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Abstract 

 
The design of family of hash function based syndrome and its variants are based 
on a compression function, that uses a parity check matrix of an error correcting 
code (random, quasi-cyclic). 
The objective of this paper is to propose a one-way hash function (OHFGC) of 
variable size based on classical Goppa codes and the scheme of MERKLE  and 
DAMGARAD. Classical Goppa codes, of pseudo-random characteristic, for 
regenerating parity check matrix from a primitive element of a finite field mF

2
 

and an integer 2n m> , and for the design of the compression function. The 
scheme of MERKLE and DAMGARAD [4,5,6] whose the compression function 
is based on the calculation of syndromes, the initial vector  specific to each 
message and the reduction function of  weight of a given word. 
 
Keywords: One way Hash function, Syndrome decoding, Classical Goppa codes,     
          Compression function and Parity check matrix. 
 
 

I.) Introduction and Notations 
 
In the following we note: 
Ν : The set of natural integers. 
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{ }1,02 =F  : The finite field of two elements 
mF

2
 : The finite field of m2  elements, with m  an integer. 

∗
mF2  : The group of non-zero elements mF

2
. 

( )r nM K×  : The set of matrix of type nr ×  with coefficients in an abelian field 
K . 

nF2  : The set of vector of components 0 or 1 and of length n . 
)1,...,1,1(1 =n : Vector of n  components equal to 1. 

OHFGC  : One-way Hash function based on Goppa Codes. 
CF : Compression function. 
|| : Concatenation. 

( )rE M  : Function  of extraction of r  first message bits M . 
( )xE  : The integer part of x . 
( ))(, xgLΓ  : The classical Goppa code of support L  and of the generator 

polynomial )(xg . 
:= : Affectation. 
A hash function is a function that takes as input an word of variable size and 
returning output an word of fixed and predetermined size. These functions, which 
are one of the most studied subjects currently cryptography, are very useful 
especially in the field of databases in the case of Web applications to prove user 
authentication web server in and the exchange of confidential data signed by a 
hash function guaranteeing their integrity. 
Historically, Shor [7] showed in 1994 that quantum computers can break 
cryptosystems based on the factoring problem and discrete logarithm. Since it can 
factor integers and extract discrete logarithms. This is why post-quantum 
cryptosystems public key including cryptographic hash functions to be safe during 
the onset of quantum computers must be invented. Cryptosystems based on 
error-correcting codes are among the best known and most studied schemes. Their 
security relies on the problem of decoding a random code. In 2003 the first design 
of hash function based on the theory of codes was proposed by Augot et al [2]. 
His proposal is based on the construction of MERKLE DAMGARAD. A 
compression function extracted by the syndrome decoding problem whose it 
requires a matrix of random parity and an algorithm that incorporates a word 
given weight. In 2005 the same authors proposed an improvement by introducing 
regular coding [2]. And to reduce memory consumption and increase speed, 
Finiasz et al [3] introduced in 2007 quasi-cyclic codes instead of random codes. 
His proposal called FSB Fast hash function on the syndrome is still too long and 
needs improvement. An improved variant of FSB in terms of efficiency and 
storage capacity is given by Bernstein [4] in 2011 under the name RFSB, which is 
based on a parameterized code. 
The security of a hash function constructed with the scheme MERKLE and 
DAMGARD proved at least as high as the security of the compression function  



One-way Hash function                                          7099 
 
 
used, so it is necessary to prove for the compression function. Since resistance to 
second pre-image is strictly weaker than resistance to the collisionWe check that 
the compression function is collision resistant and inversion. Which is easily 
linked to the difficulty of the two syndromes decoding problems following (see 
section IV) : 
« Given H  a matrix of type nr ×  and of elements of 2F  and rFs 2∈ . Find 

( ) rrn FFxxx 22
)1()2( , ×∈= −  as sHxx t =+)1(  ». 

« Given H  a matrix of type nr ×  and of elements of  2F  and rFs 2∈ . Find 
( ) rrn FFxxx 22

)1()2( , ×∈= −  and ( ) rrn FFyyy 22
)1()2( , ×∈= −  as 

tyxHyx )()1()1( +=+ . » 
These difficulties have pushed us and encouraged, in this article, to design a hash 
function one-way variable size based on twice schemes. Firstly, classical Goppa 
codes, pseudorandom characteristic which requires pre-implementation binary 
finite fields, for regenerating parity check matrix from a primitive element of a 
field mF

2
 and an integer 2n m>  and for the design of compression functions 

and weight reduction of a given word whose aim is to reduce the number of XORs 
in the calculations of syndromes. Secondly, the scheme of MERKLE  and 
DAMGARAD  [4,5,6].  
Our work is organized as follows: we begin by recalling the construction of 
MERKLE DAMGARD in section two and binary finite fields in Section Three. 
The interesting property pseudo-random of classical Goppa code is modelled by 
difficult problems in section four. In section five we give a detailed description of 
our proposed hash function. And we finish with a conclusion. 
 

II.) Model of MERKLE DAMGARAD   
 
The construction of most   functions of cryptographic hash follows the same 
model presented by MERKLE and DAMGARAD [4,5,6] in 1989. The core of this 
scheme is the compression function. The principle of this model is: 
Given a message M  and a compression function his input size is n  and output 
size r  and an initial vector 0h IV=  its size r . 

1.) Segmenting M into s  blocks iM  of the same size rn − . If the 
document length is not a multiple of rn − , we add 0 (padding) at the end 
of the document so that its size is a multiple of rn − . 

2.) ( )1|| −= iii hMCFh  for { }1,...,i s∈ . 
3.) sh  is the hash of the message M . 

 
III.) Binary finite field  

 
The design of our hash function requires a pre-implementation of a binary finite 
field. The finite field is generally constructed from primitive polynomials. In [1],  
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the second author of this article has given an algorithm for recovering all 
primitive polynomials over a binary finite field of a given degree. 
The following results characterize the irreducible polynomials over a binary field 
of a fixed degree. The proof is well-known, see for example [11], [12] and [13]. 
Definition 1. A polynomial ( ) [ ]2f x F x∈  is said to be irreducible over 2F  if 

( )f x  has a positive degree and every factorization of ( )f x  in [ ]2F x  must 
involve a constant polynomial. 
Corollary 1. Let ( ) [ ]2f x F x∈  be an irreducible polynomial over 2F  of degree 
m . Then the splitting field of f over 2F  is given by mF

2
. 

Definition 2.  Let ( ) [ ]2f x F x∈  be a nonzero polynomial. If ( )0 0f ≠ , then 

the least positive integer e  for which ( )f x  divides 1ex −  is called the order 

of  f  and denoted by ( ) ( )( )ord f ord f x= . 

Theorem 1. Let ( ) [ ]2f x F x∈  be an irreducible polynomial over 2F  of degree 

m  and with ( )0 0f ≠ . Then ( )ord f  is equal to order of any root of f in the 
multiplicative group mF

2
. 

Definition 3. A polynomial ( ) [ ]2f x F x∈  of degree m  is a primitive 
polynomial over 2F  if it is a minimal polynomial over 2F  of a primitive 
element of 

2mF . 

Theorem 2. A polynomial ( ) [ ]2f x F x∈  of degree m is a primitive polynomial 

over 2F  if and only if f  is monic, ( )0 0f ≠  and ( ) 2 1mord f = − . 
 

IV.) The pseudo-random Character of Goppa code 
 
Definition  4 :   The Classical Goppa code (rational)  of support 

( ) F n
n mL 221 ,...,, ∈= ααα  and Goppa polynomial ][)(

2
xFxg m∈  of a degree r  

noted ( )gL,Γ  is defined by ( ) ( ){ }0/,...,,, 221 =∈==Γ tn
n HaFaaaagL  with 

( )
nj
rij

i
j gH

,...,1
,...,1

11 )(
=
=

−−= αα . 

H  is said parity check  matrix ( )gL,Γ . 
 
The classical Goppa code has a pseudo-random interesting property, formalized 
by two difficult problems: One, which has been proved NP-hard by M.Finiasz in 
[9], is a special case of decoding by syndrome and other, that was shown  
average difficult by N.Sendrier in [10], this  indistinguishability of a Goppa code 
from a random code.  

IV.1.) The syndrome decoding problem 
         So far there is no efficient algorithm to decode the code in random. This open  
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problem is formalized as follows: 
« Given a matrix H  of )( 2FM nr× , s   a vector of rF2  and Ν∈ω . Find 

nFx 2∈  as  tHx s=  and ωω ≤)(x   ».  
IV.2.) The problem of decoding bounded  of Goppa code 

Given a binary matrix H  of type nkn ×−  (the parity check matrix of a Goppa 
code [ ]kn, )  

and a syndrome knFs −∈ 2 .  Find an word nFe 2∈  as 
)(log

)(
2 n

kne −
≤ω  and 

sHet = . 
IV.3.) The problem of indistinguishability of a Goppa code 

The property pseudo-random of Goppa code is related to the indistinguishability 
of the model code as follows: 
Given a binary matrix H  of  type nkn ×− . Check if H  is a parity check 
matrix of a Goppa code [ ]kn,  or not.  
 
 

V.) Our proposal Function OHFGC 
 
In this article we give the design of a cryptographic hash function, denoted 
OHFGC, his size of output is variable and depends only on the structure of the 
regenerator. The size of its output is variable and depends only on the structure of 
the regenerator and control parity check matrix. 
  The design principle of our proposal is as follows:   

1.) Regeneration of a parity check matrix ( )( ), 2r nH M∈ F  from a primitive 

element of a field mF
2

 and an integer 2n m> . 
2.) The design of a reduction function of weight of a word. 
3.) Design compression function ( )CF , of input’s size n  and the output’s 

size r ,  based on H . 
4.) To hash a message M  by OHFGC , we proceed as follows:  

4.1) Segmenting M  into s  blocks iM  of the same size rn − . If 
the document length hashed is not a multiple of rn − , we add 0 
(padding) at the end of the document so that its size is a multiple 
of rn − . 

4.2) Calculate initial vector ( )0 rh IV E M= = . 

4.3) Calculate ( )1|| −= iii hMCFh  for { }1,...,i s∈ . 

5.) sh  is the hash of the message M  ( )( )sh OHGC M= . 
V.1) Generation of a parity check matrix 

Let { }222
2

,...,,,1,0 −=
m

mF ααα   be the finite field of m2  elements with α  a 

primitive generator of the group *
2mF . It was a correspondence between the  
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elements of mF

2
, as 2F  vector space its basis ( )1,...,,1 −mαα ,  and elements of 

mF2  defined by: 

( )

22
1

0 1
0

:

,...,

m
m

m
Ti

i m
i

x a a a

ϕ

α
−

−
=

→

=∑ a

F F
 

To generate a parity check matrix of our proposal, we proceed as follows: 
1.) We choose an integer 2n m>  and 2 1mn ≠ −  and a primitive element 

α  of mF
2

. 

2.)  We calculate ( )
1

n

j j
i

=
 where )12mod( −= mj

j ni . 

3.) We put 
2
nt E
m

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

4.) We set ni
n

ii αααααα === ,....,, 21
21  and ( )nL ααα ,...,, 21= . 

5.) We put ( )1
1,...,
1,...,

i t
i tj
j n

K α − −
=
=

=  the parity check matrix of ( )txL,Γ   in mF
2

.  

we calculate ( )( )1
1,...,
1,...,

' i t
j i t

j n
K ϕ α − −

=
=

=  . The parity check matrix H  is composed of 

lines of  'K  without repetition and in the same order. This is the parity check 
matrix of ( )txL,Γ  in 2F  of type nr × . 
r  is the output size of OHFGC  and of compression function CF . 

Proposition : The size of compression r  of OHFGC  does not exceed 
2
n  

2
nr⎛ ⎞≤⎜ ⎟

⎝ ⎠
. 

Proof 
The number of lines of 'K  is m t×  and of H  is r ,  then r m t≤ × . 

Or we have ⎟
⎠
⎞

⎜
⎝
⎛=

m
nEt

2
,  therefore  

m
nt

2
≤  (i.e 

2
nmt ≤ ) , whence 

2
nr ≤ . 

V.2) The function of weight reduction of a vector 
The objective of this section is to reduce the weight of a given word. 
Our compression function rn FFCF 22: → , with rn > , that is just a 
multiplication of a matrix type nr ×  by a vector of length n  and of weight w . 
The computational complexity is only the number of XORs of columns of this 
matrix. To decrease, it is sufficient to reduce weight w . 
Proposition 1 : Let  nFx 2∈  and ( 1 ) mod(2)ny x= + , then it was 

( ) ( )w y n w x= − . In this case it has to be ( )
2
nw x ≤  or else ( )

2
nw y ≤ . 

Proof 
To obtain )2mod()1( nx +  from x , we swap the 1's with 0's in the word x .  
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Therefore if the number of 1 is w  then the number of  0 in x  is wn − . 

Show that 
2
nw ≤  or else 

2
nwn ≤− . Otherwise 

2
nw >  and 

2
nwn >− , 

whence nn >  which is absurd. 
This proposal gives us the following technique to reduce weight: 
Definition: The weight-reducing function is defined by: 

nn FF 22: →φ  

   
( )

( )
2( )

1
2

n

nx si w x
x x

nx si w x
φ

⎧ ≤⎪⎪→ = ⎨
⎪ ⊕ >
⎪⎩

 . 

V.3) Compression function  
Our compression function CF  is defined by: 

CF  : 2 2
n rF F→  

           txHxx )()1( φ+→  
 with );( )1()2( xxx = , rFx 2

)1( ∈  and rnFx −∈ 2
)2( . 

The compression of nFx 2∈  will be as follows:  

1) We calculate the weight of x , ( ∑
=

=
n

i
ixw

1
: , ( )nxxxx ,...,, 21= ). 

2) If 
2
nw ≤  then xy =: , otherwise )2mod()1( += ii xy  for ni ,...,1=  

3) ( )yEz r=:  
4) )2mod()(: tHyzs +=  
 
 

VI.) Conclusion 
 
We have presented a new variant of a hash function based on the syndrome 
decoding.  This variant uses the generation of a parity check matrix of a Goppa 
code rational, which is among codes the most widely used in cryptography and 
has a pseudo-random character. Our proposal is promising, indeed it is more than 
resist quantum computers, and it has a variable size that meets our needs to 
choose the size of the hash we desire and increases safety. 
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