
doi: 10.1016/j.procs.2015.05.461

An Introductory Course in the
Computational Modeling of Nature

Kathie A. Yerion1

1Gonzaga University, Spokane WA U.S.A.
yerion@gonzaga.edu

Abstract

This introductory course in computational modeling of
nature contains the development of three kinds of models of
phenomena in nature -- agent-based models and simple finite
difference models using the environment of the NetLogo
language and complex finite difference models using the
language of C++. No prior programming experience is
assumed. The natural phenomena modeled include some
standard ones (e.g. ants following pheromone trails, the
interaction of sheep and wolves) and some non-standard ones
(the creation of the world, 3 dogs playing games, and formation
of stripes and spots in the skins of animals). The emphasis of
the course is on the modeling process. A distinguishing feature
is that students are able to compare and critique these models.

Keywords: modeling, agent-based, system-dynamics

1 Introduction

Procedia Computer Science

Volume 51, 2015, Pages 1967–1976

ICCS 2015 International Conference On Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

1967

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.461&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.461&domain=pdf

The background for the development of the course was the
involvement of faculty at a set of colleges in the northwest of the United
States in an NSF grant (CNS-0829651) for “computational thinking
across disciplines” during the years 2008-2011. During that time, the
author completed a finite difference approximation for a system of partial
differential equations modeling the formation of stripes and spots in
animal skins (Bassiri, 2009), attended a workshop on computational
science by the National Institute of Computational Science, and
developed a teaching module for a model of formation of stripes and
spots in animal skins (Yerion K. , 2012). This introductory course in
computational modeling of nature was first offered in 2012 and has
undergone several revisions in each year since. Although the course was
developed for students in the liberal arts, it is an elective for computer
science students. Currently, the mixture in the course is eighty percent
computer science students and twenty percent liberal arts or business
majors. However, it is taught assuming no prior programming
experience. Although it also has no mathematics pre-requisite, students
have always had a calculus background. This allows the course to include
differential equations and their finite difference approximations. For
students without this background, the instructor would need to spend
additional time teaching the students about recurrence relations, the
concept of a derivative, and how they relate to each other.

In the first offering of the course, the author received significant help
from Matthew Dickerson of Middlebury College who teaches an agent-
based modeling course for environmental studies using the NetLogo
language. In addition, NetLogo contains a Models Library with many
examples. As the course evolved, new agent-based models were
added.However, since the emphasis of this course is modeling, it was
important to include multiple types of modeling techniques. Having
learned system dynamics modeling while attending a computational
science workshop, the author decided to add this modeling technique to
the course. System dynamics modeling allows almost direct translation of

An Introduction Course in the Computational Modeling of Nature Kathie Yerion

1968

first order difference equations with initial conditions through click and
drag of items to a NetLogo window. In the third edition of the course,
the model of the formation of animal patterns was added. Currently,
seven weeks of the course are spent on agent-based models using
NetLogo, five weeks on system dynamics models using NetLogo, and
two weeks on finite difference techniques using C++. As their
experience with different types of models increases, students are able to
analyze the advantages and disadvantages of each type of model.

2 Modeling types
There are numerous types of discrete models: cellular automata,

agent-based models, system-dynamics models of first order difference
equations, more complicated finite difference models, and finite
elements. As an introductory course with limited pre-requisites, this
course concentrates on models accessible to beginning students: agent-
based modeling, system dynamics modeling, and the experience of using
a more complicated computational algorithm. In each case, the modeling
process is emphasized: start with a phenomenon in nature, approximate
the phenomenon with a model, use the model to answer questions about
the original phenomenon and critique the answers obtained from the
model. At the end of the course, the critique of the type of model is
added. At least two sufficiently complex phenomena – interaction of
sheep and wolves and the spread of malaria – are modeled by both agent-
based and system dynamics models so that an analysis of their
advantages and disadvantages can be done. Also, the underlying
approximation technique of a system dynamics model is discovered and
better approximation techniques are presented and used. Finally, students
use an interactive C++ program that contains a finite difference
approximation that models the formation of stripes and spots in animal
skins. Depending on the user’s entered parameters, different patterns
(e.g., different patterns of stripes or patterns for spots) are obtained.

An Introduction Course in the Computational Modeling of Nature Kathie Yerion

1969

2.1 Agent-based models
Agent-based models approximate phenomena by interacting

agents. In the NetLogo language (http://ccl.northwestern.edu/netlogo/),
patches are agents that can be many different colors and sizes but do not
move and turtles are agents that can be many different shapes, colors, and
sizes but move. One of the first non-simple models of the course is that
of the author’s three dogs searching for hidden dog treats in a large back
yard, eating cherries from branches of trees, and also distinguishing
sweet grass from weeds. There are different behaviors of each dog that
must be modeled. As an item is eaten, it must disappear. The dogs are
“turtles” of different colors and sizes and the cherries, treats, and grass
are “patches” of different colors. In most agent-based models, the
movement of a moving agent has some randomness attached. A section
of code (Gravelle, 2014) for two procedures for the dogs to move and
smell the cherries is in Figure 1.The user interface shows cherries, treats,
grass and weeds.

The first model that allows for interesting experimentation is one

of ants following a pheromone trail of a leader as the ants leave their nest
in search of food (Wilensky, 1997). The angle amount that they may
wiggle or turn before each motion can vary with a user-controlled slider
“leader-wiggle-angle” on the user interface. The rest of the ants follow
the trail of the leader. When the students use the slider to find the wiggle
angle of the leader that allows for most direct path to the food, they are
surprised with the result. It would seem that a smaller wiggle angle

to move-dogs
 right (random 41 – 20) forward 1 end
to smell-cherry-trees
 let nearby-trees patches in-radius 7 with [pcolor = red]
 if count nearby-trees > 0 [
 let close-tree min-one-of nearby-trees [distance myself]
 setxy [pxcor] of close-tree [pycor] of close-tree
 eat-cherries] end Figure 1

An Introduction Course in the Computational Modeling of Nature Kathie Yerion

1970

would lead more directly to the food. Instead through experimentation,
they find it is a larger wiggle angle that leads more directly to the food.
In Figures 2, the path of leader ant is orange while the path of last ant is
green. The left graph is when the leader wiggle angle is large.
 Figures 2

An interesting phenomenon to model is the seven day creation of the world
according to Genesis (The New American Bible, 1971). It allows for
multiple ways to model time and encourages the creative animation of each
day’s events. It is not possible to show animation here, but the white
squares on the left of Figures 3 move to simulate “a mighty wind swept
over the waters” making white caps with the associated code on the right.

The seven days of creation continue with the creation of dry land, plants,
fruit trees, swimming creatures, birds, cattle, and humans. Each patch
must be placed appropriately and each turtle must move carefully.

to create-wind-and-waters
 ask patches [set pcolor blue]
 let time 0
 while [time < 10000] [
 ifelse time mod 2 = 0 [
 ask n-of 50 patches
 [set pcolor white]
] [
 ask patches [set pcolor blue]
]
 set time time + 1
] end Figures 3

An Introduction Course in the Computational Modeling of Nature Kathie Yerion

1971

 This section ends with a model of erosion (Dickerson, 2012). In this
model of raindrops running down the side of a mountain, students
discover the limitations of the graphics to show this erosion well.
 The course is taught in a lab environment where the students follow
steps with the instructor in developing models. Then in assignments,
students are assigned steps to complete on their own. For example, in the
model of creation of the world, the first three days are modeled in labs
while the students model days four through seven.
2.2 System dynamics models
 Each system dynamics model is essentially a computational
translation of first order finite difference equations or first order
differential equations. A fantastic resource for phenomena and their
associated models, perfect for system dynamics, is the textbook by
Shiflet and Shiflet (Shiflet, 2006). A warm-up example is a model of
money in a savings account at 3% interest with initial deposit of $1000.
NetLogo has a built-in systems dynamics modeler with drag and drop
options. Mathematically, the model of amount of money after n years,
An, is An+1= An + 0.03An, A0=1000. The systems dynamics model in
NetLogo looks like Figure 4.

There is a Stock for the Amount with initial value 1000, a Flow of
Interest with the expression 0.03 * Amount, and a Link from Amount to
Interest as drag and drop items. NetLogo code is automatically generated.
The next model consists of the interaction of sheep and wolves
(Wilensky, 2005) to produce the diagram in Figure 5 of Stocks sheep
and wolves, Variables sheep-birth-rate, wolves’ kill-rate of sheep,
predator-efficiency, wolf-death-rate, and Flows sheep-births, sheep-

Figure 4

An Introduction Course in the Computational Modeling of Nature Kathie Yerion

1972

deaths, wolf-births, wolf-deaths and associated links. The associated
differential equations are in the form

, the famous Lotka-Volterra system of nonlinear differential
equations with graph in Figure 6 (Wikipedia, 2015).
 Figure 5

When the graphing option is used on the user interface for sheep vs.
wolves, similar curves appear as in Figure 7. The fact that students with
limited background produced the curves similar to those from an
advanced topic like nonlinear differential equations is quite amazing!

Figure 7

We spend quite some time learning to interpret these graphs. We also
compare and analyze the reason for the smoothness of the curves in the
systems dynamics modeler compared with more jagged curves from a
corresponding agent-based model of the same phenomenon as shown in
Figure 8.

 Figure 8

Figure 6

An Introduction Course in the Computational Modeling of Nature Kathie Yerion

1973

The last major systems-dynamics model is the model of malaria (Shiflet,
2006). We spend considerable time developing the model together in
class and answering questions from it. As shown below in Figure 9, it is
the most complex model of the system-dynamics models of the course.

 Figure 9

At any moment in time, the value of each of the five populations can be
read from monitors and from the graphs as shown in Figure 10. The
students build a table of time vs. populations. They notice the population
values contain fractional parts and must analyze why this is so.

In order to compare, we build an agent-based model of this same
phenomenon. As is common with moving agents, their movement and
interaction contains randomness. As a result, when the students build a
similar table of time vs. populations, they find significant differences
from the previously-made table from system dynamics. They also see
only integer values for populations and more jagged graphs. Advantages
and disadvantages are discussed.

 Figure 10

An Introduction Course in the Computational Modeling of Nature Kathie Yerion

1974

2.3 Differential equations and finite differences
 The course switches to a short introduction to three common
approximation techniques of first order differential equations with initial
conditions. For example, for the goal is to find
(solution is . The techniques of Euler’s Method, Modified
Euler’s Method, and Runge-Kutta method (Gerald, 1999) are used to
approximate. To help students understand these methods, they are
presented using geometry, slope, and equations of lines. For the above
example, the “slope at In each case, the method
approximates the solution at t = 1 by a line through the point (0,1) .

 Slope Averaged At t = approximation error
Euler’s 1 0 2 0.718
Modified Euler’s 1.5 0 and 1 2.5 0.218
Runge-Kutta 1.7 0 and 0.5 and 1 2.7 0.018

The winner is clear. The course returns to the model in Figure 4.Using
the system dynamics model, students discover that it uses Euler’s
Method, the least accurate. Thus, if more accurate results are required,
the method of Runge-Kutta should be used.
 Finally, the model of the formation of animal patternsl (Bassiri, 2009)
is considered. The model is a finite difference approximation of nonlinear
partial differential equations which students of limited calculus
background will not understand. Thus, we concentrate on modeling a leg

 or tail by a tapered cylinder which is then cut to
form a trapezoidal region. The students are given a program in C++
which implements the algorithm. Looking at the loops, they find that one
time step is about 10,000 multiplications. In order for patterns to emerge,
a steady-state must occur after 10,000 time steps. They are warned that
each execution of the program will take about ten minutes. Depending on
the parameters entered, different patterns will emerge. They are asked to
determine possible animals that match the patterns.

An Introduction Course in the Computational Modeling of Nature Kathie Yerion

1975

 Figures 11
3 Conclusion
 The students will say that agent-based modeling is “more fun” than
the other techniques because of the sheep and wolves or ants running
around a screen. At the end of this course, they have a breadth of
modeling experiences, and they learn not just to develop and work with
models but to critique them. One area for the future is to assess student
learning about modeling through pre- and post- questions. At present, the
author only has comments: “This course helped me appreciate the
usefulness of computational models, and how applicable … modeling
can be to non computer science fields of study,” and “It was a lot more
math heavy then I expected. It started to show where mathematics and
computer science really come together.”

References
Bassiri, E. B. (2009). A finite difference method for modeling the

formation of animal coat patterns. Nonlinear Analysis Real
World Applcations, 1730-1737.

Dickerson, M. (2012). Personal Communication. erodeifstos.nlogo.
Gerald, C. W. (1999). Applied Numerical Analysis. Reading: Addison

Wesley Longman.
Gravelle, B. P. (2014, February). Personal Communication doggies3.nlogo.
Shiflet, A. S. (2006). Introduction to Computational Science. Princeton

University Press.
The New American Bible. (1971). Catholic Publishers.
Wikipedia. (2015). Retrieved from

http://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equation.
Wilensky, U. (1997). Ant Lines in NetLogo Models Library.
Wilensky, U. (2005). Wolf Sheep Predation from NetLogo M odels Library.
Yerion, K. (2012). Alan Turing, Animal Spots, and Algorithms. The

Journal of Computing Sciences, 169-176.

An Introduction Course in the Computational Modeling of Nature Kathie Yerion

1976

