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The paper addresses state estimation for clock synchronization in the presence of factors affecting the 

quality of synchronization. Examples are temperature variations and delay asymmetry. These working 

conditions make synchronization a challenging problem in many wireless environments, such as Wire- 

less Sensor Networks or WiFi. Dynamic state estimation is investigated as it is essential to overcome 

non-stationary noises. The two-way timing message exchange synchronization protocol has been taken 

as a reference. No a-priori assumptions are made on the stochastic environments and no temperature 

measurement is executed. The algorithms are unequivocally specified offline, without the need of tuning 

some parameters in dependence of the working conditions. The presented approach reveals to be ro- 

bust to a large set of temperature variations, different delay distributions and levels of asymmetry in the 

transmission path. 
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. Introduction 

Clock Synchronization Protocols (CSPs) have a fundamental role

n many technological contexts in which a common time reference

s required [1] . For example, synchronization is used in Wireless

ensor Networks (WSNs) [2] , localization [3,4] , home automation

5] , industrial networks [6] , traffic scheduling [7,8] , and in a num-

er of other contexts in which actuation and/or sensing must be

ynchronous. The quantities measuring the asynchronism between

he clocks of two nodes in a network are: the offset , i.e., the dif-

erence between the two clocks and the skew , i.e., the normalized

ifference between the Crystal Oscillator (XO) oscillation frequency

nd its nominal frequency. The variable component of the skew is

he drift . Their precise estimation defines the target of the CSP and

hey are jointly optimized [9] . They typically represent the state of

he synchronization problem, when it is formulated under dynamic

tate equations. 

The estimation process may be severely compromised by a

umber of factors. The most important are: the random delays

ffecting the communication path between nodes, including soft-

are or hardware delays inside them, the precision of nodes in

imestamping events, and changes in the environment conditions.
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stimation of offset and skew may be driven by signal process-

ng techniques, which assume a time-fixed state (see, e.g., [10] for

SNs) or by dynamic state tracking, e.g., through Kalman filtering

as an example, see [11] for IEEE 1588 protocol). Addressing time-

arying conditions means to follow instantaneous fluctuations

ue to non-stationary noises, such as temperature variations of

Os [12–14] . 

.1. Background and objectives 

In the present paper, we study how to compensate with a sin-

le technique all the possible factors affecting synchronization. The

dea to analyze and compensate a number of causes together is

ot new. Algorithms derived from machine learning (e.g., neural

etworks, support vector machines, …) are typically exploited to

odel complex processes; in particular, in the case a theoretical

odel is not known or it cannot be parameterized because too

any measurements of the real system are needed for a satis-

actory characterization. The latter is the case of synchronization

rotocols. The oscillation frequency of an XO is influenced by sev-

ral environmental factors: temperature, supply voltage, vibrations,

ge, etc. All these factors, well documented in the scientific liter-

ture [12] , have not the same influence on the behavior of differ-

nt types of XOs, and even the same type of XOs differently reacts

o environmental conditions, depending on the manufacturing pro-

ess. To compensate all these factors, each XO must be experimen-

ally characterized with respect to the physical phenomena that

an modify its behavior. Such a kind of analysis can be performed

http://dx.doi.org/10.1016/j.adhoc.2016.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2016.06.002&domain=pdf
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only during the manufacturing process because XOs are usually

soldered on the mother-board. Physical quantities must then be

sensed at runtime for their relevant compensation. This last step is

not easy or feasible at all; for example, XOs do not usually include

temperature sensors. In this case, the estimation must be derived

by using sensors in the proximity of the XO. On the other hand,

XOs that automatically compensate some external factors exist, but

they are integrated in commercial devices at increasing manufac-

toring costs. The same difficulties in finding a correct model apply

also to other quantities such as the timestamps precision and ac-

curacy, and asymmetric delays. They depend on the hardware, but

in the case of software timestamps also on the interference caused

by other processes executed in the operating system of the node.

For these reasons, we decide to focus on an algorithm that com-

pensates all these aspects together. Delay assymetry is addressed

jointly with temperature variations. 

The algorithm we pursue should be capable to work with min-

imal online adjustment of the parameters, thus avoiding the need

of reconfigurations on the basis of the actual behavior of the

noises. 

Synchronization is formulated as a dynamic state tracking prob-

lem beyond regular LQG hypoteses 3 because temperature measure-

ment noise may not always be Gaussian in practical systems [13–

15] . The inherent optimal estimation filter may be hardly derived

in closed form. This approach typically has consequences in terms

of numerical analysis with complex operations (see, e.g., the Parti-

cle Filtering in [10] ), which are not easily applicable in devices in

which computational power or energy are scarce resources. Since

the investigated suboptimal filter is based upon neural approxima-

tion, the approach may lead to a heavy computational effort in the

offline phase (during which the training of the neural network is

provided), but synchronization corrections are provided online al-

most instantly. 

1.2. Contribution 

The method firstly outlined in [15] for receiver-receiver CSPs

[6] , is now applied in the sender-receiver context, more used in

practice, and under realistic conditions of WSN and WiFi net-

works, including delay asymmetry. Despite the considered CSP

drives delay compensation, we show how no knowledge of delay

is necessary for the used estimation techniques. An enhancement

of the method is proposed to cope with exponentially distributed

delays, a condition not often detectable in practice, but analyzed

in some scientific works [16] . The method provides good general-

ization capabilities to different delays distributions (i.e., Gaussian

and exponential delays). The multi-hop context is also addressed

to limit computational cost and simplify the applicability of the

method. 

1.3. Organization of the paper 

The paper is organized as follows. The next section deals with

the analysis of the state of the art and highlights the position of

the present paper. Section 3 addresses the mathematical formula-

tion of the estimation problem. The subsequent sections enter in

the details of the estimation techniques proposed, including com-

putational and implementation aspects. Section 9 defines the set-

ting of the experiments and Section 10 discusses the results. Con-

clusions and future work are finally outlined at the end of the

paper. 
3 Linear dynamics of the system, quadratic cost function and Gaussian noises. 

m  

t  

p  

c

. Related literature 

.1. State estimation 

Dynamic state estimation for synchronization is an open is-

ue for environments with non-Gaussian and non-stationary noises

13,14] . An example for WSN has been reported in [10] , by intro-

ucing Particle Filtering (PF). Wu et al. [10] shows how addressing

ime-varying conditions may considerably improve the synchro-

ization gain over signal processing techniques. PF is able to adapt

o Gamma distributed delays better than signal processing, which

orks well under Gaussian or exponential delays. PF belongs to the

ptimal Bayesian framework for dynamic state estimation. This is

xactly the research line we want to pursue here, without incur-

ing in the computational burden involved by PF. 

As far as signalling processing techniques are concerned, our

pproach has been compared with [17] , which is a reference tar-

et in this field (see, e.g., [16] ), since it presents a computationally

ight approach, which is also robust to the underlying network de-

ay density function and asymmetry. More refined techniques are

vailable as well, for example, in the presence of exponentially dis-

ributed delays [16] . 

.2. Parameters setting 

Online adaptation may be critical if the statistical parameters

f the noises cannot be known in advance. More specifically, the

ovariance matrix of the noises is typically used as a parameter

f the mentioned algorithms (Kalman [11] , signal processing as

n [16] and Particle Filtering (PF) in [10] ). How parameters set-

ing may be a critical task in Kalman is evidenced by [18] , in

hich practical guidelines are provided. This critical aspect has

een also registered by [14] , in which the parameters of the esti-

ation algorithm are tuned online and by [13] , in which the pa-

ameters of the temperature-skew mapping are supposed to be

nown in advance. Synchronization solutions with self-learning ca-

abilities may be hardly found in the literature. Prez-Solano and

elici-Castell [19] has recently investigated how to adapt the time

indow of linear regression. The approach has been tested in sta-

ionary Gaussian conditions. 

.3. Temperature noise 

Recent works address synchronization in WSNs by overcoming

he temperature noise. In [13] , the thermal drift is removed in ad-

ance, by exploiting the relationship between XO frequency and

he temperature. A multi-model Kalman filter is studied in [14] to

btain the model likelihood for the skew, based on the measured

emperature. The main advantage of the two approaches relies on

he possibility to reduce the sending rate of synchronization mes-

ages, by keeping unchanged the synchronization quality since the

emperature is locally compensated. An ARMAX model is studied

n [20] to compensate temperature and aging effects. An upper

ound of the error is derived in closed-form under Gaussian as-

umptions. The mentioned works rely on a mapping table from

emperatures to clock skews [21] . Xu et al. [21] models the cor-

elation between clock skews and temperature variations through

he least squares method, thus achieving more flexibility, still

elying on temperature measurements. The approach presented

ere does not exploit any measurement of the temperature. Yang

t al. [22] deals with high latency networks by introducing a new

essage exchange in two steps: in the first one the delay is es-

imated and, in the second one, Kalman is applied. The refined

rocedure reveals to be robust to noise, including temperature

hanges. 
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Table 1 

Topics of research in synchronization and state of the art. 

Temp. Asym. Unknown noises Real applic. 

[9] ●
[11] ◦
[13] ◦ ●
[14] ◦
[21] ◦ ● ◦
[17] ◦ ● ●
[19] ●
[15] ● ● ◦
[16] ◦ ●
[18] ◦ ◦
[22] ● ●
[20,24–29] ● ◦ ◦
Present paper ● ● ● ◦
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.4. Asymmetric delays 

Despite [16,17] do not address delay asymmetry explicitly, they

eveal to be robust to several working conditions, including asym-

etry. More recent works address the mitigation of delay asym-

etry explicitly [23–27] . timestamping corrections are provided

o compensate the synchronization error induced by asymme-

ry. [23] requires additional messages in the protocol. Lee et al.

24,25] exploit different kinds of link speed measurements to in-

er the level of asymmetry. As evidenced in [26] , those measure-

ents may be not always sufficient if the internal delays of the

evice have a predominant role. Proper statistical information is

erived from additional link/internal device delays [26] . Intermedi-

te devices typically compensate packet residence time; congestion

f queues may be exploited [27] if this operation is not enabled.

he inherent corrections in [26] may require an accurate setup of

he devices. Hajikhani et al. [28] and Daniel and Jeske [29] ap-

ly the Boot-strap method under the assumption of Gamma and

xponential distributed bias in asymmetry, respectively. A similar

pproach is applied to Pareto distributed delays in [30] . The ro-

ustness of the methods are accurately analyzed with respect to

arameters of the probability distributions. An important advan-

age of [28] consists of the simple calculations executed to derive

he bias estimation. In [27] , the corrections may be sensitive to pa-

ameters changes (e.g., size of the observation window) and an ac-

urate analysis is needed for them. Here, the correction is derived

ithout any additional measurements or knowledge of the device

nd it is applied jointly to the rest of the compensation steps. 

Although in practice the communication channel is sufficiently

ymmetric for many applications, symmetry does not hold for in-

ode latencies. This involves the delay inside the nodes between

he sending/reception of a packet and the acquisition of the rel-

vant timestamp exploited in clock correction. This problem also

pplies to such nodes that acquire the timestamp in hardware,

nd its effect on synchronization quality is clearly amplified if

he network contains heterogeneous nodes. From the viewpoint of

he synchronization protocols, in-node or communication channel

symmetries are indistinguishable and they have exactly the same

onsequence on the achievable synchronization quality. This evi-

ence will be analyzed in detail in Subsection 9.1 , which is based

n data derived from scientific literature and acquired from real

evices. 

.5. Position of the paper 

Table 1 summarizes the discussion presented in this section and

ighlights the contribution of the present paper. A ● mark is as-

igned if the paper exactly addresses the topic of interest. A ◦
ark is assigned if the topic is partially addressed; for example,
 ◦ mark is assigned to temperature countermeasures based on

emperature measurements. As summarized by the table, the ev-

denced topics are partially matched by the current literature. The

able also includes another important topic: the applicability of the

lgorithm in a real context. This pertains computational cost and

ase of implementation and it is archived by algorithms requiring

imple mathematical operations (such as summations, multiplica-

ions); a topical example is the one of [17] or the application of

inear regression [19] . The papers highlighted with a ● mark on

pplicability hardly match the other requirements. The present ap-

roach may require a computational expensive training phase. We

onsider such a training phase the necessary step to achieve a good

ompromise between performance and applicability when adapta-

ion to unknown noises, temperature and asymmetry compensa-

ions are required. Elaborating a countermeasure to those factors

n the basis of samples of the system in a single algorithm is the

opical issue addressed in this work. For this reason the paper is

resented in the table (last row) with all ● marks, except for the

mark on applicability in virtue of the computational complex-

ty of training. Similar considerations may hold for the use of the

east square method of [21] or for the multi-model Kalman filter in

14] and Particle Filtering in [10] . Another point of strength of the

resent work is the performance metric used (the 99.9 percentile

f the synchronization error), which is even more stringent than

he 90% and 92% confidence intervals of average absolute error of

31] and [21] , respectively. 

. Problem formulation 

.1. The two-way timing message exchange 

We are mostly considering WSN and WiFi networks by focusing

n pairwise synchronization (synchronization between a pair of

eighboring nodes) rather than network-wide synchronization (hi-

rarchical pairwise synchronization) [10] ; the network-wide model

s a generalization of the pairwise model as outlined in [16] . We

ake the two-way timing message exchange mechanism as a refer-

nce. This basic synchronization scheme is typical of many sender-

eceiver CSPs, such as, e.g., the Timing-sync Protocol for Sensor Net-

orks (TPSN) [32] and the timing measurement mechanism defined

n the recent IEEE 802.11–2012 specification of WiFi [33] . We con-

ider two nodes, called sender and receiver , which periodically take

nd exchange timestamps of their internal clocks. The sender is

he one starting the exchange that consists of 3 packets. On send-

ng and reception of the first 2 packets, 4 timestamps are acquired,

enoted by t 1 , t 2 , t 3 , t 4 (see Fig. 1 , in which the timestamps are re-

orted in bold ). t 1 is the sending time of a synchronization packet

rom the sender to the receiver (under the notion of time of the

ender). t 2 is the time of the receiving of the packet at the receiver

nd t 3 is the time of the sending of the response synchronization

acket from the receiver to the sender. Both t 2 and t 3 are defined

nder the notion of time of the receiver. The last packet (from the

eceiver to the sender) includes the values of t 2 and t 3 . Finally, t 4 
s the time of the receiving of the first response packet (under the

otion of time of the sender). The involved delays evidenced by

ig. 1 will be detailed later. At the end of the exchange, a measure

f the synchronization state (offset, skew, together with the delay)

s obtained. In turn, the state estimation is updated from the col-

ected measurements at the end of each exchange; typically a set

f K message exchanges is exploited for state estimation [16,17] .

he sender makes use of the state estimation to synchronize its

lock to that of the receiver. A software layer, named for the first

ime virtual clock in [34] , converts the sender time into the receiver

ime. A virtual clock is essential for devices that cannot adjust the

lock register at runtime. Synchronization is performed at each dis-

rete time instant k, k + 1 , ... ; let τ be the size of those discrete



4 M. Mongelli, S. Scanzio / Ad Hoc Networks 49 (2016) 1–16 

Fig. 1. Timestamps, messages exchange, and involved delays. 
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time steps. We assume each message exchange starts and ends in

[ k, k + 1] , ∀ k . 

We now enter in the details of the state and measurement

models. 

3.2. State equations 

The clock registers of the sender and the receiver (denoted by

C S ( k ) and C R ( k ), respectively and reported in Fig. 1 ) differ of the

offset quantity θ ( k ). 

 S (k ) = C R (k ) + θ (k ) (1)

A typical clock model can be represented by the following equa-

tions in the discrete domain: 

θ (k ) = θ (k − 1) + γ (k − 1) · τ + ω θ (k − 1) (2)

γ (k ) = γ (k − 1) + ω γ (k − 1) (3)

d(k ) = d(k − 1) (4)

where γ ( k ) represents the skew and d ( k ) the delay component,

which is assumed stationary over time, but whose measurements

are affected by noise as detailed later in Subsection 3.5 . The sta-

tionarity assumption is motivated in the same section as well. 

3.3. State noise 

The ω θ and ω γ quantities represent the noises affecting θ and

γ , respectively, whose distributions are usually modeled as Gaus-

sian type; the corresponding standard deviations are denoted by

σω θ and σω γ , respectively. 

Here and in [15] we include in ω γ an additional component, 

ω γ T (t, ·) = ω γ T (t , t c, p, T High 
E 

, T Low 

E ) (5)

to mimic the temperature effect of a XO periodically moved every

p [s] between two environments with temperatures T 
High 

E 
[ °C ] and

T Low 

E 
[ °C ]; tc is the XO thermal time constant , which represents the

thermal inertia of the XO and of its case. 

The Newton’s law of cooling 

T = T E + (T XO − T E ) · e −
1 
tc �t (6)

models the evolution over time of the temperature of an object

with initial temperature T XO which is placed in an environment

characterized by a new temperature T . The periodic movement
E 
etween the two environments with different temperatures has

een performed in simulation every p , and in such instants T XO is

et equal to the current temperature T of the XO and T E is set equal

o T 
High 

E 
or T Low 

E 
. 

The XO is modeled as an AT-cut quartz, the more common in

eal devices and the one that suffers more the temperature effects.

iven the temperature T , the frequency variation from the nominal

ne can be properly approximated as 

� f 

f 
= a · (T − T 0 ) + b · (T − T 0 ) 

2 + c · (T − T 0 ) 
3 (7)

here T 0 is the reference temperature of the XO and a , b , c are

hree constants modeling the XO. This paper makes use of param-

ters directly derived from a real AT-cut quartz [35] : T 0 = 25 ◦C ,

 = 0 . 0 , b = 0 . 4 · 10 −9 and c = 109 . 5 · 10 −12 . 

The quantity ω γ T (t, ·) , which corresponds to the frequency

ariation 

� f 
f 

at a given time t , can be easily derived by substituting

6) in (7) . 

We noticed that the temperature variations have a predominant

ffect on the synchronization error rather than other variations of

he parameters in (7) ( a , b , c , T 0 ). For this reason, the performance

valuation concentrates the attention on large temperature varia-

ions under a realistic XO model [35] , with fixed parameters. 

The inherent probability distribution of ω γ T (t, ·) is not Gaus-

ian; it is actually a multi-modal distribution, with significant

symmetry among the peaks. 

.4. Measurement equations 

Let t 1 ( k ), t 2 ( k ), t 3 ( k ), t 4 ( k ) the timestamps in [ k − 1 , k ] . A sample

f the delay at time k , ď (k ) , is derived as follows: 

 ̌(k ) = 

(1 − γ (k )) · (t 4 (k ) − t 1 (k )) − (t 3 (k ) − t 2 (k )) 

2 

(8)

he equation, used by CSPs to compute the propagation delay,

learly outlines the non-linearity of the model (between delay and

kew) and the indirect impact of the temperature noise on delay

stimation through the skew. 

For every exchange of synchronization messages, two samples

f θ , namely θ̌SR and θ̌RS can be computed by: 

ŠR (k ) = t 1 (k ) − (t 2 (k ) − d(k )) (9)

ŘS (k ) = t 4 (k ) − (t 3 (k ) + d(k )) 

he use of both equations to compute the offset, peculiar of the

wo-way timing message exchange mechanism, allows a better es-

imation of the offset. 

A sample of the skew, γ̌ (k ) = 1 − m, is derived by calcu-

ating the slope m of the line interconnecting the two points

(t 1 (k ) , t 2 (k ) − d(k )) and (t 4 (k ) , t 3 (k ) + d(k )) , placed in the sender-

eceiver space. The slope represents the ratio between the receiver

nd the sender oscillation periods of the XO. More specifically, the

ifferences t 4 − t 1 and t 3 − t 2 + 2 d lie on the sender and receiver

ime-lines, respectively, as outlined in Fig. 2 . 

ˇ (k ) = 1 − t 3 (k ) + d(k ) − (t 2 (k ) − d(k )) 

t 4 (k ) − t 1 (k ) 
(10)

An intuitive example of the application of (8) –(10) is provided

n Appendix A . Operatively, the measurement equations may be

implified as follows. By assuming delay stationarity over each

bservation period [ k − K, ..., k ] , k = 1 , 2 , ..., a delay estimation at

ime k , ˆ d (k ) , may be derived from the arithmetic average of ď (k −
) , ..., ď (k ) and by simplifying γ ( k ) in (8) with ˆ γ (k − 1) (i.e., with

he previous estimation of γ ; ˆ γ (1) = 1 ). The ˆ d (k ) quantity may be

hen substituted in (9) and (10) . This kind of calculation is however

ot necessary for the proposed estimation schemes as outlined in

ubsection 5.1 . The stationarity assumption on delay means that
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Fig. 2. Skew sample γ̌ from the slope m of the interpolation of t 1 , t 2 , t 3 , t 4 . 
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odes mobility takes place over time horizons larger than K (i.e.,

he size of the observation period). In case of mobility over shorter

anges, the state Eq. (4) should be updated with an appropriate

oise variable or with an additional function mapping d(k − 1) in

 ( k ). 

.5. Measurement noise 

The noise affecting the equations above is due to the random-

ess of the values of t 1 , t 2 , t 3 , t 4 , which derives from the chain of

elays evidenced in Fig. 1 and defined as follows (the index k is

ot mentioned for the sake of clarity). 

By following the clock register C S , at time t S (top-left of the fig-

re), the sender schedules the sending of a synchronization packet.

fter a d node ′ 
s delay (corresponding to the operational times of the

ocal operating system, the Media Access Control (MAC) and the

ransceiver) the packet is actually sent, and its sending time t 1 can

e recorded by the sender node after a d send 
s delay (correspond-

ng to the operational time for handling the timestamping proce-

ure triggered by the network adapter). 4 The packet arrives at the

eceiver after d 
prop 
SR 

, i.e., the medium propagation delay from the

ender to the receiver. 

Analogous delay quantities are defined for the receiver when

etting the values of t 2 and t 3 (namely, d rec 
R 

and d send 
R 

), for the

ender again when setting the value of t 4 (i.e., d rec 
S 

), and for the

edium propagation delay d 
prop 
RS 

for packets sent in the opposite

irection. The last packet is sent from the receiver to the sender

bottom right in the figure); it contains the values of t 2 and t 3 
eeded for a clock correction step. It is sent after the first response

acket, which triggers the t 4 computation at the sender. All t 1 , t 2 ,

 3 , t 4 are involved in the synchronization update through (8) –(10) .

he clock update occurs at time t 
sync 
S 

after a delay d node ′′ 
s (bottom

eft in the figure), that includes the inherent estimation procedure

nd other in-node overheads. 

It is important to remark that the traffic generated by other

nterfering nodes in the wireless network does not influence the

recision and the accuracy of the timestamps. In practice, times-

amps t 1 and t 3 are recorded after the transmitting node has al-

eady started the transmission on the ether, and after a possible

ait due to carrier sense. As a consequence, t 1 and t 3 do not in-

lude the error due to the indeterminism of the access schema

sed by the MAC layer of the wireless communication protocol. On
4 In order to improve precision of software timestamping, the timestamping op- 

ration is scheduled by the first instruction of the inherent Interrupt Service Rou- 

ine (ISR). Moreover, the network adapter is sometimes assumed to be able to insert 

imestamps on-the-fly, just before the packet is transferred over the air. In this case, 

he third packet exploited by the protocol to deliver t 2 and t 3 to the sender is no 

onger required. Some other adapters acquire the timestamps in hardware, i.e., at 

AC level, thus allowing the reduction of delay oscillations even more. 

t  

i

z

i

e

he receiving side, timestamps t 2 and t 4 are acquired as quickly as

ossible after the arrival of the synchronization message, and the

nly possible effect of interfering traffic and disturbs is the loss

f some messages. The effect of losses for a technique based on a

st order regression spline was analyzed in a real implementation

n [6] . Results reveal that the impact of losses on synchronization

uality is negligible when 1st order regression spline is computed

n at least 70% of the expected points, and they do not worsen

onsiderably when the number of losses further increases. It can

afely assumed that the same applies to the approach based on a

eural network proposed in this paper, because it uses a 1st order

egression spline for features extraction. A more detailed analysis

f this aspect, and how to further improve accuracy for the pro-

osed technique, is left open for future research. 

. Optimal state estimation 

In principle, the problem consists of defining the optimal filter

or state estimation at each time k , on the basis of measurements

ollected up to time k [15] . The optimal filter is a function 

5 νo (·)
hat maps the measurements into the estimates at each time k . Let

 (k ) = f ( x (k − 1) , ξ(k − 1)) be the state equation in compact form

rom (2)–(4) with x (k ) = [ θ (k ) , γ (k ) , d(k )] , ξ(k ) being the vector

f state noises and y (k ) = g ( x (k ) , η(k )) the measurement equation

rom (8)–(10) with y (k ) = [ ̌θSR (k ) , θ̌RS (k ) , γ̌ (k ) , ď (k )] , η being the

ector of measurement noises, respectively. The optimal estimation

aw νo 
k 
(·) = νo 

k 
( I k ) minimizes the following functional cost: 

o 
k ( I k ) = arg min 

νk ( I k ) 
E x (k ) { h ( x (k ) − νk ( I k )) | I k } , ∀ I k (11)

 k being the information vector collecting all the measurements

rom the beginning I k = [ y (0) , ..., y (k )] and h (·) being a Bayesian

isk function 

6 . The optimal filter cannot be derived in closed-form

s in the Kalman filter owing to the non-linearity of (8) and to the

emperature noise which is not Gaussian. Here we resort to an ap-

roximating technique, as later outlined in Section 6 . 

. Splines 

Before addressing the approximation of the optimal filter, a ba-

ic heuristics is defined. If Fig. 2 includes the collection of K sets

omposed of 4 timestamps ( t 1 , t 2 , t 3 , t 4 ), the trend of the current

synchronism may be derived by interpolating the corresponding

 K points in the sender-receiver space, thus deriving a heuristic

stimation of γ and θ . This is the underlying idea of the splines.

he following information vector is defined: 

 

s 
k = 

[
� 

t 2 ,t 1 
k −K 

, ..., � 

t 2 ,t 1 
k 

, � 

t 3 ,t 4 
k −K 

, ..., � 

t 3 ,t 4 
k 

]
(12) 

ith: 

 

t 2 ,t 1 
k − j 

= [ t 2 (k − j) , t 1 (k − j) ] ; j = 0 , ..., K. (13) 

 

t 3 ,t 4 
k − j 

= [ t 3 (k − j) , t 4 (k − j) ] ; j = 0 , ..., K. (14) 

here � 

t 2 ,t 1 
h 

and � 

t 3 ,t 4 
h 

pertain the timestamps of Fig. 2 at time h =
 − j and I s k pertains the collection of timestamps in [ k − K, ..., k ] . 

The i -th order spline (denoted by S i ) is derived by interpolating,

ith the i -th order, the set of points in I s k by means of the Ordinary

east Squares method [37] . As intuitively summarized by Fig. 2 , a

kew estimation is derived from the slope of S 1 and the offset es-

imation from putting in the spline equation the current value of
5 Filter , estimation law or estimation function are typically used as synonyms. 
6 h ( z ) is a Bayesian risk function if the following are met: h ( z ) is not negative, 

t is symmetric, i.e., h ( z ) = h (−z ) and it is not decreasing with increasing positive 

 ; in the scalar case, examples are: h (z) = z 2 and h (z) = | z| . Such a risk function 

s used in statistical decision theory as a measure of the difference between the 

stimation and the true value (see, e.g., subsection 1.2.1 of [36] ). 
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time of the sender. Quadratic and cubic splines help chase the non-

linearity of the offset correction. Orders higher than 3 have been

disregarded to avoid overfitting, to which the splines are more sen-

sitive with more noise and large K . At the sender, the synchroniza-

tion step consists of directly putting the current notion of time, C S ,

into the spline equation, thus deriving the current notion of time

at the receiver C R . Because the slope of a 1-st order spline is an es-

timation of γ ( k ), S 1 perfectly compensate all the stationary effects

on the skew (e.g., the real oscillation frequency of the XO which

differs from the nominal one), and all the effects on frequency

with a periodicity much greater than τ , such as aging. Effects with

periodicity slightly greater than τ are compensated by S 1 only on

average, but they can be addressed by the technique based on a

neural approximation described in the next section. Examples are

temperature variations or vibration with a periodicity greater than

τ . Periods lower than τ are typically disregarded. A remedy is the

reduction of τ according to the specific working conditions. 

5.1. Delay correction 

Let d represents the knowledge of the delay, derived in

any way; it may be either the propagation delay, including in-

node overheads or not, or the delay estimation outlined in

Subsection 3.4 . This knowledge reduces the noise on the times-

tamps t 2 , t 3 , if we apply a correction to replace them with: t 2 − d

and t 3 + d. In principle, this may drive a better state estimation,

but it reveals to be useless for the splines. If a sufficient number of

samples is taken, the regression schemes lead to identical curves,

independently to the application of the correction. Intuitively, this

is due to the averaging operation operated by regression while

capturing the trend of the timestamps. We empirically validated

this property for all the splines considered; a formal demonstra-

tion for S 1 is provided in Appendix B . 

6. Neural approximation 

A further generalization in the direction of tracking the non-

linearity and non-stationarity of the involved processes is now ad-

dressed. The focus is on the offset, thus disregarding skew and de-

lay estimation. Similarly to the splines, the offset estimation allows

the direct implementation of the synchronization step by applying,

as described in the previous Section 5 , the approximating function

(based either on splines or on a neural network as derived here).

A standard Neural Network (NN) training is formulated as follows.

A new information vector is defined: 

I NN 
k = [ δk −2 K , ..., δk ] (15)

δk being the distance between each � h in I s k , as defined in (12) and

with h = k − 2 K, ..., k, and the first order spline ( S 1 ) interpolating

the set of points in I s k . The corresponding training set is stated with

k = 1 , ..., N samples of I NN 
k and the relative target ε k , i.e., it is a set

of N tuples in the form 〈 I NN 
k , ε k 〉 . The value ε k being the error of S 1 ,

evaluated for a given time k in the sender timescale, in predicting

the time in the receiver space. Given the S 1 spline obtained for

I s k , S 
k 
1 
(k ) = m 

k · k + q k , the target can be computed as ε k = C R (k ) −
S k 

1 
(k ) . 

The optimal weights assignment w 

o is derived so that: 

w 

o = arg min 

w 

J ( w ) ; J ( w ) = 

N ∑ 

k =1 

[ ε k − ˆ νk ( I 
NN 
k , w )] 2 (16)

Problem (16) can be solved by applying standard non-linear op-

timization techniques. In particular, the proposed NN, which has

been parameterized through an extensive series of experiments,

has three layers: the first with 2 K input nodes, the hidden layer
ith 10 nodes characterized by hyperbolic tangent activation func-

ions, and one linear output node in the last layer. It was trained

sing 8 iterations (epochs) of the classical back-propagation train-

ng algorithm. During the 8 epochs, at each iteration on the train-

ng set the learning rate was decreased linearly between 0.001 and

.0 0 0 01. The momentum was set to 0.01. In the test phase, the out-

ut of the NN is added to the estimation of the receiver time,

hich is performed by computing S 1 on a time expressed in the

ender timescale. 

The sequence of approximation steps from the optimal filter to

his scheme are the same referenced in [15] . Here, we stress the

act that (16) is solved with respect to samples coming from non-

tationary noises. This consequently leads to the adaptation of the

pproach to variable system conditions. In this respect, differently

rom [14,19] , no online adaptation of the algorithm is required, and,

ifferently from Particle Filtering [10] , the computational effort of

he approach resides in computing w 

o offline. 

. Implementation issues 

.1. Deployment of the neural estimator 

Three steps are crucial for the deployment of the neural es-

imator: acquiring the synchronization error ε in (16) , building

 database for training and applying the training procedure (i.e.,

olving (16) ). The first step can be performed through either spe-

ialized devices [38] or by referring to a reference signal (e.g., a pe-

iodical actuation function [6] or the deterministic expected time

f reception in TDMA [8] ). An external device is in charge as well

o perform the remaining two steps. 

Those steps may be hardly applied in multi-hop networks if

hey should be repeated for each node in the network. For this rea-

on, we derive a method to join the replication of the steps into a

ingle procedure in the multi-hop context (i.e., one database and

ne training). 

.2. Computational cost 

One main aim of [17] is to derive a simple synchronization

echnique with less computational complexity than Linear Pro-

ramming (LP) or other traditional approaches [10] . This is cru-

ial for WSNs in which energy is a scarce resource. In the LP case,

or example, an optimization problem is formulated on skew and

ffset. The problem can be solved by traditional optimization al-

orithms, like the simplex one. The simplex method is efficient

n practice, even though it has exponential worst-case complex-

ty. The computational issue may become critical in the synchro-

ization context because the number of LP constraints scales up

inearly in the size of the information window collecting the his-

ory of the timestamps (see, e.g., (21) of [10] ). Despite the splines

dvocate the adoption of the Ordinary Least Squares method, for

hich similar considerations may be outlined, their computational

omplexity is low, in particular for S 1 . In the bivariate case (the

egression is applied on the plane reported in Fig. 2 ), each new

ample contributes to the updating of the S 1 parameters through

rivial operations, such as the update of the sum of products on

revious samples (see, e.g., [19] and [39] ). The NN experiences a

ow computational complexity as well because it depends on the

ollection of S 1 estimations. After building I NN on S 1 , the remaining

N operations consist of computing the NN output through a cas-

ade of summations and multiplications involving the neural units,

ypically represented by hyperbolic tangent or sigmoidal functions.

he NN used in the performance evaluation has been implemented

n an Atmel ATmega328P micro-controller running at 16 MHz and

ested with a NN consisting of 15 inputs, 10 hyperbolic tangent

idden units and one linear output. Such a micro-controller is of
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Fig. 3. Example of a multi-hop network. 
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ommon use in the WSN context. The registered mean execution

ime of each iteration involving both features extraction (from S 1 )

nd the computation of the output (after training) was 4 . 932 ms

15] . The NN computation also scales linearly with respect to K .

oughly speaking, this corroborates the adoption of the NN with

≥ 100 ms, τ being the size of the synchronization time steps.

n accurate calibration of K and of the other NN parameters (the

umber of hidden units, in particular) deserves further attention if

maller synchronization steps are required. 

The computational cost of the NN train phase is higher than

he one for test. Actually, the duration of training is not a limi-

ation because it is executed offline. Unless not differently speci-

ed, all NNs have been trained with 10 0 , 0 0 0 samples, which in

eal systems must be acquired at runtime through measurements.

s a consequence, the time needed to acquire the train database,

ith τ = 1 s , is about 27 hours . The offline training time, mea-

ured on a PC equipped with an Intel Core i7-3770 CPU running at

 . 4 GHz , with a not optimized software and with K = 60 (i.e., 120

nputs) is about 10 min . This time can be reduced of at least one

rder of magnitude with software optimization or by exploiting

PUs [40] . 

. Multi-hop analysis 

In a number of operating conditions, usually in large networks,

odes communicate through intermediate devices. In the view-

oint of synchronization, the nodes are hierarchically ordered in

 tree topology [10,19] , where at the root of the tree lies the ref-

rence clock (i.e., the time source of the network tree). The first

ayer nodes synchronize directly with the reference clock. A sec-

nd layer node synchronizes with the first layer. The same ap-

lies for the subsequent layers. Each layer suffers of a worst

ynchronization quality as soon as the distance from the root

ncreases. 

Given a node, only one path exists between the node and the

oot of the tree. Synchronization can be separately analyzed along

ach path of the tree. We focus on the example reported in Fig. 3 .

he reference clock, node N 0 , has only the master role, i.e., it is the

ime source to which all other nodes must synchronize. A node of

he first layer, N 1 has a 1-hop distance from N 0 , and it acts as a

lave node with respect to N 0 and as a master node with respect

o the nodes lying in the second layer, for example N 2 . The node

 2 , that like N 1 covers both the master and slave roles, has a 2-

op distance with N 0 . The node N 2 is synchronized with N 1 , which

n turn is synchronized with N 0 . Basically, timestamps obtained on

iming messages by node N 1 , when N 2 synchronizes with N 1 , are

btained with the view of N of the reference time held by N .
1 0 
n other words, N 1 exploits the most recent estimation of the pa-

ameters of the virtual clock to convert the timestamps obtained

ith its local clock to the reference time held by N 0 . Since the vir-

ual clock makes errors in this conversion, a node belonging to a

op level greater than 1 synchronizes its clock to an incorrect clock

ource. We will refer to such a kind of corruption as hop error . The

op error increases with the number of hops and does not take

lace in N 1 . Leaf nodes have only the slave role and are the ones

ith the biggest hop error. 

Three methods based on NN , namely NN link , NN gen A and NN gen B ,

re defined in this context. 

.1. A distinct NN for every link 

The NN link model implies that the usual NN is trained link-by-

ink, i.e., by repeating a training phase for every communication

ink between two adjacent nodes of the network. From the second

op onwards, the neural network is trained with timestamp data

erived from a node which is synchronized through a NN with the

ode of the previous hop. This method comes out with a set of

pecialized NNs, able to cope with the specific experimental con-

itions regarding each couples of nodes. Unfortunately, this may

esult in a high number of database acquisitions and neural trains.

oreover, to acquire the training database for a specific hop, the

N of the previous hops must already be trained. This iterative

pproach leads to a complex acquisition process of the training

atabases and a complex system setup. As a matter of fact, it is

ardly applicable in real situations, except when the number of

odes is limited. 

.2. Generalized NN: temperature compensation 

The limit of having a specific NN for every link of the network

an be circumvented by training with respect to different temper-

ture patterns. The accuracy of this kind of “generalized” NN is

sually lower than the one of a NN trained with a database co-

erent with the test conditions (see, e.g., [15] ). We firstly define a

N trained over a set of temperature conditions, in-node delays,

ut by disregarding the hop error: NN gen A . This means the training

atabase can be easily obtained by connecting in separate, but not

onsecutive, experiments all the nodes with the master. 

.3. Generalized NN: temperature and hop error compensation 

Under the NN gen B model, a single neural network is trained un-

er an iterative (link-by-link) approach, as done in the NN link case.

he difference relies on the superimposition of pairs of tempera-

ure and hop error conditions, which differs from the combinations

hecked in the test phase. 

In particular, the function ω γ T (t, ·) modeling the effects of tem-

erature variation on the skew has been chosen to be different in

he train and test phases. To this purpose, the temperature mod-

ls evaluated in the test phase for the last and penultimate nodes

rive the collection of training data at the first and second nodes,

espectively, and so on. As an example, in a network with 5 hops,

 

1 
γ T , ω 

2 
γ T , . . . , ω 

5 
γ T are the temperature models used in the test

hase for nodes N 1 , N 2 , …N 5 , respectively. The temperature models

ssociated to the same nodes (i.e., N 1 , N 2 , … N 5 ) in the train phase

re ω 

5 
γ T , ω 

4 
γ T , . . . , ω 

1 
γ T . The resulting database contains a mix of

op errors and temperatures over which the NN learns the clock

orrection, independently to the knowledge of its position in the

ree branch. More sophisticated methods for the generation and

ynthesis of the training database are left open for future research.
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Table 2 

Means and standard deviations of in-node latencies. 

Scenario sw 

WiFi hw 

WiFi sw 

WSN hw 

WSN 

Type PC-WiFi PC-WiFi Mica2 TelosB 

Latency ( μs) ( μs) ( μs) ( μs) 

d send 
S μsend 

S 5 .4 1 .31 259 .057 0 .408 

σ send 
S 0 .310 0 .046 1 .291 0 .0157 

d rec 
S μrec 

S 7 .23 8 .9 346 .849 2 .769 

σ rec 
S 0 .580 0 .110 2 .415 0 .0374 

d send 
R μsend 

R n μ · 5 .4 n μ · 1 .31 n μ · 259 .057 n μ · 0 .408 

σ send 
R n σ · 0 .310 n σ · 0 .046 n σ · 1 .291 n σ · 0 .0157 

d rec 
R μrec 

R n μ · 7 .23 n μ · 8 .9 n μ · 346 .849 n μ · 2 .769 

σ rec 
R n σ · 0 .580 n σ · 0 .110 n σ · 2 .415 n σ · 0 .0374 
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9. Experiments setting 

The following simulation parameters are defined for the perfor-

mance evaluation. 

Observation horizon . The value K is the number of sets of times-

tamps { t 1 , t 2 , t 3 , t 4 } used to decide the synchronization correc-

tion. K is used as a variable parameter in the results (it appears

in the x-axis of all the figures) in order to emphasize how the

techniques may be sensitive to it. As signal processing techniques

estimate stationary states, they achieve optimal performance only

for a strict range of K in non-stationary conditions, such as in the

presence of temperature variations. 

Synchronization period . In the proposed simulation model, the

sender node starts a synchronization step in a cyclic fashion, and

each exchange is triggered with a period τ fixed to 1 . 0 s . Periods

greater than 1 . 0 s could be useful in contexts where power con-

sumption is a main target, such as in WSNs. The effects of the pa-

rameter τ on synchronization quality has been analyzed in a spe-

cific experimental campaign in Subsection 10.3 . 

Performance metric . The 99.9 percentile of the synchronization

errors is the performance metric. It is denoted by p 99 . 9 and rep-

resents the 99.9 percentile of the absolute difference between the

reference time (i.e., the time at the receiver node) and the esti-

mated time by the sender at the end of each timestamps exchange,

as outlined in Fig. 1 . All the performed simulations (under a fixed

K ) contain 10 0 , 0 0 0 samples of the dynamic system (2) –(4) whose

evolution follows the temperature and delay models presented be-

low. 

The average error is disregarded because it represents only the

systematic part of the error (i.e., the accuracy ), but it does not pro-

vide any information about the precision of synchronization [41] .

Two nodes may be synchronized, on average, while still experienc-

ing large synchronization errors; p 99 . 9 helps capture a threshold

limit of those errors (in the 99.9% of the cases). 

Temperature . The ω θ and ω γ components of Eqs. (2 ) and

(3) have variances σ 2 
θ

= 10 −17 s 2 and σ 2 
γ = 10 −19 , respectively. As

far as the temperature is considered, two models have been taken

into account. The ω 

high 

γ T (t, ·) model represents a fast temperature

variation of the XO ( t = 600 s ) in a wide range of temperatures

( T Low 

E 
= −10 ◦C and T 

High 
E 

= 40 ◦C ); while the ω 

norm 

γ T (t, ·) model is

characterized by slower temperature variation ( t = 1200 s ) than

ω 

high 

γ T (t, ·) , in a narrower range of temperature with extremes

T Low 

E 
= 10 ◦C and T 

High 
E 

= 35 ◦C . For both temperature models tc =
60 s . The models are applicable to mobile nodes in reality. An

example may be an automatic forklift that enters into and exits

from an industrial oven. Outdoor exposure is applicable as well

[21,42] . 

Delay . We consider two effects on delay: the propagation over

the channel, d 
prop 
SR 

and d 
prop 
RS 

, and the in-node delays ( d send 
S 

, d rec 
S 

,

d send 
R 

and d rec 
R 

), as defined in the following. The values d 
prop 
SR 

=
150 ns and d 

prop 
RS 

= 150 ns have been used in all the simulated sce-

narios. The value of 150 ns was chosen because it represents a rea-

sonable distance of about 50 m between wireless nodes. In fact, an

electromagnetic signal with a speed of ∼ 3 · 10 8 m/s takes 166 ns

to cover 50 m . The propagation delay is also considered as expo-

nentially distributed in the last experiments of Subsection 10.5 .

The other delays of Fig. 1 , unless otherwise specified, have been

set to 0 (i.e., d node ′ 
S 

= d node ′′ 
S 

= d node 
R 

= 0 ). 

Comparison with [17] . As a performance comparison, in the

method summarized by the CH acronym, formulas (10) and (11) of

[17] have been chosen for the estimation of the skew and offset,

respectively. In the proposed experimental setups, they provide the

best results with respect to the other variants presented in the

same paper. 

r  
.1. In-node delays 

In-node delays represent the latency between the sending or

eception times of the synchronization packet and when the times-

amp is actually obtained. In absence of nodes’ mobility or other

tructural changes of the environment, which may cause variations

f the fading affecting the channel, the propagation delay is de-

erministic and the prevailing effect on synchronization is due to

n-node delays. 

The setting of the noise on in-node delay is now detailed. In-

ode delays reported in Fig. 1 are more concisely represented with:

 

send 
ρ and d rec 

ρ , where ρ represents the node role, ρ = S for the

ender node and ρ = R for the receiver node, respectively. 

In [43] , in-node delays have been analyzed for IEEE 802.11 WiFi

evices and results are reported for hardware and software times-

amps. The resulting delay model is summarized in the first two

olumns of Table 2 . The two latencies d send 
ρ and d rec 

ρ are not sym-

etric, and sender and receiver have very different in-node delays

alues in terms of both mean and standard deviation (for instance

w 

WiF i and hw 

WiF i in Table 2 ). 

The presented setting for software timestamping (condition

w 

WiF i reported as first column of Table 2 ), is referred to a system

ith low interfering loads (i.e., CPUs often in the IDLE state, low

nterrupts rate, etc.). With hardware timestamps, hw 

WiF i condition,

he standard deviations σ send 
ρ and σ rec 

ρ are quite small. 

The distribution of d send 
ρ and d rec 

ρ [43] may have various shapes

epending on the nodes hardware, operating system and internal

oad. A good approximation is however the normal distribution:

 

send 
ρ = N (μsend 

ρ , σ 2 send 
ρ ) and d rec 

ρ = N (μrec 
ρ , σ 2 rec 

ρ ) . The multipliers

 μ and n σ in Table 2 are used in Subsection 10.4 in order to set

ariable asymmetry conditions on the delays d send 
ρ and d rec 

ρ of the

eceiver node. The quantities d send 
ρ,i 

− μsend 
ρ and d rec 

ρ,i 
− μrec 

ρ are usu-

lly known as jitter . 

As far as WSNs are considered, some papers [19,44,45] have ex-

erimentally evaluated and analyzed the distributions of d 
path 
SR 

and

 

path 
RS 

, where: 

 

path 
SR 

= d prop 
SR 

+ d rec 
R − d send 

S 

 

path 
RS 

= d prop 
RS 

+ d rec 
S − d send 

R 

epresent the measured path delays between sender and receiver,

nd vice versa. At the best of authors knowledge, a separate analy-

is for in-node delays is not currently available. In [44] , the trans-

ission latency of a message between WSN nodes of different type

ave been evaluated. In particular, for a Mica2 WSN node the re-

orted delay is 605.906 μs, with a standard deviation equal to

.738 μs. 

In order to have a coherent model for WSN, we split the values

eported in [44] between the d send 
ρ and d rec 

ρ contributions, with the
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onstraint of maintaining the ratios 
μsend 

ρ

μrec 
ρ

and 

σ 2 send 
ρ

σ 2 rec 
ρ

experienced

or sw 

WiF i . The previously described process was used to obtain the

w 

W SN condition (third column of Table 2 ). 

The same splitting procedure, between the sending and the re-

eiving components of the delay, has been used for the hw 

W SN con-

ition. In this case, data about delays have been obtained from

19] , and the constraint regarding the two ratios are coherently

eferred to a hardware condition, i.e., hw 

WiF i . In [19] , the exper-

mental setup is composed of TelosB WSN motes, and the mea-

ured delay of a transmission between two nodes of this type —

ncluding in-node delays but excluding the timestamps quantiza-

ion errors — has a mean value and a standard deviation of 3.177

s and 40 . 56 ns , respectively. An important distinguish character-

stic of the hw 

W SN scenario is that the timestamps resolution is ∼
1 μs, because nodes local clock has a frequency of 32768 Hz . As

 result, even if the precision of the timestamp is very high (i.e.,

he standard deviation is below 50 ns ), the use of a great number

f timestamps is mandatory to mitigate the effects related to their

ow resolution. 

The use of more than one timestamp to drive estimation (i.e.,

 > 1) helps mitigate in-node jitter or quantization errors for all

he conditions, with the only exception of hw 

WiF i , whose times-

amps are characterized by a higher precision. Under hw 

WiF i condi-

ions, small values of K , e.g., K = 2 , are sufficient for synchroniza-

ion with S 1 . Under peculiar circumstances, e.g., with high values

f τ , or communication losses between sender and receiver, fur-

her adjustments may be needed with hw 

WiF i . 

0. Performance evaluation 

0.1. Simulation environment 

Typical network simulators are designed to model adequately

ommunication protocols, and they can easily scale to large size

etworks composed of a high number of nodes. Examples of

opular network simulators are the open source ns-2, ns-3 and

mnet++, or the commercial solution OPNET modeler. Unfortu-

ately, for clock synchronization, and in particular for those as-

ects mostly taken into account here (i.e., effects of temperature

nd in-node latencies on synchronization quality), available net-

ork simulators are not adequate. Firstly, they cannot currently

odel XOs and in-node latencies. Both aspects can be in theory

ncluded by modifying simulator models, but this requires a good

nowledge of the simulator, a lot of effort, and there is no guar-

ntee that changes will be compatible with newer versions of the

imulator. Secondly, network simulators are not designed to model

ore than one timescale. In synchronization, each node has a dif-

erent view of the time, and its dependence with respect to the

imescale of the simulator is complex (see, e.g., Subsection 3.2 and

.3 ). Finally, to model the schema proposed in Fig. 1 , if each mes-

age exchange starts and end in [ k, k + 1] , ∀ k, a discrete event sim-

lator is not needed. In fact, timestamps acquired by nodes in the

xchange started at time k + 1 do not depend on that acquired in

he exchange k . This reasonable assumption reduces considerably

he complexity of the simulator. For these reasons, an “ad-hoc”

imulation environment has been specifically developed to model

he system as described in the previous sections. The simulation

oftware was programmed in python , and it was executed in par-

llel (a process for every value of K ) in a High-Performance Com-

uting (HPC) cluster consisting of 544 cores placed in 17 computa-

ional nodes, and with a total amount of RAM equal to 2 . 2 TB . The

imulation process is subdivided in two phases. In the first phase,

he simulator makes use of state equations (including noises, en-

ironmental temperature variation and XO models) described in
ection 3 , to obtain for each time instant the four timestamps ex-

loited by the clock correction algorithm (i.e, t 1 , t 2 , t 3 and t 4 ),

nd the correct target time. In the second phase, data obtained in

he first step are exploited to compare clock correction algorithms.

plitting the simulation into two steps offers a big advantage in

erms of execution speed, because data have not to be reproduced

ach time the performance of a clock correction algorithm has to

e tested, and it ensures a fair comparison between algorithms

46] , i.e., all are applied to the same data set. 

0.2. Varying nodes type and environmental conditions 

In the first set of experiments ( Fig. 4 ), we evaluate the per-

ormance of all the techniques and temperature models proposed,

ith the exception of hw 

WiF i . For the hw 

W SN condition, the delays

 

node ′ 
S 

and d node 
R 

have been distributed uniformly between 0 and 31

s. This setting makes it possible to put out of phase the sending

imes of the two exchanged packets. This procedure also removes

ossible correlations between the timestamps obtained in subse-

uent synchronization steps. 

It is clear from the figure that CH is never optimal. The splines,

specially S 1 , guarantee the optimal performance only for short

anges of K . The optimal setting (i.e., minimum p 99 . 9 ) of K is de-

oted with K 

∗. Under high temperature oscillations (i.e., ω 

high 

γ T (t, ·) ),
oth the splines and CH have a significant performance degrada-

ion as soon as K slightly differs from K 

∗. The value K 

∗ is not con-

tant and it depends on the spline used, on the temperature model

nd on the in-node delays. As a consequence, the estimation of

 

∗ is hardly possible. Conversely, the NN guarantees optimal per-

ormance for larger ranges of K . Only the most critical condition

f Plot 4 .e (software timestamping in WSN and high temperature

ariations) leads to larger performance oscillations in the NN . The

ethod based on NN provides lower synchronization errors also

n the case of hardware timestamps with 31 μs resolution ( hw 

W SN 

ondition), outperforming all the other methods. 

In Fig. 5 , the S 1 , S 3 and CH techniques have been analyzed in

he proximity of a trend inversion (at time 40 s , the tempera-

ure reaches the minimum, ∼ T Low 

E 
, and starts to increase again).

ig. 5 helps highlight the impact of tracking the variability of

he target offset, which is slowly approximated by S 1 and CH .

n this case, with K = 70 , the best tracking is obtained by S 3 
nd NN (the NN is not reported for the sake of clarity). Under

mall values of K , however, the use of high order splines is not

onvenient, because the contribution of the measurement noise

s predominant with respect to the temperature effect. In virtue

f the small sensitivity on K variations, NN is not affected by this

roblem. 

0.3. Synchronization period τ

In many WSN applications, the interval between two adjacent

ynchronization steps, τ , is usually increased as much as possible

o improve battery duration. Unfortunately, an increasing τ (leav-

ng K unchanged) decreases the ability to track temperature vari-

tions. To compensate large τ , a reduction of K may be applied,

ut this would lead to worst in-node delays compensations. The

stimation performance thus plays an important role. 

A number of experiments with variable τ have been carried

ut for the sw 

W SN scenario, the ω 

norm 

γ T (t, ·) temperature model, and

ith different values of τ , namely τ = 1 s , 10 s , 60 s . 

Results reported in Fig. 6 show how synchronization error is

irectly related to τ . For instance, increasing of one order of mag-

itude the value τ , from 1 s to 10 s , the error in correspondence to

 

∗ passes from 2.211 μs to 5.590 μs for S and from 2.212 μs to
1 
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Fig. 4. 99.9 percentile of the synchronization error, for S 1 , S 2 , S 3 , NN and CH ( ω 

high 

γ T (t, ·) and ω 

norm 
γ T (t, ·) temperature models; sw 

WiFi and sw 

WSN in-node latencies; n μ = 1 and 

n σ = 1 ). 

Fig. 5. Estimation of the offset ( ̂ θ ), with different time-varing techniques, in prox- 

imity of a trend inversion at time 40 s ( K = 70 ). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. 99.9 percentile of the synchronization error, for S 1 and NN with different 

values of the synchronization period ( τ = 1 , 10 , 60 s ). For τ = 10 s also the results 

of the S 2 technique has been reported. Experimental condition: sw 

WSN — ω 

norm 
γ T (t, ·) , 

i.e., WSN node with software timestamps and normal temperature variations (be- 

tween 10 °C and 35 °C every 1200 s ). 

ω  

m  

d  

c  

t

 

w  
4.162 μs for NN . After a further increase to τ = 60 s , the synchro-

nization error worsens and it reaches in the point K 

∗ the minimum

errors of 6.245 μs and 4.678 μs for S 1 and NN , respectively. 

For τ = 10 s , also the statistics related to S 2 have been reported

in the plot. The minimum achieved error is 4.621 μs with K 

∗ = 16 .

The errors of S 1 and S 2 are higher than the one of NN , for every

value of K and τ . 

With values of τ greater than a given threshold (i.e., τ ≥ 180 s

as in Fig. 7 ), synchronization quality worsens because the NN is no

longer able to estimate correctly the temperature variations; the

error achieved by NN in compensating temperature variations is

bigger than the error due to in-node delay. 

10.4. Delay asymmetry 

In Fig. 8 , the effect of latency asymmetries on synchronization

accuracy is analyzed. Tests have been performed using sw 

WiF i and
 

norm 

γ T (t, ·) as temperature model. Plot 8 .a represents a perfect sym-

etry where both sender and receiver experience the same latency

istributions (i.e., n μ = 1 and n σ = 1 in Table 2 ). Results for this

onfiguration are equal to those discussed in the previous subsec-

ion. 

In the second experiment ( Plot 8 .b), an asymmetry on the

idth of the gaussian distributions that model the latencies has
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Fig. 7. 99.9 percentile of the synchronization error, for NN with different values 

of the synchronization period ( τ = 1 , 10 , 60 , 120 , 180 , 300 , 600 s ). Experimental con- 

dition: sw 

WSN — ω 

norm 
γ T (t, ·) , i.e., WSN node with software timestamps and normal 

temperature variations (between 10 °C and 35 °C every 1200 s ). 
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een introduced by setting n σ = 1 . 5 . As expected, the synchroniza-

ion quality worsens for all the analyzed techniques, because the

recision of the timestamps at the receiver has been reduced. The

echnique mostly affected by the asymmetry is CH . 

In the third experiment ( Plot 8 .c), the asymmetry has been ob-

ained adding a systematic error on timestamps acquisition, by

ultiplying only the mean value of the gaussian distributions of

he receiver node: n μ = 1 . 5 and n σ = 1 . Only the NN technique

ompensates the asymmetry, while other techniques suffer of a

egradation on accuracy of about 3.2 μs. 

Experimental results reflect directly the systematic accuracy er-

or introduced by the asymmetry. Since the delay sampling of

q. (8) does not hold under asymmetry (the multiplication by 1 
2 

ssumes path symmetry), asymmetry may cause a systematic er-

or, whose correction requires an accurate calibration (as men-

ioned, for example, in [43] ). The calibration may be driven by a

riori calculations as shown in Appendix C . Since a priori calcu-

ations may be hardly applied in practice, the calibration may de-

ive from the direct measurement of the synchronization error. The

alibration provided by the NN , together with the compensation of

ther non-stationary effects (e.g., tem perature), greatly simplifies

he synchronization process. 
ig. 8. The effect of in-node asymmetries on the 99.9percentile of the synchronization

atencies). 
The fourth experiment ( Plot 8 .d) analyzes the robustness of NN

ith respect to the asymmetry of the channel. All tests are per-

ormed using n μ = 1 . 5 . Results, reported as NN n μ=1 and NN n μ=1 . 5 ,

enote NN models trained with n μ = 1 and n μ = 1 . 5 , respectively.

or NN gen , the NN model has been trained with five data sets com-

osed of 25 , 0 0 0 samples that differ on the values of n μ (0.25,

.75, 1, 1.25, 1.75, respectively). As expected, NN cannot general-

ze the channel asymmetry as in the case of temperature [15] , be-

ause formula (8) supposes d 
path 
SR 

= d 
path 
RS 

. Basically, when the NN is

rained by using data sets with different channel asymmetries, it

eaches a minimum error only for one of the possible asymmetries.

N n μ=1 . 5 has the same systematic error in all the cases. This er-

or can be derived from the calculations presented in Appendix C .

hen the test and training conditions are consistent from the

iewpoint of channel asymmetry, NN compensates the error. 

0.5. Exponentially distributed delay 

For the sake of completeness, we consider also exponentially

istributed delays as in [16,17] , which may characterize peculiar

cenarios [16] . In the first two experiments of Fig. 9 , no in-node

elays are considered, while d 
prop 
SR 

and d 
prop 
RS 

are exponentially dis-

ributed with mean 1 μs. This condition has been denoted as

xp( 1 
1 μs ) in Fig. 9 . 

In the first Plot 9 .a, CH achieves the best performance. The NN

ries to follow the performance of the best spline, which changes

rom S 1 to S 3 with increasing K . 

In the second Plot 9 .b, the NN information vector is collected

n the basis of a first-order regression scheme, whose slope

nd y -intercept coefficients are derived from CH (denoted with

 

CH 
1 

). Results regarding this new information vector have been re-

orted as NN 

S CH 
1 , while NN 

S 1 identifies those derived from S 1 . More

pecifically, the S CH 
1 

is obtained from computing the slope and

he y -intercept of S 1 through the skew and offset estimated by

qs. (10) and (11) in [17] , respectively. As outlined in Fig. 2 , skew

nd S 1 slope are strictly related. With exponential distributed de-

ay, the NN 

S CH 
1 method guarantees the best performance with a

arger set of K . The quality of synchronization is always better, re-

ardless the value of K . 

The new information vector based on S CH 
1 

is analyzed in the

hird experiment ( Plot 9 .c) with Gaussian in-node delays ( sw 

WiF i )

nd with d 
prop 
SR 

= d 
prop 
RS 

= 0 . Surprisingly, the synchronization accu-

acy of NN 

S CH 
1 is comparable with the one of NN 

S 1 ( Plot 4 .a). This
 error, for S 1 , S 2 , S 3 , NN and CH ( ω 

norm 
γ T (t, ·) temperature models; sw 

WiFi in-node 
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Fig. 9. 99.9-percentile of the synchronization error, with different delays distributions ( sw 

WiFi and exp( 1 
1 μs 

) ), and evaluation of the NN S 
CH 
1 method. 

Table 3 

Environment characterization (i.e., parameters of the 

function ω γ T (t, ·) = ω γ T (t , t c, p, T High 
E 

, T Low 
E ) ) for every 

hop of the multi-hop scenario. 

hop T Low 
E T High 

E 
tc p 

[ °C ] [ °C ] [ s ] [ s ] 

1 10 35 60 1200 

2 15 30 60 1200 

3 5 40 60 1200 

4 17 33 120 1200 

5 10 35 90 900 
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a link  
means that the information vector based on S CH 
1 

generalizes the NN

technique to both in-node Gaussian and exponential delays. 

As a further verification of this property, in the last Plot 9 .d,

both Gaussian sw 

WiF i and exponential exp( 1 
1 μs ) delays have been

activated in the simulator. Once again, the results highlight the ca-

pability of NN 

S CH 
1 to generalize to different delays distributions. 

10.6. Multi-hop scenario 

The sw 

WiF i and sw 

W SN conditions have been analyzed as they

lead to the lower synchronization quality. Five hops are considered

as in [19] . Table 3 lists the parameters of the function ω γ T (t, ·) for

the five hops. The parameters assigned to the different hops in-

volve all the parameter of the function ω γ T (t, ·) . In the first three

hops, changes regard temperature boundaries (i.e., T Low 

E 
and T 

High 
E 

);

in the fourth hop, variations on both temperature boundaries and

thermal time constant have been considered; the last hop takes

into account a different periodicity (e.g., the node is placed in an-

other operating environment, which is characterized by a different

temperature variation period). 

Table 4 reports the experimental results. In addition to the

p 99 . 9 , also the standard deviation ( σ ) and the maximum (Max)

of the absolute value of the synchronization error have been pro-

vided. 

The three methods based on NN , namely NN link , NN gen A and

NN gen B , have been compared with S 1 . 

The first column of results of Table 4 regards S 1 . For this exper-

iment, the values K 

∗ obtained for the first hop (i.e., 20 for sw 

WiF i 

and 40 for sw 

W SN ) have been fixed and used for the remaining four

hops. The symbol K 

∗ has been substituted in the result table with
he symbol K , because the optimality of its value only applies to

he first hop. 

All the statistical indexes worsen with the distance from the

oot. Specifically, in the case of σ , the increase in the hop number

s almost constant. The values of these constants are 0.201 μs for

w 

WiF i and 0.702 μs for sw 

W SN . Roughly speaking, the value of σ
oubles every hop. A similar behavior affects p 99 . 9 and Max. Their

rends with the distance are less deterministic because they are

ore affected by rare events. 

In all the NN methods presented, K must be chosen large

nough in order to obtain timestamps jitter compensation; it

hould be greater than the values K 

∗ obtained for S 1 and for all the

ossible combinations of timestamps jitters and temperature vari-

tions. Fixing K = 60 meets the requirement (values of K greater

han 60 lead to similar results because the NN is not too sensitive

o changes of K ). 

The NN link method is the best from the point of view of perfor-

ance because the resulting NNs are specialized to cope with the

pecific experimental conditions of each couples of nodes, the net-

ork channel and the environment. The results reported in the col-

mn NN link of Table 4 confirm the ability of the NN to outperform

 1 , and the benefit of using NN link increases with the number of

ops. Actually, the results regarding the synchronization between

 1 and N 0 in the first hop reflect exactly those reported for the

ame condition in Fig. 4 . 

The training database of NN gen A has been derived by merging

he training databases of five separate experiments in which the

odes N 1 , N 2 , N 3 , N 4 and N 5 of Fig. 3 are directly connected with

he reference clock N 0 . In this case, the training patterns contain

nly the information regarding temperature variations and the in-

ode delays, but not the hop error. The resulting database contains

 , 500 , 000 patterns. As expected, all the performance indicators

ave worse performance than in the NN link case, but, excluding the

aximum value of the sw 

WiF i condition for the hop number 5, the

ynchronization quality of NN gen A is similar or outperforms the one

f S 1 . 

Under NN gen B , the temperature conditions 5, 4, 3, 2, 1 of

able 3 have been used, in the reported inverted order from 5 to 1,

o train the 5 hops of the network presented in Fig. 3 , respectively.

he resulting database contains 1 , 500 , 000 patterns. 

The results reported in the last column of Table 4 show that

N gen B performance is very close to that of NN link . This tells us two

hings: that the use of a generalized NN is possible because results

re close enough to the optimum represented by NN , and that
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Table 4 

Synchronization quality in a multi-hop scenario for S 1 , NN link (i.e, NN trained for every hop), and NN gen A and NN gen B (i.e., the same NN for every hop). 

Hop S 1 NN link NN gen A NN gen B 

K σ p 99 Max K σ p 99 Max σ p 99 Max σ p 99 Max 

WiFi ( sw 

WiFi ) 1 20 0 .207 0 .717 1 .184 60 0 .186 0 .761 1 .202 0 .183 0 .772 1 .192 0 .198 0 .832 1 .262 

2 20 0 .400 1 .339 2 .103 60 0 .280 1 .090 1 .669 0 .330 1 .245 1 .805 0 .308 1 .136 1 .988 

3 20 0 .635 2 .369 3 .946 60 0 .432 1 .553 2 .413 0 .528 2 .180 3 .045 0 .477 1 .862 3 .176 

4 20 0 .855 3 .060 5 .403 60 0 .493 1 .673 2 .359 0 .711 2 .802 5 .030 0 .561 2 .093 4 .039 

5 20 1 .110 3 .846 6 .415 60 0 .600 2 .006 2 .734 0 .946 3 .854 11 .052 0 .668 2 .567 4 .972 

WSN ( sw 

WSN ) 1 40 0 .633 2 .205 3 .349 60 0 .647 2 .794 3 .479 0 .623 2 .267 3 .104 0 .676 2 .328 3 .018 

2 40 1 .200 4 .001 5 .658 60 1 .112 4 .270 5 .754 1 .080 3 .926 5 .254 1 .162 4 .049 5 .110 

3 40 1 .947 7 .111 10 .200 60 1 .561 5 .290 7 .314 1 .860 7 .089 9 .176 1 .720 6 .020 7 .786 

4 40 2 .630 9 .347 13 .158 60 1 .967 6 .478 8 .460 2 .390 9 .009 11 .016 2 .105 7 .358 9 .190 

5 40 3 .440 11 .831 16 .825 60 2 .355 7 .626 10 .500 2 .999 11 .198 13 .862 2 .484 8 .744 11 .163 

Note: All values are expressed in μs. 
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Fig. A.10. Example of application of the measurement equations. 
he knowledge of the hop error is important because it drives to a

etter performance. 

0.7. Testbed 

Implementation and validation of synchronization protocols in

eal devices deserve specific attention. Results reproducibility is

he first issue to be considered. Some experimental conditions may

e difficult to be reproduced (i.e., temperature variations, in-node

atencies or packet losses) as well as experiments duration that

ay be limited. The interested reader is referred to [47] for de-

ails on reproducibility issues. How to measure the synchroniza-

ion quality is another concern. In [48] , the generation of two

ynchronous signals is used, together with an external device to

heck their time differences. Unfortunately, real devices add vari-

ble jitters when they trigger an actuation. In order to minimize

his jitter, a hard real-time implementation is required. Moreover,

 temperature-controlled environment may be also used to analyze

emperature variations (see, e.g., [21] ). 

Some preliminary experiments on the real implementation of

48] have been conducted and the results are summarized here.

igures are not reported for the sake of synthesis. Besides the fact

hat temperature variations are lower than the ones considered

n the simulations (due to the heating system of the room con-

idered), we obtained interesting results that confirm the appli-

ability of the approach. The RBIS protocol [6] is used to acquire

wo databases with respect to working days [47] and weekend,

espectively. The performance of the NN is qualitatively compara-

le with the one obtained in simulations here when compared to

he splines. An interesting result is that the NN outperforms S 1 for

mall value of K . This is useful in a WSN device because it reduces

he size of the information vector and the inherent computation.

nother promising issue relies on the fact that the NN shows to be

obust to loss of packets. This may open the door to outperforming

ther estimation approaches, specifically designed for intermittent

bservations, still being based on the Gaussian hypothesis [49] . On

he other hand, the NN fails when trained on the week days and

ested over the weekend. In order to prevent such a performance

egradation, one has to anticipate the working conditions of the

N , in particular with respect to the temperature ranges to be ad-

ressed. 

1. Conclusions and future work 

We have examined and discussed a neural estimation technique

or the popular two-way timing message exchange synchronization

rotocol and for nodes affected by temperature variations and de-

ay asymmetry. The impacts of the delay knowledge and the pres-

nce of several hops in the network have been accurately analyzed.
umerical analysis reveals significant performance improvements

ver existing techniques (splines and [17] ) under variable tem-

eratures and different delay distributions. One of the most im-

ortant outcomes is the robustness to increasing synchronization

teps (high accuracy, independently to the number of timestamps

sed). 

Future work includes different topics. The skew estimation and

he robustness to loss of timestamps are currently under inves-

igation. Other intriguing issues are: exploiting temperature ob-

ervations, runtime retraining of the neural estimator, as well

s the management of the multi-hop database under “big data”

aradigms. Preliminary results on a real implementation [48] con-

rm the effectiveness of the proposed technique. A more in-depth

alidation on a number of real installations and environmental

onditions is argument of future research as well. 
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ppendix A 

An example for explaining the measurement Eqs. (8) –(10) of

ubsection 3.4 has been reported in Fig. A.10 . The index k has been

emoved for the sake of simplicity and because only one message

xchange is analyzed. The quantity C R is the free-running clock
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register of the receiver node, which holds the reference time. In-

stead, C S (i.e., the free-running clock register of the sender node) is

updated with a lower frequency than C R . The timestamps exploited

for synchronization are: t 1 = 3 , t 2 = 8 , t 3 = 10 , t 4 = 6 . 2 . The value

γ has been initialized with the estimation of the skew performed

in the previous k − 1 synchronization step (i.e., ˆ γ = −0 . 25 ). The

new estimation of the delay from (8) is: 

ˆ d = 

(1 − ˆ γ ) · (t 4 − t 1 ) − (t 3 − t 2 ) 

2 

(A.1)

= 

1 . 25 · (6 . 2 − 3) − (10 − 8) 

2 

= 

4 − 2 

2 

= 1 

By using the value ˆ d computed in (A.1) , the new estimations of

the offsets and of the skew can be obtained from (9) and (10) : 

ˆ θSR = t 1 − (t 2 − d) = 3 − 8 + 1 = −4 (A.2)

ˆ θRS = t 4 − (t 3 + d) = 6 . 2 − 10 − 1 = −4 . 8 

ˆ γ = 1 −
(

t 3 + d − (t 2 − d) 

t 4 − t 1 

)
= 1 −

(
11 − 7 

6 . 2 − 3 

)
(A.3)

= 1 − 4 

3 . 2 

= 1 − 1 . 25 = −0 . 25 

Appendix B 

We demonstrate here that 1st order regression applied to

timestamps is independent to the delay correction outlined in

Subsection 5.1 . 

The parameters of the 1st order regression ( S 1 ) interpolating a

set of two-dimensional points (X k , Y k ) , k = 1 , ..., K, i.e., slope m and

y -intercept q , are: 

m = 

∑ K 
k =1 X k Y k − 1 

K 

∑ K 
k =1 X k 

∑ K 
k =1 Y k ∑ K 

k =1 X 

2 
k 

− 1 
K 
( 
∑ K 

k =1 X k ) 2 
; q = Ȳ − m ̄X (B.1)

Two straight lines are compared, with and without delay correc-

tion ( d ). The timestamps without correction consist of the se-

quence { t k 
1 
, t k 

2 
, t k 

3 
, t k 

4 
} , k = 1 , ..., K; let m and q be the resulting S 1

parameters. The timestamps with correction are { t k 
1 
, t k 

′ 
2 

, t k 
′ 

3 
, t k 

4 
} , k =

1 , ..., K, t k 
′ 

2 
= t k 

2 
− d, t k 

′ 
3 

= t k 
3 

+ d with m 

′ and q ′ the corresponding

S ′ 
1 

parameters. The two sets of parameters asymptotically converge

(in the number of timestamps) to identical values. If m ∼ m 

′ (‘ ∼
’ means asymptotical equivalence), q ∼ q ′ because the averages Ȳ 

and X̄ (in B.1 ) are identical in the two cases. In order to show m

∼ m 

′ , we substitute in (B.1) the timestamps and consider the dif-

ference �m 

= m 

′ − m as K → + ∞ . After some algebraic manipula-

tions, we obtain: 

�m 

= 

d 
∑ K 

k =1 (t k 4 − t k 1 ) ∑ K 
k =1 ((t k 

1 
) 2 + (t k 

4 
) 2 ) − 1 

K 
( 
∑ K 

k =1 (t k 
1 

+ t k 
4 
)) 2 

(B.2)

The �m 

quantity tends to 0 for the following reasons. The nu-

merator is positive ( t k 
4 

> t k 
1 
, ∀ k ) and grows linearly. The denomi-

nator defines a definite positive quadratic form of the timestamps

in � 

+ K ; the determinant of the corresponding Hessian matrix is

(2 k · (k −1) k −1 

k k 
) > 0 , ∀ k > 2 . 

This asymptotic behavior is measured in practice with a small

number of timestamps. For example, in the sw 

WiF i condition with

τ = 1 s and K = 60 , �m 

= 1 . 8 · 10 −9 and �q = q ′ − q = −54 ns 7 .
7 The value d = d prop + d rec − d send = 2 . 16 μs has been obtained with d rec = μrec = 

7 . 23 μs , d send = μsend = 5 . 4 μs and d prop = 334 ns . d prop is the time the light takes to 

cover a distance of 100 m . The quantity d node 
R has been set to 0 . 5 s . Values larger 

than 0 . 5 s lead to higher differences ( �m , �q ) and worse synchronization accuracy, 

the opposite holds for values smaller than 0 . 5 s . 

 

 

 

 

 

he difference of the synchronization error between S ′ 
1 

and S 1 
s 54 ns . By doubling the number of timestamps (i.e., K = 120 )

he difference is halved, i.e., it amounts to 27 ns , with �m 

=
 . 5 · 10 −10 (an order of magnitude lower than with K = 60 ) and

q = −27 ns . 

ppendix C 

The asymmetry error outlined in Subsection 10.4 can be a pri-

ri computed by considering the propagation delays between the

ender and the receiver nodes ( d 
path 

SR ), and the one in the opposite

irection ( d 
path 

RS ): 

 

path 

SR = d 
prop 

SR + d 
rec 

R · n μ − d 
send 

S 

= 0 + 7 . 23 μs · 1 . 5 − 5 . 4 μs = 5 . 45 μs 

 

path 

RS = d 
prop 

RS + d 
rec 

S − d 
send 

R · n μ

= 0 + 7 . 23 μs − 5 . 4 μs = −0 . 87 μs 

As a consequence, the systematic error on the estimation of the

ropagation delay is: 

ď (k ) = 

d 
path 

SR − d 
path 

RS 

2 

= 

5 . 45 μs − 0 . 87 μs 

2 

= 3 . 16 μs (C.1)
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