
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 582648, 16 pages
doi:10.1155/2008/582648

Research Article
Hard Real-Time Performances in Multiprocessor-Embedded
Systems Using ASMP-Linux

Emiliano Betti,1 Daniel Pierre Bovet,1 Marco Cesati,1 and Roberto Gioiosa1, 2

1 System Programming Research Group, Department of Computer Science, Systems, and Production,
University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy

2Computer Architecture Group, Computer Science Division, Barcelona Supercomputing Center (BSC), c/ Jordi Girona 31,
08034 Barcelona, Spain

Correspondence should be addressed to Roberto Gioiosa, gioiosa@sprg.uniroma2.it

Received 30 March 2007; Accepted 15 August 2007

Recommended by Ismael Ripoll

Multiprocessor systems, especially those based on multicore or multithreaded processors, and new operating system architectures
can satisfy the ever increasing computational requirements of embedded systems. ASMP-LINUX is a modified, high responsive-
ness, open-source hard real-time operating system for multiprocessor systems capable of providing high real-time performance
while maintaining the code simple and not impacting on the performances of the rest of the system. Moreover, ASMP-LINUX does
not require code changing or application recompiling/relinking. In order to assess the performances of ASMP-LINUX, benchmarks
have been performed on several hardware platforms and configurations.

Copyright © 2008 Emiliano Betti et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

This article describes a modified Linux kernel called ASMP-
Linux, ASymmetric MultiProcessor Linux, that can be used in
embedded systems with hard real-time requirements. ASMP-
Linux provides real-time capabilities while maintaining the
software architecture relatively simple. In a conventional
(symmetric) kernel, I/O devices and CPUs are considered
alike, since no assumption is made on the system’s load.
Asymmetric kernels, instead, consider real-time processes
and related devices as privileged and shield them from other
system activities.

The main advantages offered by ASMP-Linux to real-
time applications are as follows.

(i) Deterministic execution time (upto a few hundreds of
nanoseconds).

(ii) Very low system overhead.
(iii) High performance and high responsiveness.

Clearly, all of the good things offered by ASMP-Linux
have a cost, namely, at least one processor core dedicated to
real-time tasks. The current trend in processor design is lead-
ing to chips with more and more cores. Because the power
consumption of single-chip multicore processors is not sig-

nificantly higher than that of single-core processors, we can
expect that in a near future many embedded systems will
make use of multicore processors. Thus, we foresee that, even
in embedded systems, the hardware requirements of real-
time operating systems such as ASMP-Linux will become
quite acceptable in a near future.

The rest of this article is organized as follows: Section 2
illustrates briefly the main characteristics of asymmetric ker-
nels; Section 3 describes the evolution of single-chip multi-
core processors; Section 4 illustrates the main requirements
of hard real-time systems; Section 5 gives some details about
how ASMP-Linux is implemented; Section 6 lists the tests
performed on different computers and the results obtained;
and finally, Section 7 suggests future work to be performed
in the area of asymmetric kernels.

2. ASYMMETRICMULTIPROCESSOR KERNELS

The idea of dedicating some processors of a multiproces-
sor system to real-time tasks is not new. In an early de-
scription of the ARTiS system included in [1], processors are
classified as realtime and nonreal-time. Real-time CPUs exe-
cute nonpreemptible code only, thus tasks running on these



2 EURASIP Journal on Embedded Systems

processors perform predictably. If a task wants to enter into
a preemptible section of code on a real-time processor, AR-
TiS will automatically migrate this task to a nonreal-time
processor.

Furthermore, dedicated load-balancing strategies allow
all CPUs to be fully exploited. In a more recent article by
the same group [2], processes have been divided into three
groups: highest priority (RT0), other real-time Linux tasks
(RT1+), and nonreal-time tasks; furthermore, a basic library
has been implemented to provide functions that allow pro-
grammers to register and unregister RT0 tasks. Since ARTiS
relies on the standard Linux interrupt handler, the system la-
tency may vary considerably: a maximum observed latency
of 120 microseconds on a 4-way Intel architecture-64 (IA-64)
heavily loaded system has been reported in [2].

A more drastic approach to reduce the fluctuations in the
latency time has been proposed independently in [3, 4]. In
this approach, the source of real-time events is typically a
hardware device that drives an IRQ signal not shared with
other devices. The ASMP system is implemented by bind-
ing the real-time IRQ and the real-time tasks to one or
more “shielded” processors, which never handle nonreal-
time IRQs or tasks. Of course, the nonreal-time IRQs and
nonreal-time tasks are handled by the other processors in the
system. As discussed in [3, 4], the fluctuations of the system
latency are thus significantly reduced.

It is worth noting that, since version 2.6.9 relased in Oc-
tober 2004, the standard Linux kernel includes a boot param-
eter (isolcpus) that allows the system administrator to specify
a list of “isolated” processors: they will never be considered
by the scheduling algorithm, thus they do not normally run
any task besides the per-CPU kernel threads. In order to force
a process to migrate on an isolated CPU, a programmer may
make use of the Linux-specific system call sched setaffinity().
The Linux kernel also includes a mechanism to bind a spe-
cific IRQ to one or more CPUs; therefore, it is easy to
implement an ASMP mechanism using a standard Linux
kernel.

However, the implementation of ASMP discussed in this
article, ASMP-Linux, is not based on the isolcpus boot pa-
rameter. A clear advantage of ASMP-Linux is that the system
administrator can switch between SMP and ASMP mode at
run time, without rebooting the computer. Moreover, as ex-
plained in Section 5.2, ASMP-Linux takes care of avoiding
load rebalancing for asymmetric processors, thus it should
be slightly more efficient than a system based only on isolc-
pus.

Although we will concentrate in this article on the real-
time applications of asymmetric kernels, it is worth men-
tioning that these kernels are also used in other areas. As an
example, some multicore chips introduced recently include
different types of cores and require thus an asymmetric ker-
nel to handle each core properly. The IBM cell broadband
engine (BE) discussed in [5], for instance, integrates a 64-bit
PowerPC processor core along with eight “synergistic proces-
sor cores.” This multicore chip is the heart of the Sony PS3
playstation console, although other applications outside of
the video game console market, such as medical imaging and
rendering graphical data, are being considered.

3. MULTIPROCESSOR-EMBEDDED SYSTEMS

The increasing demand for computational power is leading
embedded system developers to use general-purpose proces-
sors, such as ARM, Intel, AMD, or IBM’s POWER, instead of
microcontrollers or digital signal processors (DSPs).

Furthermore, many hardware vendors started to develop
and market system-on-chip (SoC) devices, which usually in-
clude on the same integrated circuit one or more general-
purpose CPUs, together with other specialized processors
like DSPs, peripherals, communication buses, and memory.
System-on-chip devices are particularly suited for embedded
systems because they are cheaper, more reliable, and con-
sume less power than their equivalent multichip systems. Ac-
tually, power consumption is considered as the most impor-
tant constraint in embedded systems [6].

In the quest for the highest CPU performances, hardware
developers are faced with a difficult dilemma. On one hand,
the Moore law does not apply to computational power any
more, that is, computational power is no longer doubling ev-
ery 18 months as in the past. On the other hand, power con-
sumption continues to increase more than linearly with the
number of transistors included in a chip, and the Moore law
still holds for the number of transistors in a chip.

Several technology solutions have been adopted to solve
this dilemma. Some of them try to reduce the power con-
sumption by sacrificing computational power, usually by
means of frequency scaling, voltage throttling, or both. For
instance, the Intel Centrino processor [7] may have a vari-
able CPU clock rate ranging between 600 MHz and 1.5 GHz,
which can be dynamically adjusted according to the compu-
tational needs.

Other solutions try to get more computational power
from the CPU without increasing power consumption. For
instance, a key idea was to increase the instruction level paral-
lelism (ILP) inside a processor; this solution worked well for
some years, but nowadays the penalty of a cache miss (which
may stall the pipeline) or of a miss-predicted branch (which
may invalidate the pipeline) has become way too expensive.

Chip-multithread (CMT)[8] processors aim to solve the
problem from another point of view: they run different pro-
cesses at the same time, assigning them resources dynami-
cally according to the available resources and requirements.
Historically the first CMT processor was a coarse-grained
multithreading CPU (IBM RS64-II [9, 10]) introduced in
1998: in this kind of processor only one thread executes at any
instance. Whenever that thread experiments a long-latency
delay (such as a cache miss), the processor swaps out the
waiting thread and starts to execute the second thread. In this
way the machine is not idle during the memory transfers and,
thus, its utilization increases.

Fine-grained multithreading processors improve the pre-
vious approach: in this case the processor executes the two
threads in successive cycles, most of the time in a round-
robin fashion. In this way, the two threads are executed
at the same time but, if one of them encounters a long-
latency event, its cycles are lost. Moreover, this approach re-
quires more hardware resources duplication than the coarse-
grained multithreading solution.



Emiliano Betti et al. 3

In simultaneous multithreading (SMT) processors two
threads are executed at the same time, like in the fine-grained
multithreading CPUs; however, the processor is capable of
adjusting the rate at which it fetches instructions from one
thread flow or the other one dynamically, according to the
actual environmental situation. In this way, if a thread ex-
periments a long-latency event, its cycles will be used by the
other thread, hopefully without loosing anything.

Yet another approach consists of putting more processors
on a chip rather than packing into a chip a single CPU with
a higher frequency. This technique is called chip-level mul-
tiprocessing (CMP), but it is also known as “chip multipro-
cessor;” essentially it implements symmetric multiprocessing
(SMP) inside a single VLSI integrated circuit. Multiple pro-
cessor cores typically share a common second- or third-level
cache and interconnections.

In 2001, IBM introduced the first chip containing
two single-threaded processors (cores): the POWER4 [11].
Since that time, several other vendors have also introduced
their multicore solutions: dual-core processors are nowadays
widely used (e.g., Intel Pentium D [12], AMD Opteron [13],
and Sun UltraSPARC IV [14] have been introduced in 2005);
quad-core processors are starting to appear on the shelves
(Intel Pentium D [15] was introduced in 2006 and AMD
Barcelona will appear in late 2007); eight-core processors are
expected in 2008.

In conclusion, we agree with McKenney’s forecast [16]
that in a near future many embedded systems will sport sev-
eral CMP and/or CMT processors. In fact, the small increase
in power consumption will likely be justified by the large in-
crement of computational power available to the embedded
system’s applications. Furthermore, the actual trend in the
design of system-on-chip devices suggests that in a near fu-
ture such chips will include multicore processors. Therefore,
the embedded system designers will be able to create boards
having many processors almost “for free,” that is, without the
overhead of a much more complicated electronic layout or a
much higher power consumption.

4. SATISFYING HARD REAL-TIME
CONSTRAINTS USING LINUX

The term real-time pertains to computer applications whose
correctness depends not only on whether the results are the
correct ones, but also on the time at which the results are
delivered. A real-time system is a computer system that is able
to run real-time applications and fulfill their requirements.

4.1. Hard and soft real-time applications

Real-time systems and applications can be classified in sev-
eral ways. One classification divides them in two classes:
“hard” real-time and “soft” real-time.

A hard real-time system is characterized by the fact that
meeting the applications’ deadlines is the primary metric
of success. In other words, failing to meet the applications’
deadlines—timing requirements, quality of service, latency
contraints, and so on—is a catastrophic event that must be
absolutely avoided.

Conversely, a soft real-time system is suitable to run appli-
cations whose deadlines must be satisfied “most of the times,”
that is, the job carried on by a soft real-time application re-
tains some value even if a deadline is passed. In soft real-time
systems some design goals—such as achieving high average
throughput—may be as important, or more important, than
meeting application deadlines.

An example of hard real-time application is a missile de-
fense system: whenever a radar detects an attacking missile,
the real-time system has to compute all the information re-
quired for tracking, intercepting, and destroying the target
missile. If it fails, catastrophic events might follow. A very
common example of soft real-time application is a video
stream decoder: the incoming data have to be decoded on the
fly. If, for some reason, the decoder is not able to translate the
stream before its deadline and a frame is lost, nothing catas-
trophic happens: the user will likely not even take notice of
the missing frame (the human eye cannot distinguish images
faster than 1/10 second).

Needless to say, hard real-time applications put much
more time and resource constraints than soft real-time ap-
plications, thus they are critical to handle.

4.2. Periodic and event-driven
real-time applications

Another classification considers two types of real-time appli-
cations: “periodic” and “event-driven.”

As the name suggests, periodic applications execute a task
periodically, and have to complete their job within a prede-
fined deadline in each period. A nuclear power plant monitor
is an example of a periodic hard real-time application, while
a multimedia decoder is an example of a periodic soft real-
time application.

Conversely, event-driven applications give raise to pro-
cesses that spend most of the time waiting for some event.
When an expected even occurs, the real-time process wait-
ing for that event must wake up and handle it so as to satisfy
the predefined time constraints. An example of event-driven
hard real-time application is the missile defense system al-
ready mentioned, while a network router might be an exam-
ple of an event-driven soft real-time application.

When dealing with periodic real-time applications, the
operating system must guarantee a sufficient amount of
resources—processors, memory, network bandwith, and so
on—to each application so that it succeeds in meeting its
deadlines. Essentially, in order to effectively implement a
real-time system for periodic applications, a resource allo-
cation problem must be solved. Clearly, the operating system
will assign resources to processes according to their priorities,
so that a high-priority task will have more resources than a
low-priority task.

This article focuses on both event-driven and periodic
hard real-time applications. Even if the former ones are
supposed to be the most critical tasks to handle, in or-
der to estimate the operating system overhead, some re-
sults for periodic real-time application are also provided in
Section 6.



4 EURASIP Journal on Embedded Systems

OS latency

Interrupt
latency

Scheduler
latency

Event

RT process running

OS overhead

t

Figure 1: Jitter.

4.3. Jitter

In an ideal world, a real-time process would run undisturbed
from the beginning to the end, directly communicating with
the monitored device. In this situation a real-time process
will require always the same amount of time (T) to complete
its (periodic) task and the system is said to be deterministic.

In the real world, however, there are several software lay-
ers between the device and the real-time process, and other
processes and services could be running at the same time.
Moreover, other devices might require attention and inter-
rupt the real-time execution. As a result, the amount of time
required by the real-time process to complete its task is actu-
ally Tx = T + ε, where ε ≥ 0 is a delay caused by the system.
The variation of the values for ε is defined as the system’s jit-
ter, a measure of the non-determinism of a system.

Determinism is a key factor for hard real-time systems:
the larger is the jitter, the less deterministic is the system’s
response. Thus, the jitter is also an indicator of the hard real-
time capabilities of a system: if the jitter is greater than a crit-
ical threshold, the system cannot be considered as real-time.
As a consequence, a real-time operating system must be de-
signed so as to minimize the jitter observed by the real-time
applications.

Jitter, by its nature, is not constant and makes the sys-
tem behavior unpredictable; for this reason, real-time appli-
cation developers must provide an estimated worst-case exe-
cution time (WCET), which is an upper bound (often quite
pessimistic) of the real-time application execution time. A
real-time application catches its deadline if Tx ≤ WCET.

As discussed in [17–19], short, unpredictable activities
such as interrupts handling are the main causes of large jit-
ter in computer systems. As shown in Figure 1, the jitter is
composed by two main components: the “operating system
overhead” and the “operating system latency.”

The operating system overhead is the amount of time the
CPU spends while executing system’s code—for example,
handling the hardware devices or managing memory—and
code of other processes instead of the real-time process’ code.

The operating system latency is the time elapsed between
the instant in which an event is raised by some hardware de-
vice and the instant in which a real-time application starts
handling that event.1

1 Periodic real-time applications, too, suffer from operating system latency.
For example, the operating system latency may cause a periodic appli-

The definitions of overhead and latency are rather infor-
mal, because they overlap on some corner cases. For instance,
the operating system overhead includes the time spent by the
kernel in order to select the “best” process to run on each
CPU; the component in charge of this activity is called sched-
uler. However, in a specific case, the time spent while execut-
ing the scheduler is not accounted as operating system over-
head but rather as operating system latency: it happens when
the scheduler is going to select precisely the process that car-
ries on the execution of the real-time application. On the
other hand, if some nonreal-time interrupts occur between a
real-time event and the wakeup of the real-time applications,
the time spent by the kernel while handling the nonreal-time
interrupts shoud be accounted as overhead rather than la-
tency.

As illustrated in Figure 1, operating system latency can
be decomposed in two components: the “interrupt latency”
and the “scheduler latency.” Both of them reduce the system’s
determinism and, thus, its real-time capabilities.

The interrupt latency is the time required to execute the
interrupt handler connected to the device that raised the in-
terrupt, that is, the device that detected an event the real-
time process has to handle. The scheduler latency is the time
required by the operating system scheduler to select the real-
time task as the next process to run and assign it the CPU.

4.4. Hardware jitter

There is a lower bound on the amount of nondeterminism
in any embedded system that makes use of general-purpose
processors. Modern custom of-the-shelf (COTS) processors
are intrinsically parallel and so complex that it is not possible
to predict when an instruction will complete. For example,
cache misses, branch predictors, pipeline, out-of-order exe-
cution, and speculative accesses could significantly alter the
execution time of an in-flying instruction. Moreover, some
shared resources, such as the PCI bus or the memory con-
troller, require an arbitration among the hardware devices,
that is, a lock mechanism. There are also “intrinsic indeter-
ministic buses” used to connect devices to the system or sys-
tem to system, such as Ethernet or PCI buses [20].

Nonetheless, most of the real-time embedded systems
that require high computational power make use of COTS
processors—mainly for their high performance/cost ratio—
implicitly giving strict determinism up. As a matter of fact,
commercial and industrial real-time systems often follow the
five-nines rule: the system is considered hard real-time if a
real-time application catches its deadline the 99.999% of the
times.

The indeterminism caused by the hardware cannot be re-
duced by the software, thus no real-time operating system
(including ASMP-Linux) can have better performances than
those of the underlying hardware. In other words, the exe-
cution time Tx of a real-time task will always be affected by

cation to wake up with some delay with respect to the beginning of its
real-time period.



Emiliano Betti et al. 5

ApplicationsApplicationsRT
applications

RTOS OS OS

HW abstraction layer

Hardware

Figure 2: Horizontally partitioned operating system.

some jitter, no matter of how good the real-time operating
system is. However, ASMP-Linux aims to contribute to this
jitter as less as possible.

4.5. System partitioning

The real-time operating system must guarantee that, when
a real-time application requires some resource, that resource
is made available to the application as soon as possible. The
operating system should also ensure that the resources shared
among all processes—the CPU itself, the memory bus, and
so on—are assigned to the processes according to a policy
that takes in consideration the priorities among the running
processes.

As long as the operating system has to deal only with pro-
cesses, it is relatively easy to preempt a running process and
assign the CPU to another, higher-priority process. Unfor-
tunately, external events and operating system critical activ-
ities, required for the correct operation of the whole system,
occur at unpredictable times and are usually associated with
the highest priority in the system. Thus, for example, an ex-
ternal interrupt could delay a critical, hard real-time applica-
tion that, deprived of the processor, could eventually miss its
deadline. Even if the application manages to catch its dead-
line, the operating system may introduce a factor of nonde-
terminism that is tough to predict in advance.

Therefore, handling both external events and operating
system critical activities while guaranteeing strict deadlines is
the main problem in real-time operating systems. Multipro-
cessor systems make this problem even worse, because oper-
ating system activities are much more complicated.

In order to cope with this problem, real-time operating
systems are usually partitioned horizontally or vertically. As
illustrated in Figure 2, horizontally partitioned operating sys-
tems have a bottom layer (called hardware abstraction layer,
or HAL) that virtualizes the real hardware; on top of this
layer there are several virtual machines, or partitions, running
a standard or modified operating system, one for each appli-
cation’s domain; finally, applications run into their own do-
main as they were running on a dedicated machine.

In horizontally partitioned operating systems the real-
time application have an abstract view of the system; ex-

RT
applicationsApplications

System
activities

RTOS

Hardware

Regular partition RT partition

Figure 3: Vertically partitioned operating system.

ternal events are caught by the hardware abstraction layer
and propagated to the domains according to their priorities.
While it seems counterintuitive to use virtual machines for
hard real-time applications, this approach works well in most
of the cases, even if the hardware abstraction layer—in par-
ticular the partitions scheduler or the interrupt dispatcher—
might introduce some overhead. Several Linux-based real-
time operating systems such as RTAI [21] (implemented on
top of Adeos [22]) and some commercial operating systems
like Wind River’s VxWorks [23] use this software architec-
ture.

In contrast with the previous approach, in a vertically
partitioned operating system the resources that are crucial for
the execution of the real-time applications are directly as-
signed to the application themselves, with no software layer
in the middle. The noncritical applications and the operating
system activities not related to the real-time tasks are not al-
lowed to use the reserved resources. This schema is illustrated
in Figure 3.

Thanks to this approach, followed by ASMP-Linux, the
real-time specific components of the operating system are
kept simple, because they do not require complex parti-
tion schedulers or virtual interrupt dispatchers. Moreover,
the performances of a real-time application are potentially
higher with respect to those of the corresponding application
in a horizontally partitioned operating system, because there
is no overhead due to the hardware abstraction layer. Finally,
in a vertically partitioned operating system, the nonreal-time
components never slow down unreasonably, because these
components always have their own hardware resources dif-
ferent from the resources used by the real-time tasks.

5. IMPLEMENTATION OF ASMP-LINUX

ASMP-Linux has been originally developed as a patch for the
2.4 Linux kernel series in 2002 [3]. After several revisions and
major updates, ASMP-Linux is now implemented as a patch
for the Linux kernel 2.6.19.1, the latest Linux kernel version
available when this article has been written.

One of the design goals of ASMP-Linux is simplicity:
because Linux developers introduce quite often significant
changes in the kernel, it would be very difficult to maintain



6 EURASIP Journal on Embedded Systems

the ASMP-Linux patch if it would be intrusive or overly com-
plex. Actually, most of the code specific to ASMP-Linux is
implemented as an independent kernel module, even if some
minor changes in the core kernel code—mainly in the sched-
uler, as discussed in Section 5.2—are still required.

Another design goal of ASMP-Linux is architecture-
independency: the patch can be easily ported to many dif-
ferent architectures, besides the IA-32 architecture that has
been adopted for the experiments reported in Section 6.

It should be noted, however, that in a few cases ASMP-
Linux needs to interact with the hardware devices (for in-
stance, when dealing with the local timer, as explained in
Section 5.3). In these cases, ASMP-Linux makes use of the
interfaces provided by the standard Linux kernel; those in-
terfaces are, of course, architecture-dependent but they are
officially maintained by the kernel developers.

It is also worth noting that what ASMP-Linux can or
cannot do depends ultimately on the characteristics of the
underlying system architecture. For example, in the IBM’s
POWER5 architecture disabling the in-chip circuit that gen-
erates the local timer interrupt (the so-called decrementer)
also disables all other external interrupts. Thus, the designer
of a real-time embedded system must be aware that in some
general-purpose architectures it might be simply impossible
to mask all sources of system jitter.

ASMP-Linux is released under the version 2 of the GNU
General Public License [24], and it is available at http://
www.sprg.uniroma2.it/asmplinux.

5.1. System partitions

ASMP-Linux is a vertically partitioned operating system.
Thus, as explained in Section 4.5, it implements two differ-
ent kinds of partitions as follows.

System partition

It executes all the nonreal-time activities, such as daemons,
normal processes, interrupt handling for noncritical devices,
and so on.

Real-time partition

It handles some real-time tasks, as well as any hardware de-
vice and driver that is crucial for the real-time performances
of that tasks.

In an ASMP-Linux system there is exactly one system par-
tition, which may consist of several processors, devices, and
processes; moreover, there should always exist at least one
real-time partition (see Figure 4). Additional real-time par-
titions might also exist, each handling one specific real-time
application.

Each real-time partition consists of a processor (called
shielded CPU, or shortly s-cpu), nirq ≥ 0 IRQ lines assigned
to that processor and corresponding to the critical hardware
devices handled in the partition, and ntask ≥ 0 real-time pro-
cesses (there could be no real-time process in the partition;
this happens when the whole real-time algorithm is coded
inside an interrupt handler).

System activities and
non-RT tasks

CPU0 CPU1 CPU2 CPU3

RT tasks

Interrupt
controller

Disk Net RT device

SYS partition RT partition

Figure 4: ASMP-Linux partitioning.

Each real-time partition is protected from any external
event or activity that does not belong to the real-time task
running on that partition. Thus, for example, no conven-
tional process can be scheduled on a shielded CPU and no
normal interrupt can be delivered to that processor.

5.2. Process handling

The bottom rule of ASMP-Linux while managing processes
is as follows.

Every process assigned to a real-time partition must run
only in that partition; furthermore, every process that does
not belong to a real-time partition cannot run on that parti-
tion.

It should be noted, however, that a real-time partition al-
ways include a few peculiar nonreal-time processes. In fact,
the Linux kernel design makes use of some processes, called
kernel threads, which execute only in Kernel Mode and per-
form system-related activities. Besides the idle process, a few
kernel threads such as ksoftirqd [25] are duplicated across all
CPUs, so that each CPU executes one specific instance of the
kernel thread. In the current design of ASMP-Linux, the per-
CPU kernel threads still remain associated with the shielded
CPUs, thus they can potentially compete with the real-time
tasks inside the partition. As we will see in Section 6, this de-
sign choice has no significant impact on the operating system
overhead and latency.

The ASMP-Linux patch is not intrusive because the stan-
dard Linux kernel already provides support to select which
processes can execute on each CPU. In particular, every pro-
cess descriptor contains a field named cpus allowed, which is
a bitmap denoting the CPUs that are allowed to execute the
process itself. Thus, in order to implement the asymmetric
behaviour, the bitmaps of the real-time processes are mod-
ified so that only the bit associated with the corresponding
shielded CPU is set; conversely, the bitmaps of the nonreal-
time processes are modified so that the bits of all shielded
CPUs are cleared.

A real-time partition might include more than one
real-time process. Scheduling among the real-time parti-
tion is still achieved by the standard Linux scheduler, so the



Emiliano Betti et al. 7

standard Linux static and dynamic priorities are honored. In
this case, of course, it is up to the developer of the real-time
application to ensure that the deadlines of each process are
always catched.

The list of real-time processes assigned to a real-time par-
tition may also be empty: this is intended for those applica-
tions that do not need to do anything more than handling the
interrupts coming from some hardware device. In this case,
the device handled in a real-time partition can be seen as a
smart device, that is, a device with the computational power
of a standard processor.

The ASMP-Linux patch modifies in a few places the
scheduling algorithm of the standard Linux kernel. In partic-
ular, since version 2.6, Linux supports the so-called schedul-
ing domains [25]: the processors are evenly partitioned in do-
mains, which are kept balanced by the kernel according to
the physical characteristics of the CPUs. Usually, the load in
CMP and CMT processors will be equally spread on all the
physical chips. For instance, in a system having two physical
processors chip0 and chip1, each of which being a 2-way CMT
CPU, the standard Linux scheduler will try to put two run-
ning processes so as to assign one process to the first virtual
processor of chip0 and the other one to the first virtual pro-
cessor of chip1. Having both processes running on the same
chip, one on each virtual processor, would be a waste of re-
source: an entire physical chip kept idle.

However, load balancing among scheduling domains is a
time-consuming, unpredictable activity. Moreover, it is ob-
viously useless for shielded processors, because only prede-
fined processes can run on each shielded CPU. Therefore, the
ASMP-Linux patch changes the load balancing algorithm so
that shielded CPUs are always ignored.

5.3. Interrupts handling

As mentioned in Section 4.3, interrupts are the major cause
of jitter in real-time systems, because they are generated by
hardware devices asynchronously with respect to the process
currently executed on a CPU. In order to understand how
ASMP-Linux manages this problem, a brief introduction on
how interrupts are delivered to processors is required.

Most uniprocessor and multiprocessor systems include
one or more Interrupt Controller chips, which are capable
to route interrupt signals to the CPUs according to prede-
fined routing policies. Two routing policies are commonly
found: either the Interrupt Controller propagates the next in-
terrupt signal to one specific CPU (using, e.g., a round-robin
scheduling), or it propagates the signal to all the CPUs. In the
latter case, the CPU that first stops the execution of its process
and starts to execute the interrupt handler sends an acknowl-
edgement signal to the Interrupt Controller, which frees the
others CPUs from handling the interrupt. Figure 5 shows a
typical configuration for a multiprocessor system based on
the IA-32 architecture.

A shielded process must receive only interrupts coming
from selected, crucial hardware devices, otherwise, the real-
time application executing on the shielded processor will
be affected by some unpredictable jitter. Fortunately, recent
Interrupt Controller chips—such as the I/O Advanced Pro-

CPU0

Loc-APIC 0

CPU1

Loc-APIC 1

CPU2

Loc-APIC 2

CPU3

Loc-APIC 3

I/O-APIC

Disk Net User device

Figure 5: A SMP using Intel IO-APIC.

grammable Interrupt Controller (I/O-APIC) found in the In-
tel architectures—can be programmed so that interrupt sig-
nals coming from specific IRQ lines are forwarded to a set of
predefined processors.

Thus, the ASMP-Linux patch instruments the Interrupt
Controller chips to forward general interrupts only to non-
shielded CPUs, while the interrupts assigned to a given real-
time partition are sent only to the corresponding shielded
CPU.

However, a shielded processor can also receive interrupt
signals that do not come from an Interrupt Controller at
all. In fact, modern processors include an internal interrupt
controller—for instance, in the Intel processors this compo-
nent is called Local APIC. This internal controller receives the
signals coming from the external Interrupt Controllers and
sends them to the CPU core, thus interrupting the current
execution flow. However, the internal controller is also capa-
ble to directly exchange interrupt signals with the interrupt
controllers of the other CPUs in the system; these interrupts
are said interprocessor interrupts, or IPI. Finally, the internal
controller could also generate a periodic self-interrupt, that
is, a clock signal that will periodically interrupt the execution
flow of its own CPU core. This interrupt signal is called local
timer.

In multiprocessor systems based on Linux, interprocessor
interrupts are commonly used to force all CPUs in the sys-
tem to perform synchronization procedures or load balanc-
ing across CPUs while the local timer is used to implement
the time-sharing policy of each processor. As discussed in
the previous sections, in ASMP-Linux load balancing never
affects shielded CPUs. Furthermore, it is possible to disable
the local timer of a shielded CPU altogether. Of course, this
means that the time-sharing policy across the processes run-
ning in the corresponding real-time partition is no longer en-
forced, thus the real-time tasks must implement some form
of cooperative scheduling.

5.4. Real-time inheritance

During its execution, a process could invoke kernel services
by means of system calls. The ASMP-Linux patch slightly



8 EURASIP Journal on Embedded Systems

modifies the service routines of a few system calls, in par-
ticular, those related to process creation and removal: fork(),
clone(), and exit(). In fact, those system calls affect some data
structures introduced by ASMP-Linux and associated with
the process descriptor.

As a design choice, a process transmits its property of be-
ing part of a real-time partition to its children; it also main-
tains that property even when executing an exec()-like system
call. If the child does not actually need the real-time capabili-
ties, it can move itself to the nonreal-time partition (see next
section).

5.5. ASMP-linux interface

ASMP-Linux provides a simple /proc file interface to control
which CPUs are shielded, as well as the real-time processes
and interrupts attached to each shielded CPU. The inter-
face could have been designed as system calls but this choice
would have made the ASMP-Linux patch less portable (sys-
tem calls are universally numbered) and more intrusive.

Let us suppose that the system administrator wants to
shield the second CPU of the system (CPU1), and that she
wants to assign to the new real-time partition the process
having PID X and the interrupt vector N. In order to do this,
she can simply issue the following shell commands:

echo 1 > /proc/asmp/cpu1/shielded

echo X > /proc/asmp/cpu1/pids

echo N > /proc/asmp/cpu1/irqs.

The first command makes CPU1 shielded.2 The other
two commands assign to the shielded CPU the process and
the interrupt vector, respectively. Of course, more processes
or interrupt vectors can be added to the real-time partition
by writing their identifiers into the proper pids and irqs files
as needed.

To remove a process or interrupt vector it is suffi-
cient to write the corresponding identifier into the proper
/proc file prefixed by the minus sign (“−”). Writing 0 into
/proc/asmp/cpu1/shielded file turns the real-time partition
off: any process or interrupt in the partition is moved to the
nonreal-time partition, then the CPU is unshielded.

The /proc interface also allows the system administrator
to control the local timers of the shielded CPUs. Disabling
the local timer is as simple as typing:

echo 0 > /proc/asmp/cpu1/localtimer

The value written in the localtimer file can be either zero
(timer disabled) or a positive scaling factor that represents
how many ticks—that is, global timer interrupts generated
by the Programmable Interval Timer chip—must elapse be-
fore the local timer interrupt is raised. For instance, writing
the value ten into the localtimer file sets the frequency of the

2 Actually, the first command could be omitted in this case, because issu-
ing either the second command or the third one will implicitly shield the
target CPU.

Table 1: Characteristics of the test platforms.

ID Architecture CPUs Freq. GHz RAM GB

S1 IA-32 SMP HT 8 virt. 1.50 3

S2 IA-32 SMP 4 phys. 1.50 3

S3 IA-32 CMP 2 cores 1.83 1

local timer interrupt to 1/10 of the frequency of the global
timer interrupts.

Needless to say, these operations on the /proc interface
of ASMP-Linux can also be performed directly by the User
Mode programs through the usual open() and write() system
calls.

6. EXPERIMENTAL DATA

ASMP-Linux provides a good foundation for an hard real-
time operating system on multiprocessor systems. To validate
this claim, we performed two sets of experiments.

The first test, described in Section 6.2, aims to evaluate
the operating system overhead of ASMP-Linux: the execution
time of a real-time process executing a CPU-bound compu-
tation is measured under both ASMP-Linux and a standard
Linux 2.6.19.1 kernel, with different system loads, and on
several hardware platforms.

The second test, described in Section 6.3, aims to eval-
uate the operating system latency of ASMP-Linux: the local
timer is reprogrammed so as to raise an interrupt signal after
a predefined interval of time; the interrupt handler wakes a
sleeping real-time process up. The difference between the ex-
pected wake-up time and the actual wake-up time is a mea-
sure of the operating system latency. Again, the test has been
carried on under both ASMP-Linux and a standard Linux
2.6.19.1 kernel, with different system loads, and on several
hardware platforms.

6.1. Experimental environments

Two different platforms were used for the experiments;
Table 1 summarizes their characteristics and configurations.

The first platform is a 4-way SMP Intel Xeon HT [26] sys-
tem running at 1.50 GHz; every chip consists of two virtual
processors (HT stands for HyperThreading Technology [27]).
The operating system sees each virtual processor as a single
CPU. This system has been tested with HT enabled (configu-
ration “S1”) and disabled (configuration “S2”).

The second platform (configuration “S3”) is a desktop
computer based on a 2-way CMT Intel processor running
at 1.83 Ghz. The physical processor chip contains two cores
[28]. This particular version of the processor is the one used
in laptop systems, optimized for power consumption.

The Intel Xeon HT processor is a coarse-grained multi-
threading processor; on the other side, the Intel Dual Core
is a multicore processor (see Section 3). These two platforms
cover the actual spectrum of modern CMP/CMT processors.

We think that both hyperthreaded processors and low-
power versions of multicore processors are of particular in-
terest to embedded system designers. In fact, one of the



Emiliano Betti et al. 9

biggest problems in embedded systems is heat dissipation.
Hyperthreaded processors have relatively low power con-
sumption, because the virtual processors in the chips are not
full CPUs and the running threads are not really executed in
parallel. Furthermore, low-power versions of COTS proces-
sors have often been used in embedded systems precisely be-
cause they make the heat dissipation problems much easier
to solve.

For each platform, the following system loads have been
considered.

IDL The system is mostly idle: no User Mode process is
runnable beside the real-time application being tested.
This load has been included for comparison with the
other system loads.

CPU CPU load: the system is busy executing kp CPU-bound
processes, where p is the number of (virtual) proces-
sors in the system, and k is equal to 16 for the first test,
and to 128 for the second test.

AIO Asynchronous I/O load: the system is busy executing
kp I/O-bound processes, where k and p are defined
as above. Each I/O-bound process continuously issues
nonblocking write operations on disk.

SIO Synchronous I/O load: the system is busy executing
kp I/O-bound processes, where k and p are defined
as above. Each I/O-bound process continuously issues
synchronous (blocking) write operations on disk.

MIX Mixed load: the system is busy executing (k/2)p CPU-
bound processes, (k/2)p asynchronous I/O-bound
processes, and (k/2)p synchronous I/O-bound pro-
cesses, where k and p are defined as above.

Each of these workloads has a peculiar impact on the op-
erating system overhead. The CPU workload is characterized
by a large number of processes that compete for the CPUs,
thus the overhead due to the scheduler is significant. In the
AIO workload, the write operations issued by the processes
are asynchronous, but the kernel must serialize the low-level
accesses to the disks in order to avoid data corruption. There-
fore, the AIO workload is characterized by a moderate num-
ber of disk I/O interrupts and a significant overhead due to
data moving between User Mode and Kernel Mode buffers.
The SIO workload is characterized by processes that raise
blocking write operations to disk: each process sleeps until
the data have been written on the disk. This means that, most
of the times, the processes are waiting for an external event
and do not compete for the CPU. On the other hand, the
kernel must spend a significant portion of time handling the
disk I/O interrupts. Finally, in the MIX workload the kernel
must handle many interrupts, it must move large amounts of
data, and it must schedule many runnable processes.

For each platform, we performed a large number of iter-
ations of the tests by using the following.

N A normal (SCHED NORMAL) Linux process (just for
comparison).

Rw A “real-time” (SCHED FIFO) Linux process statically
bound on a CPU that also gets all extenal interrupt sig-
nals of the system.

Rb A “real-time” (SCHED FIFO) Linux process statically
bound on a CPU that does not receive any external in-
terrupt signal.

Aon A process running inside a real-time ASMP-Linux par-
tition with local timer interrupts enabled.

Aoff A process running inside a real-time ASMP-Linux par-
tition with local timer interrupts disabled.

The IA-32 architecture cannot reliably distribute the ex-
ternal interrupt signals across all CPUs in the system (this is
the well-known “I/O APIC annoyance” problem). Therefore,
two sets of experiments for real-time processes have been
performed: Rw represents the worst possible case, where the
CPU executing the real-time process handles all the external
interrupt signals; Rb represents the best possible case, where
the CPU executing the real-time process handles no interrupt
signal at all (except the local timer interrupt). The actual per-
formance of a production system is in some point between
the two cases.

6.2. Evaluating the OS overhead

The goal of the first test is to evaluate the operating system
overhead of ASMP-Linux. In order to achieve this, a simple,
CPU-bound conventional program has been developed. The
program includes a function performing n millions of inte-
ger arithmetic operations on a tight loop (n has been chosen,
for each test platform, so that each iteration lasts for about
0.5 seondc); this function is executed 1000 times, and the ex-
ecution time of each invocation is measured.

The program has been implemented in five versions (N,
Rw, Rb, Aon, and Aoff), and each program version has been
executed on all platforms (S1, S2, and S3).

As discussed in Section 4.3, the data Tx coming from the
experiments are the real-execution times resulting from the
base time T effectively required for the computation plus any
delay induced by the system. Generally speaking, Tx = T +
εh + εl + εo, where εh is a nonconstant delay introduced by the
hardware, εl is due to the operating system latency, and εo is
due to the operating system overhead. The variations of the
values εh +εl +εo give raise to the jitter of the system. In order
to understand how the operating system overhead εo affects
the execution time, estimations for T , εh, and εl are required.

In order to evaluate T and εh, the “minimum” execu-
tion time required by the function—the base time—has been
computed on each platform by running the program with
interrupts disabled, that is, exactly as if the operating system
were not present at all. The base time corresponds to T + εh;
however, the hardware jitter for the performed experiments
is negligible (roughly, some tens of nanoseconds, on the av-
erage) because the test has been written so that it makes little
use of the caches and no use at all of memory, it does not
execute long latency operation, and so on. Therefore, we can
safely assume that εh ≈ 0 and that the base time is essentially
the value T . On the S1 and S2 platforms, the measured base
time was 466.649 milliseconds, while on the S3 platform the
measured base time was 545.469 milliseconds.

Finally, because the test program is CPU-bound and
never blocks waiting for an interrupt signal, the impact of



10 EURASIP Journal on Embedded Systems

Table 2: Operating system overheads for the MIX workload (in milliseconds).

(a) Configuration S1

Proc Avg StDev Min Max

N 20275.784 6072.575 12.796 34696.051

Rw 28.459 12.945 10.721 48.837

Rb 27.461 9.661 3.907 42.213

Aon 30.262 8.306 8.063 41.099

Aoff 27.847 7.985 6.427 38.207

(b) Configuration S2

Proc Avg StDev Min Max

N 18513.615 5996.971 1.479 33993.351

Rw 4.215 0.226 3.913 10.146

Rb 1.420 0.029 1.393 1.554

Aon 1.490 0.044 1.362 1.624

Aoff 0.000 0.000 0.000 0.000

(c) Configuration S3

Proc Avg StDev Min Max

N 20065.194 6095.807 0.606 32472.931

Rw 3.477 0.024 3.431 3.603

Rb 0.554 0.031 0.525 0.807

Aon 0.556 0.032 0.505 0.811

Aoff 0.000 0.000 0.000 0.000

the operating system latency on the execution time is very
small (εl ≈ 0). One can thus assume that Tx ≈ T + εo.

Therefore, in order to evaluate εo, the appropriate base
times has been subtracted from the measured execution
times. These differences are statistically summarized for the
MIX workload in Table 2.3

Platform S1 shows how the asymmetric approach does
not provide real-time performance for HyperThreading ar-
chitectures. In fact, in those processors, the amount of shared
resources is significant, therefore, a real-time application
running on a virtual processor cannot be executed in a de-
terministic way regardless of the application running on the
other virtual processors.

The test results for platform S2 and S3, instead, clearly
state that ASMP-Linux does an excellent job in reducing the
impact of operating system overhead on real-time applica-
tions.

Platform S3 is the most interesting to us because provides
a good performance/cost ratio (where cost is intended in both
money and power consumption senses). For lack of space, in
the following analysis we will focus on that platform, unless
other platforms are clearly stated.

Figure 8 shows how platform S3 performs with the dif-
ferent workloads and test cases Rw, Rb, Aon, and Aoff (we do
not show results from the N test case because its times are
several orders of magnitude higher than the others). Each
box in the figure represents the maximum overhead mea-

3 Results for all workloads are reported in [29].

sured in all experiments performed on the specific workload
and test case. Since the maximum overhead might be consid-
ered as a rough estimator for the real-time characteristics of
the system, it can be inferred that all workloads present the
same pattern: Aoff is better than Aon, which in turn is roughly
equivalent to Rb, which is finally much better than Rw. Since
all workloads are alike, from now on we will specifically dis-
cuss the MIX workload—likely the most representative of a
real-world scenario.

Figure 6 shows the samples measured on system S3 with
MIX workload. Each dot represents a single test; its y-
coordinate corresponds to the difference betweeen the mea-
sured time and the base value, as reported in Table 2. (Notice
that the y-axis in the four plots have different scales).

The time required to complete each iteration of the test
varies according to the operating system overhead experi-
mented in that measurement: for example, in system S3, with
a MIX workload, each difference can be between 3.431 mil-
liseconds and 3.603 milliseconds for the Rw test case.

Figure 6(a) clearly shows that at the beginning of the test
the kernel was involved in some activity, which terminated
after about 300 samples. We identified this activity in creat-
ing the processes that belonged to the workload: after some
time all the processes have been created and that activity is no
longer present. Figure 6(a) also shows how, for the length of
the experiment, all the samples are affected by jitter, thus they
are far from the theoretical performance of the platform.

Figures 6(b) and 6(c) show that the operating system
overhead mainly consists of some short, regular activities: we
identify those activities with the local timer interrupt (which,



Emiliano Betti et al. 11

3.4

3.45

3.5

3.55

3.6

3.65

E
xe
cu
ti
on

ti
m
e
(m

s)

0 100 200 300 400 500 600 700 800 900 1000

Scatter RT0, platform S3, mix load

Measurements

(a) Rw

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

E
xe
cu
ti
on

ti
m
e
(m

s)

0 100 200 300 400 500 600 700 800 900 1000

Scatter RT1, platform S3, mix load

Measurements

(b) Rb

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

E
xe
cu
ti
on

ti
m
e
(m

s)

0 100 200 300 400 500 600 700 800 900 1000

Scatter ASMPon, platform S3, mix load

Measurements

(c) Aon

−1.5

−1

−0.5

0

0.5

1

E
xe
cu
ti
on

ti
m
e
(m

s)

0 100 200 300 400 500 600 700 800 900 1000

Scatter ASMPoff, platform S3, mix load

Measurements

(d) Aoff

Figure 6: Scatter graphics for system S3, MIX workload.

in fact, is not present in Figure 6(d)). Every millisecond the
local timer raised an interrupt (the highest priority kernel
activity) and the CPU executed the interrupt handler instead
of the real-time application. It can be noticed that Rb per-
forms slightly better than Aon. As a matter of fact, the two
test cases are very similar: in Rb the scheduler always selects
the test program because it has SCHED FIFO priority while
in Aon the scheduler selects the “best” runnable process in
the real-time ASMP partition—this normally means thatthe
test program itself, but in a few cases, might also select a per-
CPU kernel thread, whose execution makes the running time
of the test program longer.

It is straightforward to see in Figure 6(d) how ASMP-
Linux in the Aoff version has a deterministic behavior, with
no jitter, and catches the optimal performance that can be
achieved on the platform (i.e., the base time mentioned
above). On the other hand, using ASMP-Linux in the Aon

version only provides soft real-time performance, compara-
ble with those of Rb.

Figure 7 shows inverse cumulative densitive function
(CDF) of the probability (x-axis) that a given sample is less
than or equal to a threshold execution time (y-axis). For ex-

ample, in Figure 7(a), the probability that the overhead in
the test is less than or equal to 3.5 milliseconds is about 80%.
We think this figure clearly explains how the operating sys-
tem overhead can damage the performance of a real-time sys-
tem. Different operating system activities introduce different
amounts of jitter during the execution of the test, resulting in
a nondeterministic response time. Moreover, the figure states
how the maximum overhead can be significantly higher than
the average operating system overhead. Once again, the fig-
ure shows how ASMP-Linux in the Aon version is only suit-
able for soft real-time application as well as Rb. On the other
hand, Aoff provides hard real-time performance.

6.3. Evaluating the operating system latency

The goal of the second test is to evaluate the operating system
latency of ASMP-Linux . In order to achieve this, the local
timer (see Section 5.3) has been programmed so as to emu-
late an external device that raises interrupts to be handled by
a real-time application.

In particular, a simple program that sleeps until awak-
ened by the operating system has been implemented in five



12 EURASIP Journal on Embedded Systems

3.44

3.46

3.48

3.5

3.52
3.54

3.56

3.58

3.6

Q
u
an
ti
le

0 0.2 0.4 0.6 0.8 1

Probability

RT0 inverse CDF, platform S3, mix load

(a) Rw

0.55

0.6

0.65

0.7

0.75

0.8

Q
u
an
ti
le

0 0.2 0.4 0.6 0.8 1

Probability

RT1 inverse CDF, platform S3, mix load

(b) Rb

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Q
u
an
ti
le

0 0.2 0.4 0.6 0.8 1

Probability

ASMPon inverse CDF, platform S3, mix load

(c) Aon

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

Q
u
an
ti
le

0 0.2 0.4 0.6 0.8 1

Probability

ASMPoff inverse CDF, platform S3, mix load

(d) Aoff

Figure 7: Inverse density functions for overhead on system S3, MIX workload.

0

1

2

3

4

5

� 6

M
ax

O
S
ov
er
h
ea
d
(m

s)

Max OS overhead, platform S3

IDL CPU AIO SIO MIX

Loads

RTw
RTb

ASMPon
ASMPoff

Figure 8: OS maximum overhead comparison.

versions (N, Rw, Rb, Aon, and Aoff). Moreover, a kernel mod-
ule has been developed in order to simulate a hardware de-
vice: it provides a device file that can be used by a User Mode
program to get data as soon as they are available. The ker-
nel module reprograms the local timer to raise a one-shot
interrupt signal after a predefined time interval. The corre-

sponding interrupt handler awakes the process blocked on
the device file and returns to it a measure of the time elapsed
since the timer interrupts occurred.

The data coming from the experiments yield the time
elapsed since the local timer interrupt is raised and the User
Mode program starts to execute again. Each test has been re-
peated 10 000 times; the results are statistically summarized
for the MIX workload in Table 3.4

The delay observed by the real-time application is εh +
εl + εo. Assuming as in the previous test εh ≈ 0, the ob-
served delay is essentially due to the operating system over-
head and to the operating system latency. Except for the case
“N,” one can also assume that the operating system overhead
is very small because, after being awoken, the real-time ap-
plication does not do anything but issuing another read op-
eration from the device file. This means that the probability
of the real-time process being interrupted by any kernel ac-
tivity in such a small amount of time is very small. In fact,
the real-time application is either the only process that can
run on the processor (Aon and Aoff), or it has always greater
priority than the other processes in the system (Rw and Rb).
Thus, once awakened, the real-time task is selected right away
by the kernel scheduler and no other process can interrupt it.
Therefore, the delays shown in Table 3 are essentially due to

4 Results for all workloads are reported in [29].



Emiliano Betti et al. 13

Table 3: Operating system latencies for the MIX workload (in microseconds).

(a) Configuration S1

Proc Avg StDev Min Max

N 13923.606 220157.013 6.946 5.001·106

Rw 10.970 8.458 6.405 603.272

Rb 10.027 5.292 6.506 306.497

Aon 8.074 1.601 6.683 20.877

Aoff 8.870 1.750 6.839 23.230

(b) Configuration S2

Proc Avg StDev Min Max

N 24402.723 331861.500 4.904 4.997·106

Rw 5.996 1.249 4.960 39.982

Rb 5.511 1.231 4.603 109.964

Aon 5.120 0.275 4.917 9.370

Aoff 5.441 0.199 5.207 6.716

(c) Configuration S3

Proc Avg StDev Min Max

N 182577.713 936480.576 1.554 9.095·106

Rw 1.999 1.619 1.722 66.883

Rb 1.756 0.650 1.548 63.985

Aon 1.721 0.034 1.674 3.228

Aoff 1.639 0.025 1.602 2.466

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
ax

la
te
n
cy

(m
s)

Max latency, platform S3

IDL CPU AIO SIO MIX

RTw
RTb

ASMPon

ASMPoff

Figure 9: OS maximum latency comparison.

both the interrupt and the scheduler latency of the operating
system.

Figure 9 shows how platform S3 performs with the differ-
ent workloads and test cases Rw, Rb, Aon, and Aoff (we do not
show results from the N test case because its times are sev-
eral orders of magnitude higher than the others). Each box
in the figure represents the maximum latency measured in

all experiments performed on the specific workload and test
cases.

As we said, the probability that some kernel activity in-
terrupts the real-time application is very small, yet not null.
An interprocessor interrupt (IPI) could still be sent from one
processor to the one running the real-time application (even
for the Rb test) in order to force process load balancing. This
is, likely, what happened to Rw and Rb, since they experiment
a large, isolated maximum.

As in the previous test, from now on we will restrict our-
selves in discussing the MIX workload, which we think is rep-
resentative of all the workloads (see [29] for the complete
data set).

Figure 10 shows the samples measured on system S3
with MIX workload. Each dot represents a single test; its y-
coordinate corresponds to the latency time, as reported in
Table 3. (The y-axis in the four plots have different scales;
thus, e.g., the scattered points in Figure 10(d) would appear
as a straight horizontal line on Figure 10(b)).

Figure 11 shows inverse cumulative densitive function
(CDF) of the probability (x-axis) that a given sample is less
than or equal to a threshold execution time (y-axis). For ex-
ample, in Figure 11(d), the probability that the latency mea-
sured in the test is less than or equal to 1.6 microseconds is
about 98%. In the Aoff test case a small jitter is still present;
nonetheless, it is so small that it could be arguably tolerated
in many real-time scenarios.



14 EURASIP Journal on Embedded Systems

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

O
S
la
te
n
cy

(m
s)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

OS latency RT0 scatter, platform S3, mix load

Measurements

(a) Rw

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

O
S
la
te
n
cy

(m
s)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

OS latency RT1 scatter, platform S3, mix load

Measurements

(b) Rb

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

×10−3

O
S
la
te
n
cy

(m
s)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

OS latency ASMPon scatter, platform S3, mix load

Measurements

(c) Aon

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

×10−3

O
S
la
te
n
cy

(m
s)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

OS latency ASMPoff scatter, platform S3, mix load

Measurements

(d) Roff

Figure 10: Scatter graphics for system S3, MIX workload.

6.4. Final consideration

The goal of these tests was to evaluate ASMP-Linux on dif-
ferent Platforms. In fact, each Platform has benefits and
drawbacks: for example, Platform S1 is the less power con-
suming architecture because the virtual processors are not
full CPUs; however, ASMP-Linux does not provide hard
real-time performances on this Platform. Conversely, ASMP-
Linux provides hard real-time performances when run-
ning on Platform S2 but this Platform is the most ex-
pensive in terms of cost, surface, and power consump-
tion, thus we do not think it will fit well with embed-
ded systems’ constraints. Platform S3 is a good tradeoff be-
tween the previous two Platforms: ASMP-Linux still pro-
vides hard real-time performance even if the two cores
share some resources, resulting in reduced chip surface and
power consumption. Moreover, the tested processor has been
specifically designed for power-critical system (such as lap-
tops), thus we foreseen it will be largely used in embed-
ded systems, as it happened with its predecessor single-core
version.

7. CONCLUSIONS AND FUTUREWORK

In this paper we introduced ASMP-Linux as a fundamental
component for an hard real-time operating system based on
the Linux kernel for MP-embedded systems. We first intro-
duced the notion of jitter and classified it in hardware de-
lay and operating system latency and overhead. Then, we ex-
plained the asymmetric philosophy of ASMP-Linux and its
internal details as well as how real-time applications might
not catch their deadline because of jitter. Finally, we pre-
sented our experiment environments and tests: the test re-
sults show how ASMP-Linux is capable of minimizing both
operating system overhead and latency, thus providing deter-
ministic results for the tested applications.

Even if these results are encouraging, ASMP-Linux is not
a complete hard real-time operating system. We are planning
to add more features to ASMP-Linux in order to achieve this
goal. Specifically, we are planning to add a new scheduler
class for hard real-time applications that run on a shielded
partition. Moreover, we plan to merge the ASMP-Linux ker-
nel patch with the new timekeeping architecture that has



Emiliano Betti et al. 15

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Q
u
an
ti
le

0 0.2 0.4 0.6 0.8 1

Probability

RT0 inverse CDF, platform S3, mix load

(a) Rw

0

0.01

0.02

0.03

0.04

0.05

0.06

Q
u
an
ti
le

0 0.2 0.4 0.6 0.8 1

Probability

RT1 inverse CDF, platform S3, mix load

(b) Rb

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
×10−3

Q
u
an
ti
le

0 0.2 0.4 0.6 0.8 1

Probability

ASMPon inverse CDF, platform S3, mix load

(c) Aon

1.5
1.6

1.7
1.8

1.9
2

2.1

2.2

2.3
2.4

×10−3

Q
u
an
ti
le

0 0.2 0.4 0.6 0.8 1

Probability

ASMPoff inverse CDF, platform S3, mix load

(d) Aoff

Figure 11: Inverse density functions for overhead on system S3, MIX workload.

been introduced in the Linux 2.6.21 kernel version, in partic-
ular, with the high-resolution timers and the dynamic ticks:
this will improve the performances of periodic real-time
tasks. Finally, we will provide interpartition channels so that
hard real-time applications can exchange data with nonreal-
time applications running in the system partition without
affecting the hard real-time performances of the critical
tasks.

REFERENCES

[1] M. Momtchev and P. Marquet, “An open operating system for
intensive signal processing,” Tech. Rep. 2001-08, Lab-Oratoire
d’Informatique Fondamentale de Lille, Université des Sciences
et Technologies de Lille, Villeneuve d’Ascq Cedex, France,
2001.

[2] P. Marquet, E. Piel, J. Soula, and J.-L. Dekeyser, “Implemen-
tation of ARTiS, an asymmetric real-time extension of SMP
Linux,” in The 6th Real-Time Linux Workshop, Singapore,
November 2004.

[3] R. Gioiosa, “Asymmetric kernels for multiprocessor systems,”
M.S. thesis, University of Rome, Tor Vergata, Italy, October
2002.

[4] S. Brosky and S. Rotolo, “Shielded processors: guaranteeing
sub-millisecond response in standard Linux,” in The 4th Real-
Time Linux Workshop, Boston, Mass, USA, December 2002.

[5] IBM Corp., “The Cell project at IBM Research,” http://www
.research.ibm.com/cell/home.html.

[6] L. Eggermont, Ed., Embedded Systems Roadmap, STW Tech-
nology Foundation, 2002, http://www.stw.nl/Programmas/
Progress/ESroadmap.htm.

[7] Intel Corp., “Intel Core2 Duo Mobile Processor Datasheet,”
ftp://download.intel.com/design/mobile/SPECUPDT/
31407917.pdf, 2006.

[8] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer,
and S. R. Kunkel, “Characterization of simultaneous multi-
threading (SMT) efficiency in POWER5,” IBM Journal of Re-
search and Development, vol. 49, no. 4-5, pp. 555–564, 2005.

[9] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R.
Kunkel, “A multithreaded PowerPC processor for commercial
servers,” IBM Journal of Research and Development, vol. 44,
no. 6, pp. 885–898, 2000.

[10] S. Storino, A. Aipperspach, J. Borkenhagen, et al., “Com-
mercial multi-threaded RISC processor,” in Proceedings of the
IEEE 45th International Solid-State Circuits Conference, Digest
of Technical Papers (ISSCC ’98), pp. 234–235, San Francisco,
Calif, USA, February 1998.

[11] J. M. Tendler, J. S. Dodson, J. S. Fields Jr., H. Le, and B. Sin-
haroy, “POWER4 system microarchitecture,” IBM Journal of
Research and Development, vol. 46, no. 1, pp. 5–25, 2002.

[12] Intel Corp., “Intel Pentium D Processor 900 sequence and
Intel Pentium Processor Extreme Edition 955, 965 datasheet,”
ftp://download.intel.com/design/PentiumXE/datashts/
31030607.pdf, 2006.

[13] Advanced Micro Devices, “AMD OpteronTM Processor Prod-
uct Data Sheet,” http://www.amd.com/us-en/assets/content
type/white papers and tech docs/23932.pdf, 2006.



16 EURASIP Journal on Embedded Systems

[14] Sun Microsystems, “UltraSPARC� IV Processor Architecture
Overview,” http://www.sun.com/processors/whitepapers/us4
whitepaper.pdf, February 2004.

[15] Intel Corp., “Intel Quad-Core processors,” http://www.intel
.com/technology/quad-core/index.htm.

[16] P. McKenney, “SMP and embedded real-time,” Linux Jour-
nal, vol. 2007, no. 153, p. 1, 2007, http://www.linuxjournal
.com/article/9361.

[17] R. Gioiosa, F. Petrini, K. Davis, and F. Lebaillif-Delamare,
“Analysis of system overhead on parallel computers,” in Pro-
ceedings of the 4th IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT ’04), pp. 387–
390, Rome, Italy, December 2004.

[18] F. Petrini, D. Kerbyson, and S. Pakin, “The case of the missing
supercomputer performance: achieving optimal performance
on the 8,192 processors of ASCI Q,” in ACM/IEEE Conference
Supercomputing (SC ’03), p. 55, Phoenix, Ariz, USA, Novem-
ber 2003.

[19] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “Sys-
tem noise, OS clock ticks, and fine-grained parallel applica-
tions,” in Proceedings of the 19th ACM International Conference
on Supercomputing (ICS ’05), pp. 303–312, ACM Press, June
2005.

[20] S. Schönberg, “Impact of PCI-bus load on applications in a
PC architecture,” in Proceedings of the 24th IEEE International
Real-Time Systems Symposium (RTSS ’03), pp. 430–438, Can-
cun, Mexico, December 2003.

[21] L. Dozio and P. Mantegazza, “Real time distributed control
systems using RTAI,” in Proceedings of the 6th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC ’03), pp. 11–18, Hokkaido, Japan, May
2003.

[22] K. Yaghmour, “Adaptive domain environment for operating
systems,” http://www.opersys.com/ftp/pub/Adeos/adeos.pdf,
2001.

[23] Wind River, “VxWorks programmer guide,” http://www
.windriver.com/, 2003.

[24] Free Software FoundationInc., “GNU General Public License,
version 2,” http://www.gnu.org/licenses/gpl2.html, June 1991.

[25] D. P. Bovet and M. Cesati, Understanding the Linux Kernel,
O’Reilly Media, 3rd edition, 2005.

[26] Intel Corp., “Intel Xeon processors,” http://download.intel
.com/design/Xeon/datashts/30624902.pdf.

[27] Intel Corp., “Hyper-Threading technology,” http://www.intel
.com/technology/platform-technology/hyper-threading/index
.htm.

[28] Intel Corp., “Intel Core2 Extreme Processor X6800 and Intel
Core2 Duo Desktop Processor E6000 sequence datasheet,”
http://www.intel.com/design/processor/datashts/313278.htm,
2006.

[29] E. Betti, D. P. Bovet, M. Cesati, and R. Gioiosa, “Hard real-
time performances in multiprocessor embedded systems using
ASMP-Linux,” Tech. Rep. TR002, System Programming Re-
search Group, Department of Computer Science, Systems and
Production, University of Rome “Tor Vergata”, Rome, Italy,
2007, http://www.sprg.uniroma2.it/asmplinux/.


	1. INTRODUCTION
	2. ASYMMETRIC MULTIPROCESSOR KERNELS
	3. MULTIPROCESSOR-EMBEDDED SYSTEMS
	4. SATISFYING HARD REAL-TIME CONSTRAINTS USING LINUX
	4.1. Hard and soft real-time applications
	4.2. Periodic and event-driven real-time applications
	4.3. Jitter
	4.4. Hardware jitter
	4.5. System partitioning

	5. IMPLEMENTATION OF ASMP-LINUX
	5.1. System partitions
	5.2. Process handling
	5.3. Interrupts handling
	5.4. Real-time inheritance
	5.5. ASMP-linux interface

	6. EXPERIMENTAL DATA
	6.1. Experimental environments
	6.2. Evaluating the OS overhead
	6.3. Evaluating the operating system latency
	6.4. Final consideration

	7. CONCLUSIONS AND FUTUREWORK
	REFERENCES

