher-Tippett-Gnedenko theorem the sequence of block maxima must
converge to an extreme value distribution. The block maxima sequence can
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(a) Raw data

block limit

block maximum

(b) Block Maxima

Threshold

(c) Probability Over Threshold

Figure 1: Illustrative example data set

thus be fitted to one of the Gumbel, Weibull or Frechet distributions. The
type of distribution the data will converge to is difficult to predict [20]. In the
case study section, we thus try the three distributions and conclude thanks
to the statistical tests described in Section 4.5.

We can note that the width of the block is an important parameter: it
must be large enough to contain sufficient data in order to apply the Fisher-
Tippett-Gnedenko theorem (which concerns asymptotic behavior) and not
so large to provide a sufficient number of maximum values to be fitted to a
distribution. Nevertheless, “sufficient amount of data” is not clearly defined
in the literature [5]. In practice, in the case of discrete event simulation,
a scenario can easily be replayed a large number of times with different
random generator seeds in order to produce an important amount of data.
This question will be further discussed in section 5.3 while applying the
BM method to the VANET safety application case study. In particular, we
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investigate how the size of the block influences the parameters of the fitted
distribution and the goodness of fit.

4.4. Peak Over Threshold

The Peak Over Threshold method is an application of the Pickands-
Balkema-de Haan theorem. It focuses on the distribution of a variable know-
ing that this variable takes values greater than a threshold. In order to apply
this method, we have to define a threshold and keep only the values of the
data sequence which are above the threshold as depicted in Figure 1(c).

First, we have to notice that usually the POT method makes a much
more efficient use of the data set [5]. Indeed, in the example of Figure 1(a)
where we had only 6 values to fit with a distribution in the case of BM (see
Figure 1(b)) we now have 22 values for the fitting with the Generalized Pareto
distribution, as can be seen in Figure 1(c). Nevertheless, the choice of the
threshold is not trivial and has not received much attention in the literature
[6]. Similarly to the size of the block for the BM method, the value of the
threshold must be chosen sufficiently high so that the Pickands-Balkema-de
Haan theorem can be applied, but not so high so there is sufficient data points
to be fitted to the Generalized Pareto distribution. This issue is investigated
in Section 5.4 where the influence of the threshold on the parameters of the
fitted distribution and the goodness of fit is investigated.

Moreover, in the POT case, the interpretation of the result is not as
straightforward as the BM case. In the latter case, we directly obtain the
probability distribution of the maximum delay value so it directly provides
us with the probabilistic worst case delay. In the POT case, we obtain the
probability distribution of the delay knowing that the delay already exceeds
a given threshold.

These issues will be investigated and discussed further in section 5.4.

4.5. Fitting technique and statistical test

In the two previous subsections, we have described how to retrieve ex-
treme value data from the original data set. We then have to fit this extreme
value data to one of the extreme value distributions predicted by the extreme
value theorems and assess that the fitted distribution is an acceptable rep-
resentation of the data thanks to a goodness-of-fit statistical test. In this
paper we use the Maximum Likelihood Estimation (MLE) technique to esti-
mate the parameters of the distributions, and the Pearson’s chi-squared test
and quantile-quantile plots to assess the goodness-of-fit [2].
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The MLE method consists in finding the vector of parameters for the fit-
ted distribution (in our case Frechet, Weibull, Gumbel or generalized Pareto)
such that the likelihood function is maximized. In this paper, in order to
solve this optimization problem we use the Nelder-Mead method [27] (more
precisely, the implementation from the scipy.optimize Python package [28]).

Once the optimal distribution parameters are obtained, we have to verify
that the fitted distribution is actually a convincing representation for the
data. For that purpose, we use two tools: the Pearson chi-squared test and
quantile-quantile plots [2]. The former is a statistical test which assesses if
there is a statistical difference between an observed data frequency distribu-
tion and a theoretical distribution. In this paper, we use the implementation
from [29]. We can note that this test’s statistic offers a quality indicator for
the fit which can be used in the case several distributions pass the chi-squared
test as in [20].

The quantile-quantile plot [2] (or Q-Q plot) is a tool which allows to
graphically compare two distributions. In our case, it consists in plotting the
quantiles of the collected data against the quantiles of the fitted distribution.
If the two distributions match, we should obtain the relation x = y. As
described in [6] and [2], the plot consists in a set of points (x, y) where
x ∈ {x1, ..., xn} with {x1, ..., xn} the ordered set of data points (in increasing
order) and y = F−1( i

n+1
) with n the number of data points, i = 1, ..., n and

F−1 the inverse CDF of the fitted distribution. If the Q-Q plot points do not
fall on the x = y line, several interpretations are possible [2]. In our case,
if the points deviate above the x = y for a x given range (the slope of the
curve formed by the point increases), it can be interpreted as an excess of
data points compared to the theoretical distribution in this range. On the
contrary, if the slope decreases, it indicates a lack of data points compared
to theoretical predictions.

5. Case study : inter-beacon delays of VANET safety applications

In this section, we apply the presented method to a concrete case: the
study of the inter-beacon delays of VANET safety applications. We first
introduce the context of safety applications for VANET, we then present the
simulation setup and apply BM and POT methods to the simulation results.
For each method, we discuss the cases in which it could or could not be
applied.
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5.1. Safety applications for VANET

The safety applications are seen as an essential motivation for the de-
ployment of VANETs [1]. The main goal of these applications is to avoid car
crashes. We can cite few examples of safety applications [30]:

• traffic signal violation which alerts neighbor cars when a user does not
stop at a red traffic light;

• electronic brake which alerts neighbor vehicles when a car performs an
emergency braking;

• on-coming traffic warning which notifies the driver of on-coming traffic
during overtaking maneuvers.

For more examples, the interested reader may refer to a report of the U.S.
National Highway Traffic Safety Administration [30], which provides a wide
overview and requirements of safety applications, or to Chapter 2 of [1] for
a more concise description.

The main building block for safety applications is the exchange of period-
ical one-hop broadcast messages among neighbor vehicles. These messages
are called beacons or heartbeat messages in the literature and contain at
least information on the cars position, direction and speed [31] [8]. In the ar-
chitecture defined by the ETSI ITS standard [32], these messages are called
Cooperative Awareness Messages (CAM). In the case of the IEEE WAVE
standard [33], they are named Basic Safety Messages (BSM). When receiv-
ing these messages, each car can build a representation of its environment,
analyze the current situation and predict dangerous situations. The period,
latency and scope (or range) of the beacons depend on the requirements of
the application. For example, according to [1] the electronic brake applica-
tion needs a beacon frequency of 10Hz, a maximum latency of 100ms and a
range of 200m to be effective.

In VANETs, these beacon messages are exchanged among cars using Di-
rect Short Range Communications [1]. Both U.S. and European standards
use variants of IEEE 802.11p [9] which is an amendment of the widely used
IEEE 802.11 standard. Since 802.11p is regarded as the standard of choice
for the future deployment of vehicular network, we focus on beaconing using
this standard. The standards (IEEE WAVE and ETSI ITS) define several
communication channels and a unique control channel CCH. The CCH is
envisioned to support the beaconing traffic [1].
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In this context, the vehicles broadcast their safety beacons on a common
channel. The main differences between 802.11 and 802.11p are pointed out in
[9]. The broadcast procedure remains unchanged and is described as follows.
The time is divided into slots. First the sender senses the medium. If it is
free, it transmits the beacon. If it is occupied: it picks a random number N
uniformly in [0, CW ] (with CW the initial contention window value), then
senses the medium and decrements N for each free slot. When N = 0, it
transmits the beacon. We can note that unlike the unicast case, there are no
retransmissions and thus the CW value is not updated [31].

With this procedure, messages can collide and thus the neighbors of a
sender may not receive some of the beacons. Moreover, other messages can
be lost because of the unreliability of the radio links. These message colli-
sions and losses increase the time period between consecutive beacons at the
receiver side. In this case, vehicles may not be able to construct an up-to-
date representation of their environment and prevent efficiently car crashes.
Since, the quality of the environment’s representation depends on the fresh-
ness of the information about the neighbors, the inter-beacon delay is thus a
crucial parameter for critical safety applications. In this paper, we therefore
choose to study the inter-beacon delays in VANETs in a realistic simulation
environment which is described in the next subsection.

5.2. Production of the data : the simulation setup

There exist many studies [1] which focus on beacon messages for critical
applications. The aim of the one we develop in this paper is twofold: it
allows to show the applicability and usefulness of the EVT approach for the
study of delays in wireless networks, and it allows to reproduce results of the
literature [1] [31] [34] [8] [35] (notably the fact that 802.11 is not adapted for
reliable beaconing) about beaconing in VANETs with 802.11 with a realistic
mobility scenario [7].

We use the discrete-event simulator ns2 [36] to perform the simulations,
the main simulation parameters are described in Table 1. The simulation
setup is actually quite classic, we thus focus on the description of the realistic
mobility trace and how we use it in the simulator.

The mobility trace we use in the simulations is a realistic micro-mobility
trace of the city of Cologne generated by Uppoor and Fiore [7]. The trace
covers a 400 km2 area and a period of 24 hours and contains about 700000
vehicle travels. In this paper, we use the part of the trace available online
which covers the 6am-8am period. In Figure 2, we plot the instantaneous

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

Ty 
(m

) 

x (m) 

Figure 2: Cologne data set

positions of the nodes at 8am. Each point corresponds to a vehicle position
in the coordinate system provided by the trace (the coordinates are expressed
in meters). The trace from 6am to 8am contains more than 300000 different
vehicles, it is thus not possible to simulate the whole scenario in ns2. As we
are interested in local communications (one-hop broadcasts), we decide to
divide the network and restrict the simulations to 1000x1000m squares. The
considered squares are highlighted in Figure 2. They contain different types
of road traffic (fluid traffic, traffic jams, etc) and different vehicle densities.
Even with this space division of the trace, the number of cars in one square
can reach several hundreds and, in some cases, the simulations are either very
long (dozens of hours) or not possible (the memory of the machine used for
the simulation is not sufficient). We thus divide again the trace, but this time
into time intervals. Instead of having 2 hours of simulated time we produce
subset traces of 200 seconds. Each of the time blocks also contains different
traffic conditions, since the traffic changes over time in the trace.

In each simulation, we monitor the inter-beacon delay as well as the
emitter-receiver distance. The beacons are emitted at 10Hz corresponding
to a 0.1s beacon emission period. The inter-beacon delays we are interested
in are measured at the receiver, because it corresponds to the time a node
spends without awareness of its neighbors. Each node computes these delays
for every of its neighbors. A simulation typically provides around 2.5 millions

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

measurements of inter-beacon delays (it varies depending on the number of
cars present during the simulation).

Parameter Value
Bitrate 6 Mbps
Transmission power 10 dBm
Preamble Capture ON
Simulation area 1000x1000 m
Beacon size 400 bytes
MAC and Phy 802.11p
Propagation model Nakagami m=1
Beacon frequency 10Hz

Table 1: Simulation parameters.

In the following sections we detail how the simulations are run and the
data processed in order to extract the inputs needed by the BM and POT
techniques. We apply both techniques and discuss their pros and cons.

5.3. Block Maxima

In this subsection, we apply the BM method to study the maximum inter-
beacon delay distribution in VANETs.

5.3.1. Data set

For the BM technique, we need to divide the data into blocks and re-
trieve the maximum of each block. We choose to use three different ways of
producing the data which is then fitted to EVT distributions:

1. The first one consists in taking the maximum of each block of 200
seconds (corresponding to one run of the simulator) for the whole trace
duration and all the highlighted squares in Figure 2.

2. In the second one we take only one square and one portion of time and
re-run the simulation for that particular square and time block several
times.

3. The third case is the same as the second but we change the order of
the beacon start of the nodes at each run (in the second case, the order
of beacon start dates is generated randomly once and the same order
is repeated in every simulation).
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(a) Histogram of the maximum inter-beacon
delays

(b) Q-Q plot: data against Frechet distribu-
tion

(c) Q-Q plot: data against Gumbel distribu-
tion

(d) Q-Q plot: data against Weibull distribu-
tion

Figure 3: Results for all the squares and blocks and 500m range

These different setups allow us to understand how disparities in the sim-
ulation data affects the applicability of the BM method. Indeed, in the first
case, the data collected comes from various situations in terms of car traffic
amount, network density, etc. Whereas in the two last cases the blocks are
more similar to one another (in the second data set there are more correla-
tions between the runs than in the third data set because the beacon start
dates are the same).

For setup 1, we run simulations for 13 successive blocks of 200 seconds for
each of the 12 considered squares. We take the maximum inter-beacon delay
(over around 2.5 million values) for each run and thus obtain 156 values. For
setup 2 and 3 we run 300 simulation of the considered block, so we obtain 300
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maximum values. In the results presented in the following sections, we only
consider the receivers in a 500 meters range from the sender. Even though
longer communication ranges are observed given the simulation parameters
(see Table 1), we choose to focus on the delay of beacons received from
neighbors less than 500 meters away which are the more relevant for safety
applications [1]. We thus filter out inter-beacon delays for ranges greater than
500 meters from the simulation results. We also investigate the maximum
inter-beacon delay distributions for shorter than 500 meters ranges.

(a) Histogram of the maximum inter-beacon
delays

(b) Q-Q plot: data against Frechet distribu-
tion

Figure 4: Results for one square during 200 seconds

5.3.2. Maximum inter-beacon delay distribution

Figure 3(a) is a histogram representation of the maximum delays for the
first data set. First, we have to note that the measured maximum inter-
beacon delays are very large compared to the inter-beacon emission period
(0.1 seconds), but we have to keep in mind that these are maximum delays
and each value accounts only for the maximum of 2.5 million delay mea-
surements as explained in the previous section. The study of the simulation
traces shows that these large values are due to two main reasons: the mobil-
ity and the broadcast scheme used. When a node broadcasts its beacon using
802.11p, it cannot detect collisions. Indeed, collisions happen at the level of
the receivers and the sender does not know which of its neighbors will actu-
ally receive the packet and does not wait for acknowledgments in the case of
broadcasting. Moreover, broadcast messages are subject to the hidden termi-
nal problem since the RTS/CTS messages are not used for broadcast. These
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problems have been highlighted several times in the literature [1] [31]. In or-
der to better comprehend the observed long maximum delays, let’s consider
the following scenario: first, a node 1 periodically receives a beacon from one
of its neighbors 2, then another node, node 3 moves in the neighborhood of
1 and the beacons from 3 collides with those of 2 (in the case of the hidden
terminal problem the beacons may constantly collide), then node 3 moves
out of range of node 1 again. In this scenario, when node 3 at last get out of
the range of node 1, it puts an end to the collisions with beacons from node
2. When node 1 receives the first beacons from node 2 after node 3 went out,
the inter-beacon delay is approximately equal to the duration of the presence
of node 3 in the range of node 1. In the Cologne trace case, this delay can
be of the order of tens of seconds as we observe in the simulations results.
Even if these scenarios are very rare, they have to be taken into account in
the scope of critical applications such as road safety applications.

Let’s now focus on the fitting of the data of the first data set to the
different extreme value distribution families. Figures 3(b), 3(c) and 3(d) re-
spectively represent the Q-Q plots of the fitted Frechet, Gumbel and Weibull
distributions (fitting has been realized using the MLE method described in
section 4). First we observe that none of the distribution fits well to the data.
Indeed, none of the graphs show a x = y curve. Nevertheless, we remark that
in the Frechet case the curve is piecewise linear which seems to indicate that
there are linear relations between the data quantiles and the fitted Frechet
distribution quantiles. In the case of the fitted Weibull distribution, we ob-
serve that for x and y lesser than 60, the points are approximately on the
x = y curve.

The fact that the Q-Q plots are piecewise, seems to indicate that actual
maximum inter-delay distribution is multimodal. In fact, from the simula-
tion data, we observe that the different modes correspond to different areas
(squares) of the network and different time periods. We conclude that the
EVT hypothesis which states that the set of inter-beacon delays are identi-
cally distributed does not hold for this data set and thus it is not possible
to apply EVT. As a matter of fact, the results of the chi squared tests for
all three EVT distributions for this data set are negative as shown in Table
2 (the tests are performed with a 0.05 significance level). We can add that
these observations holds for shorter ranges as well. For instance, we also
observe multimodal histograms when considering only beacons with a range
shorter than 300 meters.

Figures 4(a) and 4(b) respectively depicts the frequency plot of the inter-
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(a) Histogram of the maximum inter-beacon
delays

(b) Q-Q plot: data against Frechet distribu-
tion

Figure 5: Results for one square during 200 seconds with random beacon start at each run

Data set 1 Data set 2 Data set 3
Frechet × X X
Gumbel × × X
Weibull × × X

Table 2: Chi-Squared test

beacon delays with the expected frequencies from the fitted Frechet distri-
bution and the Q-Q plot of the data against the fitted distribution for the
second data set. As stated in section 5.3.1, this set consists of one square and
one portion of 200 seconds run 300 times. The chosen square is defined as
x ∈ [11000, 12000] and y ∈ [11000, 12000] (cf. Figure 2) and the considered
time block is from 1200 to 1400 seconds of the original trace. In this case, as
summed up in Table 2, only the fitted Frechet distribution successfully passes
the Pearson chi squared test. The Q-Q plot (Figure 4(b)) shows that the fit
is good for the lowest values and of a lower quality for the highest values.
We can also still discern at least two modes in the frequency distribution in
Figure 4(a) (also visible in Figure 4(b), because the points lie over the x = y
curve for x < 15 and then under until approximately x = 18).

Figures 5(a) and 5(b) present the results for the third simulation setup
(the third data set): it is the same as the previous (one square for one 200
second interval run multiple times) but the nodes are starting their beacon
emission at different dates in each simulation. The starting dates are in
fact uniformly distributed in the first second of the simulation. The results
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presented in Table 2 indicate that for this data set, all three fitted EVT
distributions pass the chi squared test. Figure 5(a) depicts the frequency
plot of the inter-beacon delays with the expected frequencies from the three
EVT distribution. In Figure 5(b), we present only the Q-Q plot for the fitted
Frechet distribution because even if all the distributions pass the chi squared
test, the Frechet distribution is the best fit (the one with the lowest test
statistic). In this Q-Q plot, we observe, as in the last, that the fit is good for
the lower values and less good for higher values. Nevertheless, for this data
set, we do not observe multimodal tendency which seems to indicate that the
identically distributed hypothesis holds.

Figure 6: CDF for different beacon ranges

All the results we have presented so far are for a 500 meters range: we
compute the inter-beacon delays for receivers within 500 meters of the sender.
Nevertheless, for most of critical safety applications, the range of beacon
emission can be much lower [30]. In Figure 6, we plot the CDFs of fitted
Frechet distribution for different ranges. The CDF of the maximum delay
express the probability that the maximum delay is under a given value. It
corresponds to the probabilistic worst case delay. Thanks to this probabilistic
worst case delay, the system designer can state that, for example, “the prob-
ability that the maximum inter-bacon delay in a 100 meters range around
the sender is less than 5 seconds is 0.9995”. Whether this probabilistic delay
bound is sufficient or not depends on the considered application. In Figure 6,
we can notice that the CDF for higher ranges is lower. This means that the
probability that the maximum delay is over a given value is higher for higher
ranges. This can be explained by two phenomena: the higher probability of
packet loss at longer distances and the hidden terminal problem as explained
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above in this section.

5.3.3. Impact of the block width

As stated in section 4.3, the width of the block from which the maximum
value is extracted can have an impact on the quality of the probabilistic
bound obtained when applying EVT. If it is too narrow, the Fisher-Tippett-
Gnedenko theorem might not be applicable. If it is too wide, not enough
data is available for the fitting with the EVT distributions. Indeed, the
MLE technique requires a sufficient amount of data in order to obtain robust
models. In [37], the author recommend to use at least 100 values for MLE.
In our case, the number of values depends on the block width: for the same
simulation duration, a larger block width involves a smaller set of maximum
values.

Figures 7(a) and 7(b) depict the Q-Q plot of the data against fitted
Frechet distributions respectively for 100 seconds blocks and 400 seconds
blocks. In order to produce the data sets corresponding to these block sizes,
we used data set 3. We divided the 200 seconds block in two for the 100
seconds block and united two 200 seconds blocks for the 400 seconds blocks.
For the 200 seconds blocks, the number of data points (measured delays) is
about 2.5 millions. It is thus half that number for 100 blocks and twice that
number for 400 blocks. The number of extracted maxima is greater when
the block is smaller : in our case, it is 300 values for the 200 blocks, 600 for
the 100 blocks and 150 for the 400 blocks. Following the recommendations
of [37], we did not experiment with larger block width. Figures 7(a) and 7(b)
can be compared with the 200 seconds block case for the third data set in
Figure 5(b). First we have to notice that the 100 seconds and 200 seconds
cases (respectively Figures 7(a) and 5(b)) are very similar: the fit is good for
the first quantiles and less for higher quantiles (we can note that in every
case, the fitted distribution passes the chi squared test). Interestingly, in
Figure 7(b), we observe that the fit is better for 400 seconds blocks. It can
be explained by the fact that the Fisher-Tippett-Gnedenko theorem applies
for large blocks of data (blocks with high number of values). Because the
theorem establishes a convergence to an extreme value distribution when n
goes to infinity, n being the size of the sequence of random variables from
which the maximum is taken.

Figure 7(c) shows the CDF of the fitted Frechet distributions for different
block sizes. We observe that a greater block size produces a higher proba-
bilistic worst case delay: by higher we mean that for a given probability
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(a) Q-Q plot for 100s block size
(data against Frechet distribution)

(b) Q-Q plot for 400s block size
(data against Frechet distribution)

(c) Comparison of the maximum delay
Frechet distributions for different block
sizes

Figure 7: Results for different block sizes

threshold, the delay is greater. For example, if we consider a 0.8 probabil-
ity to obtain a worst case delay under a given value, for the 100 seconds
block case, this value is around 19s and for the 400 seconds block case, it is
around 30s. This means that if the chosen block is too narrow, the obtained
probabilistic worst case delay might be optimistic.

In the following sections, we move to the application of the POT method
to our VANETs simulation results. We then discuss the possible interpreta-
tions and uses for the EVT results for both methods.

5.4. Peak Over threshold

In this section, we apply the POT method to the study of high inter-
beacon delays in VANETs. This method is the application of the Pickands-
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Balkema-de Haan theorem.

5.4.1. Data set

To avoid the applicability problems encountered when applying BM to
the three considered data sets, in the POT case, we use only the third data
set depicted in section 5.3.1 (one square, one time block, simulation ran 300
times). From this data set, we keep only the values which are over a chosen
threshold to fit it to a generalized Pareto distribution.

We first choose the threshold to be 10 seconds. It seems a reasonable
choice since we actually observe values above 10 seconds and that 10 sec-
onds is very high compared to the theoretical inter-beacon delay which is
0.1 second. Then, in section 5.4.3, we change the value of the threshold in
order to observe its effect on the quality of the fit with a generalized Pareto
distribution.

5.4.2. Inter-beacon delay distribution for delays over a threshold

First we have to notice that even if the data fitting process and statistical
test is the same as the BM method, the result given by the fitted distribution
does not have the same interpretation. Indeed, the distribution obtained
from the BM method is the distribution of the maximum delay, whereas the
distribution obtained from the POT method is the distribution of the delay
knowing that this delay is already over a given threshold. This distinction
has already been noticed in section 4.4 and will also be commented in section
5.6.

(a) Histogram of the inter-beacon delays
over 10s

(b) Q-Q plot: data against generalized
Pareto distribution

Figure 8: Results for The POT method with a threshold of 10 seconds
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Figures 8(a) and 8(b) depict respectively, the frequency plot of the data
with the expected frequencies computed from fitted generalized Pareto distri-
bution and the Q-Q plot of the data quantiles against the fitted distribution
data quantiles. In Figure 8(b), we observe that the quantiles of the fitted
generalized Pareto distribution are a very good match for the ones of the
data for values under x = 35, then the fit is of a lesser quality. Nevertheless,
the fitted distribution passes the Pearson chi squared test. The fitted general
Pareto distribution can thus be considered as a good model for the tail of
the inter-beacon delays for this data set.

5.4.3. Impact of the threshold value

(a) Q-Q plot for 15s threshold
(data against generalized Pareto
distribution)

(b) Q-Q plot for 20s threshold
(data against generalized Pareto
distribution)

(c) Comparison of the delay generalized
Pareto distributions for different thresh-
olds

Figure 9: Results for different thresholds
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In this section, we investigate the impact of the threshold value on the
quality of the fit. In this case, the threshold must be high enough for the
Pickands-Balkema-de Haan theorem to be applicable but not too high in
order to have a sufficient amount of data to feed to MLE (at least 100 values,
as mentioned in Section 5.3.3). Figures 9(a) and 9(b) represent respectively
the Q-Q plots of data against the fitted generalized Pareto distribution for
15s and 20s thresholds. First, we have to notice that the higher the threshold
is, the lower the number of data points is. In our case, the number of delays
over 10, 15 and 20 seconds is 2380, 619 and 208 respectively. We do not
use higher thresholds in order to keep the number of values sufficiently high.
Figures 9(a) and 9(b) can be compared to Figure 8(b) which is the Q-Q
plot for a 10s threshold. We observe that the match between the data and
the theoretical generalized Pareto distribution is better when the threshold
increases, especially for high quantiles values (points are closer to the x = y
line).

Figure 9(c) is the plot of the CDFs of fitted generalized Pareto distribu-
tions for different thresholds. We cannot directly compare the distributions
for values under 20 seconds, because it is the value of the highest threshold.
Nevertheless, we observe that the models for higher threshold are more con-
servative because the curves do not cross each others and the CDF for higher
thresholds converge more slowly to one. Since the distributions for higher
thresholds are a better match for the data, we conclude that taking a too
low threshold value can lead to underestimate the probability to observe a
given high delay.

5.5. Comparison of the model with new measurements

Until this point, we have only been interested in the capacity of the EVT
model to represent some gathered data. The natural question then is: how
good the model is to predict new data? In [24], the author fits generalized
Pareto Distribution to a subset of the available data and shows that the fitted
distribution is a good model for the rest of the data set. In this section,
we perform the same experiment but for the BM technique and instead of
dividing the data set, we produce more data to compare to the model.

As we observed in Section 4.3, we can only produce a good quality EVT
model for homogeneous parts of the network. Therefore, in this section, we
compare the theoretical model obtained with the 400 seconds block in Section
5.3.3 with the data from simulation of the same square as data set 3, but
at different times. In order to produce this data, we ran simulation on this
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square at different time intervals of the trace with the same setup as the
previous simulations (cf. Section 5.2). As in Section 5.3.3, we unite two 200
seconds trace intervals in order to get the 400 seconds block.

(a) Q-Q plot: data against Frechet distribu-
tion

(b) Comparison of the theoretical and em-
pirical distributions

Figure 10: Comparison with the following time interval

(a) Q-Q plot: data against Frechet distribu-
tion

(b) Comparison of the theoretical and em-
pirical distributions

Figure 11: Comparison with a later time interval

Figs. 10(a) and 10(b) depict a comparison of the data with the model
for the time interval following the one used to produce data set 3: t ∈
[1400, 1600]. In this interval, the traffic and mobility conditions remains very
similar the ones used obtain the model in Section 4.3 so this model remains
relevant. Indeed, in Fig. 10(a) which represent the Q-Q plot of the Frechet
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model versus the data collected, we observe a good match. Moreover, the
Pearson chi squared test is positive. Fig. 10(b) shows the theoretical and
empirical CDFs. We observe that they are very close and that, in this case,
the model is conservative (the curve of the model is under the empirical
curve).

Figs. 11(a) and 11(b) present the same results, but for a time interval
later in the trace: t ∈ [2000, 2200]. In this later interval, the number of
vehicles is 20% higher than the previous two intervals. We observe in Fig.
11(a) that the match with the model is not good. Nevertheless, the curve
formed by the points is almost linear, which indicates that the distribution
is still Frechet. Fig. 11(b) confirms these conclusions. We also remark, as
expected, that the model is optimistic compared to the data, because the
data is obtained in a denser and thus more loaded network.

In this section, we observe that the model can accurately represent new
data for the same network conditions. We also confirm a limitation of the
EVT models: they are relevant only for a particular network situation. We
can thus ask how we can deal with inhomogeneous networks? As we focus
on extreme delay deviations, a good practice would be to be interested in
the more conservative model (in our case the one obtained from the densest
parts of the network).

5.6. Discussions on the use and interpretation of EVT results

EVT provides powerful tools to study large delays in a realistic situation.
It allows the system designer to check if the actual system (or a very realistic
simulation model) complies with the application requirements. EVT can
also be seen as a complementary approach to formal methods: in the case a
worst case delay has been derived using formal methods, it can be checked
that the EVT probabilistic worst case is compatible with the one provided
by formal methods. Moreover, during the system design process, several
design options (different protocols, different protocol tunings, etc.) can be
tested and their probabilistic worst case delays compared (by comparing the
CDF of the obtained distributions) in order to choose the most suited for the
considered application.

As mentioned previously, both BM and POT methods can be applied to
the study of large delays in wireless networks, but they do not have the same
signification. BM provides the probabilistic worst case delay, whereas POT
provides a probability distribution of the delay knowing that it is already
above a threshold. In the latter case, the probability of the delay to be
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above the threshold has to be known in order to provide the probabilistic
bound on the delays in the network. As stated in section 3, POT provides
P (X−u < y|X > u), thus knowing P (X > u), and thanks to the conditional
probability formula we can compute P (u < X < u + y). Nevertheless,
P (u < X < u+y) is not exactly equivalent to the result provided by the BM
method: BM is about the maximum delay (the worst case), whereas POT is
about all delays (including the maximum).

In sections 5.3 and 5.4 we investigate the impact of the size of the block
and the value of the threshold on the EVT results. We show that if these
values are not chosen high enough, the obtained delay distribution can be
overly optimistic. A too optimistic bound can lead to a system not sufficiently
safe. The size of the block and value of the threshold have thus to be chosen
carefully: high enough so the fit is good (as in Figures 7(b) and 9(b)), but not
too high so there is sufficient data to perform the fitting and the statistical
test.

We can also remark that EVT can provide a probability of extreme de-
viation from the mean even if those deviations are never observed in reality.
Nevertheless, the probability itself depends on the measurements performed
on the observed system. If those measurements are not representative of the
complete behavior of the system, the obtained probabilistic bound can be
too optimistic [38]. The experimentation or simulation conditions have thus
to be carefully chosen [38].

6. Conclusion and future works

This paper aims at studying large delays in wireless networks using the
EVT statistical method. We first discuss the application of EVT to the study
of large delays in networks. We then apply the two techniques provided by
EVT: BM and POT, to the study of inter-beacon delays in VANETs safety
applications. We observe that in the BM case, it is the Frechet distribution
family which fits best the distribution of maximum inter-beacon delays. This
distribution could thus be used as a model of probabilistic worst case in
this context. We also remark that EVT cannot be applied in the case the
measured delays are not identically distributed (as for the first considered
data set). We study the impact of the block size and the threshold value (resp.
for BM and POT method) and observe that to chose too low values can lead
to a too optimistic probabilistic worst case delay and thus to overestimate the
safety of the system. We conclude that EVT is a powerful tool which allows
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to estimate large delays in networks. It can be used as a complementary tool
to formal methods when they fail to provide results or as a way to double
check their results with more realistic system models.

EVT allows to deduce a model of the worst case delay based on data
samples retrieve from simulation or experimentation. The sampling method
is thus of uttermost importance: the sampled executions of the system must
be representative of the whole set of its possible behaviors. If it is not the
case, the EVT results might be biased. In the future, we plan to investigate
the impact of the sampling methods on EVT results.
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professor. His current research interests include MAC and routing in multi-
hop large scale wireless networks (WSNs, Vehicular networks, etc.) with a
special interest in timeliness (real-time properties) and reliability.

34


