
International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 244

Alert Correlation for Extracting Attack
Strategies

Bin Zhu and Ali A. Ghorbani

(Corresponding author: Ali A. Ghorbani)

Faculty of Computer Science, University of New Brunswick

Fredericton, New Brunswick, Canada (Email: ghorbani@unb.ca)

(Received Oct. 7, 2005; revised and accepted Nov. 5, 2005)

Abstract

Alert correlation is an important technique for manag-
ing large the volume of intrusion alerts that are raised by
heterogenous Intrusion Detection Systems (IDSs). The
recent trend of research in this area is towards extracting
attack strategies from raw intrusion alerts. It is gener-
ally believed that pure intrusion detection no longer can
satisfy the security needs of organizations. Intrusion re-
sponse and prevention are now becoming crucially impor-
tant for protecting the network and minimizing damage.
Knowing the real security situation of a network and the
strategies used by the attackers enables network adminis-
trators to launches appropriate response to stop attacks
and prevent them from escalating. This is also the pri-
mary goal of using alert correlation technique. However,
most of the current alert correlation techniques only focus
on clustering inter-connected alerts into different groups
without further analyzing the strategies of the attack-
ers. Some techniques for extracting attack strategies have
been proposed in recent years, but they normally require
defining a larger number of rules.

This paper focuses on developing a new alert corre-
lation technique that can help to automatically extract
attack strategies from a large volume of intrusion alerts,
without specific prior knowledge about these alerts. The
proposed approach is based on two different neural net-
work approaches, namely, Multilayer Perceptron (MLP)
and Support Vector Machine (SVM). The probabilistic
output of these two methods is used to determine with
which previous alerts this current alert should be corre-
lated. This suggests the causal relationship of two alerts,
which is helpful for constructing attack scenarios. One
of the distinguishing feature of the proposed technique is
that an Alert Correlation Matrix (ACM) is used to store
correlation strengthes of any two types of alerts. ACM is
updated in the training process, and the information (cor-
relation strength) is then used for extracting high level
attack strategies.

Keywords: Alert correlation, attack graph, intrustion de-
tection, neural networks

1 Introduction

Given the immense popularity of the Internet and
widespread use of automated attack tools, attacks against
Internet-connected systems have become commonplace.
According to the Computer Emergency Response Team
Coordination Center (CERT/CC) of Carnegie Mellon
University, the number of incidents reported rapidly in-
creased from 82,094 in 2002 to 137,529 in 2003. Not only
has the number of incidents increased, but the methods
used by the attackers are getting more and more sophis-
ticated. Security issues have become major concern for
organizations that have networks connected to the Inter-
net.

Intrusion detection is one of the major techniques for
protecting information systems. It has been an active re-
search area for over 20 years since it was first introduced in
the 1980s. Generally, intrusion detection systems can be
roughly classified as anomaly detection and signature de-
tection systems. Anomaly detection involves building the
normal behavior profile for system. The behaviors that
deviate from the profile are considered as intrusions. Sig-
nature detection looks for malicious activities by search-
ing particular patterns on the data against a predefined
signature database. Recently, a new type of intrusion de-
tection has emerged. It is called specification based intru-
sion detection. Normally, this kind of detection technique
defines specifications for network protocols, and any ac-
tivities that violate specifications are considered as being
suspicious. All intrusion detection techniques have their
own strengthes and weaknesses. For example, signature-
based intrusion detection has a lower false positive rate,
but it is intended for detecting known attacks. Anomaly-
based detection has the potential to detect novel attacks,
but at the same time it suffers from a high false positive
rate. Moreover, it is very hard to define normal behavior
for a system.

Intrusion detection systems can also be classified as
host-based and network-based, depending on the data
source. A host-based intrusion detection system collects
data such as system calls, log files and resource usage



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 245

from a local machine. A network-based intrusion detec-
tion system detects intrusions by looking at the network
traffic. These two types of intrusion detection system are
complementary, neither can be replaced by the other one.

Even though intrusion detection systems play an im-
portant role in protecting the network, organizations are
more interested in preventing intrusion from happening or
escalating. The intrusion prevention largely relies on the
knowledge about the protected network and the under-
standing of attack behaviors. However, studying the at-
tack behavior is a challenging job as the adversaries tend
to change their behavior in order not to be identified. And
at the same time, as new vulnerabilities are continually
being discovered, the attacks may use new attack strate-
gies. One of the approaches to study the attack strategies
is to extract them from the alerts that are generated by
IDSs.

However, as intrusion detection systems are increas-
ingly deployed in the network, they could generate large
number of alerts with true alerts mixed with false ones.
Manually managing and analyzing these alerts is time-
consuming and error-prone. Alert correlation allows for
automatic alert clustering, which groups logically inter-
connected alerts into one groups and allows easy analysis
of attacks.

1.1 Related Work

Alert correlation is defined as a process that contains mul-
tiple components with the purpose of analyzing alerts and
providing high-level insight on the security state of the
network under surveillance. One important use of alert
correlation is to recognize the strategies or plans of dif-
ferent intrusions and infer the goal of attacks. Suppose
that the next step or the ultimate goal of an attacker can
be identified by looking at the pattern of the intrusive
behavior, we can take action to prevent the attack from
escalating and therefore minimize the damage to the as-
set. Alert correlation provides a means to group differ-
ent logically-connected alerts into attack scenarios, which
allows the network administrator to analyze the attack
strategies.

In the past few years, a number of alert correlation
techniques have been proposed. Generally, they can be
classified into the following categories:

• Alert Correlation Based on Feature Similar-
ity: These class of alert correlation approaches cor-
relates alert based on the similarities of some selected
features, such as source IP address, target IP address,
and port number. Alerts with higher degree of over-
all feature similarity will be correlated. One of the
common weakness of these approaches is that they
cannot fully discover the causal relationships between
related alerts [11].

• Alert Correlation Based on Known Scenario:
This class of methods correlate alerts based on the
known attack scenarios. An attack scenario is either

specified by an attack language such as STATL [5] or
LAMDBA [3], or learned from training datasets using
data mining approach [4]. Such approaches can un-
cover the causal relationship of alerts, however, they
are all restricted to known situations.

• Alert Correlation Based on Prerequisite and
Consequence Relationship: This class of ap-
proaches are based on the observation that most
alerts are not isolated, but related to different stages
of attacks, with the early stages preparing for the
later ones. Based on this observation, several work
(e.g., [9, 15, 2]) propose to correlate alerts using
prerequisites and consequences of corresponding at-
tacks. Such approaches require specific knowledge
about the attacks in order to identify their prereq-
uisites and consequences. Alerts are considered to
be correlated by matching the consequences of some
previous alerts and the prerequisites of later ones.
In addition to the correlation method proposed by
Ning et al., JIGSAW[9] and the MIRADOR[15] are
other two approaches that use the similar paradigm.
These approaches target recognition of multistage at-
tacks and have the potential of discovering unknown
attacks patterns. However, such approaches have one
major limitation, that is, they cannot correlated un-
known attacks (not attack patterns) since its prereq-
uisites and consequences are not defined. Even for
known attacks, it is difficult to define all prerequi-
sites and all of their possible consequences.

1.2 Paper Overview

In this paper, we propose a new alert correlation tech-
nique that is based on a neural network approach. The
distinguishing feature of this approach is that it uses a
supervised learning method to gain knowledge from the
training examples. Once trained, the correlation engine
can determine the probability that two alerts should be
correlated. Assigning correlation probability can help
constructing hyper-alert graph and attack graphs that
represent the real attack scenario. We also introduce an
Alert Correlation Matrix (ACM) that can encode correla-
tion knowledge such as correlation strength and average
time interval between two types of alerts. This knowl-
edge is gained during the training process and is used by
correlation engine to correlate future alerts. And besides,
different attack graphs can be generated out of the ACM,
which can help security analyst to study the strategies
or plans of attackers. One other benefit of using ACM is
that it is incrementally updated after the training process,
which enables it to discover the changes in the existing at-
tack patterns or the newly emerging patterns.

The DARPA 2000 dataset was used to evaluated the
proposed technique and system. The result shows that
our approach can successfully extract attack strategies
from raw alerts. The ACM is proved to be effective for
improving the hyper-alert graph generation. And the in-



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 246

formation it provides is also helpful for attack trend anal-
ysis.

The rest of this paper is organized as follows. Section 2
provides details of the proposed techniques for alert corre-
lation and attack graph generation. Two neural network
approaches for alert correlation are proposed. In addi-
tion, a correlation knowledge representation scheme called
Alert Correlation Matrix (ACM) that provides enhance
features for alert correlation and attack graph construc-
tion is also presented. Section 3 reports the experimental
results that are obtained from the DARPA 2000 dataset.
We show the graphical representation of hyper-alerts gen-
erated by correlation engine, as well as the attack graphs
constructed from ACM. Finally, the conclusions and some
suggestions for future work are given in Section 4.

2 Proposed Alert Correlation
Techniques for Extracting At-
tack Strategy

2.1 Overview

Attack strategies are normally represented as attack
graphs. These attack graphs can be manually constructed
by security experts using knowledge such as topology and
vulnerabilities of the protected network. But, this ap-
proach is time-consuming and error-prone[14]. Conse-
quently, a number of alert correlation techniques have
been introduced in order to help security analysts to learn
strategies and patterns of the attackers [9, 10, 4, 16]. How-
ever, all of these approaches have their own limitations.
They either cannot reveal the causal relationship among
the alerts (they simply group the alerts into scenarios),
or require a larger number of predefined rules in order to
correlate alerts and generate attack graphs.

In this paper, we propose a complementary alert cor-
relation method that targets the automated construction
of attack graphs from a large volume of raw alerts. The
proposed correlation method is based on multi-layer per-
ceptron (MLP) and Support Vector Machine (SVM). To
the best of our knowledge, the support vector machine has
not yet been used in alert correlation. One similar work
is done by Dain et al. [4], but a different set of features
are used in their report. More importantly, we use the
probability output of MLP or SVM to connect correlated
alerts in a way that they represent the corresponding at-
tack scenarios.

We also introduce an alert correlation matrix into the
correlation process. This is basically a knowledge base
that encodes statistical correlation information of alerts.
It is possible to infer causal relationship based on this
information.

The following subsections describe the selection and
quantification of features that are used for alert correla-
tion, and then explain the proposed correlation technique.

2.2 Alert Correlation Matrix (ACM)

The correlation strength between two types of alert plays
an important role in attack pattern analysis. It reveals
the causal relationship of the two alerts. However, de-
ciding how strong two alerts are correlated is difficult be-
cause it requires extensive knowledge about a wide range
of attacks and their relations. Moreover, defining the cor-
relation strength for all of them seems to be impossible.
In [16], Valdes et al. use a matrix to define the correla-
tion strengthes for eight classes of alerts instead of alert
signatures. This approach eases the problem of having a
huge number of different alerts. But it is not sufficient
for attack strategy analysis and intrusion prediction. The
Alert Correlation Matrix (ACM) that is proposed in this
paper includes correlation weights (correlation strengths
are calculated based on correlation weights) between any
two alerts, and therefore provides more information for
alert correlation and attack strategy analysis .

Figure 1: Alert correlation matrix

The formal definition of ACM is given in the following.

Definition 1 An Alert Correlation Matrix (ACM) for n
alerts a1, a2, · · ·, an is a matrix with n × n cells, each of
which contains a correlation weight of two types of alert.

Figure 1 shows an ACM example of five alerts
a1, a2, a3, a4,and a5. We use C(ai, aj) to denote a cell
in ACM for alerts ai and aj . Note that the ACM is not
symmetric. It encodes the temporal relation between two
alerts. As shown in Figure 1, C(a1, a2) and C(a2, a1)
represent two different temporal relationships. C(a1, a2)
suggests that alert a2 arrives after a1, while C(a2, a1) in-
dicates that alert a2 arrives before a1. By distinguishing
these two situations, one can gain better understanding
of the relationship of these two types of attacks.

Each cell in ACM holds a correlation weight. It is



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 247

computed as follows:

WC(ai,aj) =

n
∑

k=1

pi,j(k)

n is the number of times these two types of alert have
been directly correlated, and p(k) is the probability of
the kth correlation, which is decided by a correlation en-
gine. These correlation weights are incrementally updated
during the training process.

Certain knowledge can be inferred based on the struc-
ture of the ACM and correlation weights in the ACM:

1) Correlation Strength (Π): Unlike correlation
weight, which is an absolute value, Π is a normal-
ized value between 0 and 1. The larger the value is,
the stronger the two alerts are correlated, i.e. it is
more likely that they are going to happen one after
another. The values on the diagonal represent the
strength of the self-correlation. In other words, it
implies the probability that one type of alert may re-
peat itself in one scenario. For example, in DARPA
LLDOS1.0 [7], the attacker tried the SadmindBOF
attack several times with different parameters in or-
der to exploit the vulnerability of sadmind service.
So the strength of self-correlation of SadmindBOF
alert in the ACM is high, indicating that normally
the attacker will perform such attack multiple times
in order to succeed.

The ACM also encodes the temporal relationship be-
tween two types of alerts. Accordingly, two types of
correlation strength are defined, namely, Backward
Correlation Strength(Πb) and Forward Correlation
Strength (Πf ). The reason for having two different
types of correlation strength is that, for alert correla-
tion, we are more interested in finding which previous
alerts should be correlated with the current one. And
for intrusion prediction and attack strategy recogni-
tion, we are concerned about what alert is most likely
to happen next. Πb and Πf are respectively used for
those two cases. The calculation of Πb is basically
the normalization of the correlation weight of vertical
elements in ACM, while normalizing the correlation
weights of horizontal elements gives the Πf .

Πf

C(ai,aj)
=

WC(ai,aj)
∑n

k=1 WC(ai,ak)

Πb
C(ai,aj)

=
WC(ai,aj)

∑n

k=1 WC(ak,aj)

2) Temporal Relationship: Given two alerts a1 and
a2 in the cell C(a1, a2) of ACM, we interpret it as
a2 comes after a1. This temporal relationship is im-
portant for inferring the causal relationship. For ex-
ample, for two alerts, the corresponding correlation
weight with respect to different temporal relations is
given by WC(a1,a2) and WC(a2,a1) . If these two val-
ues turn out be to very close after training, then it is

more likely that they do not have any causal relation-
ship. On the contrary, causal relationship can be ob-
served if, for example, one of WC(a1,a2) or WC(a2,a1)

is much greater than the other one. This suggests
that a2 might be the consequence of a1.

3) Causal Relationship: The causal relationship can
be inferred from temporal relationship given that the
training data is a good representative of the real
world data. Identifying the causal relationship can
help the administrator to recognize the strategies or
the intention of an attacker. The ultimate goal of
alert analysis is to understand the security landscape
of the protected network, prevent further attack and
therefore minimize the damage. All these require
full or at least partial understanding of attack strate-
gies by identifying the logical connection among the
alerts.

The ACM is incrementally updated using the out-
put of the correlation engine. Each time the corre-
lation engine correlates one alert with other alerts,
it also provides the correlation probability between
this alert and each of the alerts in the same group.
This correlation probability is then used to update
the corresponding cells in the ACM.

2.3 Feature Selection

When an intrusion detection system raises an alert, it
also provides information associated with that alert, such
as timestamp, source IP address, destination IP address,
source port, destination port, and type of the attack. All
of these can be used to construct the features for alert
correlation. The approach presented in this report is sim-
ilar to the probabilistic alert correlation technique [16]
in a sense that they all involve selecting a set features,
computing the probability based on these features and
deciding if two alerts should be correlated. The essen-
tial difference between these two approaches is the way
they compute the probability. For probabilistic correla-
tion, the probability is computed directly from the feature
similarity, while data mining alert correlation involves a
statistical leaning process. For the proposed correlation
technique , the following 6 features are selected.
F1: The similarity between two source IP addresses of
two alerts
In a network-based attack, the source IP address can be
viewed as the identity of an attacker. In some cases, two
alerts with same source IP addresses are likely to belong
to the same attack scenario and therefore could be corre-
lated. The reason is that these two alerts might have been
triggered by the malicious behavior of the same attacker.
However, an attacker may use different IP addresses to
perform different attacks against the target system or net-
work. Or even worse, the attackers may spoof their IP
address and then attack the target. Therefore, the source
IP address cannot always be used to identify the attacker.
The value of this feature indicates the likelihood that two



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 248

alerts come from the same attacker and is calculated as
follows:

sim(ip1, ip2) = n/32, (1)

where n is the maximum number of high order bits that
these two IP addresses match and 32 is the number of bits
in an IP address. For example:

ip1 = 192.168.0.001

=⇒ 11000000 10101000 0000000000000001

ip2 = 192.168.0.201

=⇒ 11000000 10101000 0000000010000001

then n = 24 and sim(ip1, ip2) = 0.75. This indicates that
two IP addresses are from same network and could be
used by the same attacker in different stage of an attack.

F2: The similarity between two target IP addresses of two
alerts
The similarity of two target IP addresses is more im-
portant than the the one of two source IP addresses.
The correlation probability are normally low in the case
that the two target IP addresses are not the same (even
if they belong to the same network). However, if the
two source IP addresses are different, the corresponding
two alerts can still have a high chance to be correlated.
In order to properly demonstrate these two situations,
appropriate training patterns should be selected. Again,
Equation 1 is used to calculate the similarity.

F3: If the target port numbers of two alerts are matched
Before an attacker can exploit the vulnerability of the
service that is running on a particular port, he or she
must first know if this port is opened. This feature is
important for correlating two attacks that target the
same port. A value 0 or 1 is used to indicate the matched
case and unmatched case, respectively.

F4: If the source IP address of the current alert matches
the target IP address of a previous alert
This feature indicates that whether or not the source of
an alert is the target of a previous alert. We include this
feature because of the fact that, in many cases, attackers
may compromise a host and use it to attack another
target.

F5: The backward correlation strength (Πb) between two
types of alert
The value of this feature is between 0 and 1 indicating the
backward correlation strength between two types of alert.
For example, SadmindP ing alerts are usually closely cor-
related with SadmindBOF alerts. Such knowledge is
helpful when deciding if two alerts should be correlated.
However, defining such correlation strength for each pair
of alerts is almost impossible. The best way to build such
knowledge base is to learn from examples, i.e. use cor-
relation probability to update the correlation weight and
correlation strength between two types of alerts.

Due the nature of alert correlation, two alerts can still
be correlated without knowing the Πb, given that other
information is sufficient. Πb can enforce the correlation
when there is uncertainty in some situations such as dif-
ferent source or target IP addresses. To make this more
clear, consider correlating two alerts a1 and a2 without
knowing the real Πb of these two types of alert. It is easy
to conclude that they can be correlated if the following
conditions hold:

a_1.srcIP=a_2.srcIP AND a_1.dstIP=a_2.dstIP AND

a_1.dstPort=a_2.dstPort

The correlation probability can be used to update the Πb

of these two types of alert. Next time when we have a
similar situation, but there is uncertainty in other condi-
tion such as sim(a1.srcIP, a2.srcIP ) = 0.5. The Πb can
enforce the correlation for a1 and a2. One problem with
the use of Πb is that, initially the information provided
by Πb may not be accurate because the correlation engine
may sometimes produce incorrect result, which means
that the use of Πb may lead to incorrect correlation in the
future. To address this problem, we introduce another
feature (F6) to limit the effect of Πb.

F6: The frequency that two alerts are correlated
The value of this feature is between 0 and 1. If the value
of F6 is low, it implies that the corresponding two alerts
are seldom correlated, and therefore the Πb value is not
reliable at this time due to the existence of miscorrela-
tion. When the value of F6 becomes large meaning that
these two alerts are frequently correlated, the percentage
of miscorrelation should be low. Once Πb has been up-
dated many times and becomes “mature”, then we can
trust Πb because these two types of alert are now statis-
tically correlated.

2.4 Alert Correlation Using MLP and
SVM

In this section, an alert correlation approach based MLP
and SVM is explained. Overall, the task of such a tech-
nique is to determine:

• Whether or not two alerts should be correlated.

• If yes, the probability with which they are correlated.

Both MLP and SVM can fulfill these requirements, given
that appropriately labeled training data is provided. The
correlation probability is required because it is useful for
practical recognition cases, and also reflects the uncer-
tainty of correlation.

2.4.1 Alert Correlation Using Multi-Layer Per-
ceptron

Figure 2 shows the MLP structure that is used for alert
correlation. It contains six input, one hidden layer with
seven neurons, and one output. The input is a vector of



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 249

Figure 2: MLP structure for alert correlation

6 elements, each of which represent one of the features
defined above.

−→
fr = [F1, F2, F3, F4, F5, F6]

The output of this MLP is a value between 0 and 1,
indicating the probability that two alerts are correlated.

2.4.2 Alert Correlation Using Support Vector
Machine

Support Vector Machines was first introduced by Vapnik
and his coworkers in 1992 [1]. It is an approximate imple-
mentation of the method of structural risk minimization
[6]. It has been proved to be very robust for pattern clas-
sification and nonlinear regression, especially when the
dimension of the input space is very large. The conven-
tional SVM is a binary classifier. Alert correlation can be
viewed as a binary classification problem. For two given
alerts, we determine if they are correlated or not. This is
the main motivation of using SVM for alert correlation.

The same input used for the MLP is also used to train
the SVM, the labels of training patterns are mapped to
bipolar format where 1 represents correlated and -1 repre-
sents not correlated. Unlike MLP, SVM does not require
probability to be assigned to the training patterns, the
labels that are assigned to the training patterns are sim-
ply the class labels (in this case, 1 and -1). This is one
major advantage of using SVM. However, the problem is,
the output of a conventional SVM is not probability [13].
Recall that the output of a conventional SVM with re-
spect to certain input is either 1 or -1 indicating the class
of that input. The output of the SVM (before applying a
threshold) is calculated as follows:

f(x) =

l
∑

i=1

yiαi ·K(x, xi) + b.

This is the distance between input vector and optimal hy-
perplane, which is an unbounded value. As we can see,
both of these two outputs are not probabilities. Platt [13]
shows that fitting a Sigmoid that maps SVM output to
posterior probability produces good mapping from SVM
margins to probability. According to Platt, the probabil-
ity output of SVM is given by:

pi =
1

1 + exp(Afi + B)
,

where fi is the output of the conventional SVM. A and B
can be obtained by minimizing the corresponding cross-
entropy error function in the following [13]:

∑

i

−tilog(pi)− (1− ti)log(1− pi)

where the tis are target probabilities. The probability
output of SVM is a continues value between 0 and 1. A
higher value indicates the higher probability with which
two alerts are correlated.

2.4.3 Comparison of MLP and SVM

We use both MLP and SVM for alert correlation. MLP
uses an error-correction rule to update the weight ma-
trixes. Once it converges, the outputs it produces will
be close to the desired outputs. The SVM is based on
structural risk minimization principal. It needs only class
labels to be assigned to the training examples. There-
fore, its probabilistic outputs might not be as accurate as
the ones produced by MLP. However, it is not easy to pre-
cisely assign desired outputs for MLP. Furthermore, MLP
also suffers from the slow training speed and the poten-
tial over-fitting problem. On the other hand, in order to
enable SVM to produce precise probabilistic outputs, ap-
propriate training patterns have to be selected, which is
also a difficult task. Therefore, there is no absolute prefer-
able solution. A better way may be to make a decision
based on the outputs of both of these two methods.

2.4.4 Correlation Method

In order to use MLP or SVM as a correlation engine, they
have to be trained first. In the correlation approach pro-
posed by Dain [4], the training examples are taken from
the real alerts. The author manually classified and labeled
16,250 alerts. This requires expertise knowledge of attack
scenarios and huge amount of labor work. In this work,
both MLP and SVM are trained with small number of
patterns, which are manually generated and labeled. Ta-
ble 1 shows the 18 training patterns that are used in the
training. These are some typical cases. MLP and SVM
are expected to generalize other cases by learning from
these examples. For the training of MLP, the desirable
correlation probabilities are assigned to each training pat-
tern, and for SVM only the class labels are assigned. The
label values for the MLP training examples is determined
by comparing one example with others. The extreme case
is that all the features of two alerts are the same (except
F3 because it contradicts with F1 and F2). In this case,
it is reasonable to assign a maximum correlation proba-
bility. And a value of 0 is assigned to the other extreme
case where the feature values are all zero. The desire cor-
relation probability for the rest examples are determined



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 250

Table 1: Training results for MLP and SVM
MLP SVM

F1 F2 F3 F4 F5 F6 Label Output Label Output
1 1 1 0 1 1 1 1 0.9900 1 0.9926
2 1 1 0 0 0 0 0.75 0.7497 1 0.8668
3 1 1 0 0 0.5 0.5 0.85 0.8503 1 0.9222
4 0.5 1 0 0 0.5 0.5 0.8 0.8001 1 0.8668
5 0.5 0.5 0 0 0.1 0.3 0.1 0.1007 -1 0.1982
6 0 1 0 0 0.1 0.2 0.2 0.2000 -1 0.2270
7 1 0.5 0 1 0.5 0.3 0.65 0.6500 1 0.9031
8 0 0 0 0 0 0 0 0.0002 -1 0.1252
9 0.5 1 0 0 1 1 0.85 0.8500 1 0.9315
10 0.5 0.5 0 1 1 1 0.8 0.8005 1 0.9482
11 1 1 0 1 0 0 0.9 0.9003 1 0.9263
12 0.5 0.5 0 0 0.5 0 0.15 0.1499 -1 0.2270
13 0 0 0 1 1 1 0.65 0.6498 1 0.8668
14 0 0 1 1 1 1 0.9 0.9002 1 0.9782
15 0 0 1 0 0.5 0 0.8 0.8000 1 0.8808
16 0 0 1 1 0.5 0.5 0.85 0.8498 1 0.9577
17 0 0 1 0 0 0 0.8 0.6900 1 0.8668
18 0.5 0.5 0 0 0.5 1 0.3 0.2998 -1 0.1727

by comparing them with the ones that have been previ-
ously labeled ones. Labeling training example for SVM is
easier, since we only need to assign 1 to the example if we
conclude that in that case, two alerts should be correlated,
otherwise, -1 is assigned. Labeling training examples for
both MLP and SVM require certain degree of knowledge
about the similarity measurement. But it is not directly
related to any particular alerts.

The output of the correlation engine is used to deter-
mine whether or not two alerts are correlated. The next
step is to define a representation for the group of cor-
related alerts. The representation used in this report is
called hyper-alert. The goal of the correlation process is
to construct a list of hyper-alerts. The following gives the
formal definition of a hyper-alert.

Definition 2 A hyper-alert H = (V, E, C) is a directed
graph where V is the vertex set and E is the edge set, each
vi ∈ V corresponding to one primitive alert ai. An edge
(vi, vj) ∈ E represent the temporal relationship between
alert ai to aj (ai arrives earlier than aj), and ci,j ∈ C
represents correlation probability.

Since hyper-alerts are defined as graphs, in the rest of
this paper hyper-alerts and hyper-alert graphs are used
interchangeably to represent the correlated alerts. Note
that a new alert is not always linked to the latest alert
in the hyper-alert. Instead, it connects to the alerts with
which it has a high correlation probability. So, the rep-
resentation is useful for inferencing the multiple goals of
attackers. The intention of using graph representation
for correlated alerts is to give the network administrator
intrinsic view of attack scenarios.

In order to construct the hyper-alert graphs, two
thresholds are defined. The first threshold is called the

correlation threshold. Since the probabilistic output of
MLP or SVM is between 0 and 1, intuitively, a value of
0.5 is a suitable threshold to decide if two alerts should be
correlated or not. If the correlation probability between
two alerts is greater than 0.5, then they are considered
to be correlated alerts. Otherwise, they are considered
to be independent alerts. The other threshold is called
the Correlation Sensitivity. Normally, when constructing
a hyper-alert graph, the new alert is connected to a previ-
ous alert that has the highest correlation probability with
it. But, in some cases, it is possible for this new alert to
connect to more than one previous alert. This represents
the situation that an alert is the direct consequence of
more than one previous alert. Assume that Cmax is the
maximum correlation probability the correlation engine
produces for a new alert and all the alerts in a hyper-alert.
The correlation sensitivity is a threshold that determines
whether or not an alert in the hyper-alert should be con-
nected to the new alert. Only those whose correlation
probability with the new alert is close to Cmax such that
the difference is less than the correlation sensitivity will
be connected to the new alert.

The correlation process is described in Algorithm 1.
When a new alert is received, it is compared with all
previous alerts in existing hyper-alerts, and the output
of correlation engine and the correlation sensitivity are
used to determine which hyper-alert it should join, and to
which primitive alerts it should connect. If the correlation
probability with respect to the new alert and all primitive
alerts is lower than a threshold (correlation threshold), a
new hyper-alert will be created to include this new alert.
Once two alerts are correlated, the corresponding cell in
ACM will be updated accordingly. ACM is incrementally
updated so that the new correlation strength can be ap-



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 251

plied to next correlation immediately.

2.5 Generating Attack Graph Using
ACM

The approach that is proposed in this report to gener-
ate attack graphs is different from the ones that use vul-
nerability and topology information about the protected
network. In our approach, the attack graph are gener-
ated based on the training data and the output of the
alert correlation algorithms. The ACM provides enough
information for generating different attack graphs that
represent different typical attack strategies.

As mentioned above, one of the main purposes of using
the ACM is to construct attack graphs in order to study
the strategies of attackers. By knowing the strategies, it
is possible for network administrators to predict what is
most likely to happen when they observe a part of a pat-
tern from the received alerts. An attack graph is defined
as follows:

Definition 3 An attack graph G = (V, E, C) is a di-
rected graph where V is the vertex set and E is the edge
set, each vi ∈ V corresponding to one type of alert ai. An
edge (vi, vj) ∈ E represent the state transition from alert
ai to aj , and ci,j ∈ C represents Πf of alerts ai and aj .

Note that there are essential differences between a
hyper-alert graph and an attack graph that is generated
from the ACM:

• First, a hyper-alert graph is a directed acyclic graph.
There are no cycles in the graph because of the tem-
poral constraints of the alerts. On the other hand, an
attack graph is a directed graph that can have cycles.
The navigation of an edge represents the direction of
the state transition rather than a temporal relation-
ship. Therefore, a hyper-alert graphs can be con-
sidered as a specialized instance of an attack graph.
Attack graphs are a more general representations of
attack strategies, which encode causal relationship
among alerts.

• As a hyper-alert is an instance of the corresponding
attack graph, it can consist of multiple alerts of the
same type, which are normally distinguished by their
time-stamps. But, for an attack graph, each type of
alert can only appear once in the graph. If certain
type of alert occurs multiple times in a scenario, it is
represented as a cycle in the attack graph.

The process of constructing attack graphs from ACM is
described in Algorithm 2. The graph construction starts
from a given type of alert that represent a particular type
of attack. The algorithm performs a horizontal search in
the ACM to find the alerts that are most likely to happen
after this alert. Then these alerts become new starting
points to search for alerts that are more likely to happen
next. The process is repeated until no other alerts are
found to follow any existing alerts in the graph.

Algorithm 2.2: ConstruGraphsFormACM(ai, r)

a: the starting alert of the attack graph
r: the Πf threshold
initialize graph G
initialize queue q
q ← ai

G← ai

while not q.isEmpty()

do



























































































































a← q.dequeue()
for j ← 0 to number of alerts in ACM

do











































































































if Πf

Cell(a,aj) > r

then























































































if ajhas not been
visited

then







































































q ←
aj

Visit aj

G←
G

⋃

aj

G←
G

⋃

(a, aj)
ci,j ←

Πf

Cell(a,aj)

G←
G

⋃

ci,j

return (G)

3 Test and Evaluation

3.1 Experiment with DARPA 2000
Dataset

The proposed Alert Correlation Scheme (ASC) has been
tested using the DARPA 2000 dataset[7]. DARPA2000
is a well-known IDS evaluation dataset created by the
MIT Lincoln Laboratory. It consists of two multistage
attack scenarios, namely LLDDOS1.0 and LLDOS2.0.2.
The purpose of this experiment is to evaluate ACS’s abil-
ity to correlate alerts, discover these scenarios and extract
attack strategies.

3.1.1 LLDOS 1.0 - Scenario One

The LLODS1.0 scenario can be divided into five phases
as follows.

• Phase 1: The attacker scans the network to deter-
mine which hosts are “up”.

• Phase 2: The attacker then uses the ping option
of the sadmind exploit program to determine which
hosts selected in Phase 1 are running the Sadmind
service.

• Phase 3: The attacker attempts the sadmind
Remote-to-Root exploit several times in order to
compromise the vulnerable machine.



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 252

Algorithm 2.1: Correlation(A, r, s)

A: List of alerts
r: Correlation threshold
s: Correlation sensitivity
initialize hyper-alert list H
for all each alert ai in A

do































































for all hyper-alerts in H

do























































find an hyper-alert hj that contains an alert aj

such that the correlation probability of ai and aj is maximum
m← this maximum correlation probability
if m > r
then for each alert ak in hj

do















if m-(probability between ak and ai) < s
then connect ai with ak

else

{

create a new hyper-alert
put ai in new hyper-alert

• Phase 4: The attacker uses telnet and rpc to install
a DDoS program on the compromised machines.

• Phase 5: The attacker telnets to the DDoS master
machine and launches the mstream DDOS against
the final victim of the attack.

Table 2: 19 types of alerts reported by RealSecure in
LLDOS1.0

ID Alert Name
1 Sadmind Ping
2 TelnetTerminaltype
3 Email Almail Overflow
4 Email Ehlo
5 FTP User
6 FTP Pass
7 FTP Syst
8 HTTP Java
9 HTTP Shells
10 Admind
11 Sadmind Amslverify Overflow
12 Rsh
13 Mstream Zombie
14 HTTP Cisco Catalyst Exec
15 SSH Detected
16 Email Debug
17 TelnetXdisplay
18 TelnetEnvAll
19 Stream DoS

We use an alert log file [12] generated by RealSecure
IDS. As a result of replaying the “Inside-tcpdump” file
from DARPA 2000, Realsecure produces 924 alerts. Af-
ter applying the proposed correlation approach (for both
LLDOS1.0 and LLDOS2.0.2, with correlation threshold
r = 0.5 and correlation sensitivity s = 0.1), the ACM

contains 19 different types of alerts ahown in Table 2.
The correlation weights of these alerts are given in Table
3. One of the hyper-alert graphs is given in Figure 3. It
correctly represents the DARPA LLDOS1.0 scenario that
is described above. Phase 1 is missing in this hyper-alert
graph because RealSecure dos not raise any alert for the
ICMP probing activity executed by the attacker, although
in phase 2, the attacker triggers multiple Sadmind P ing
alerts. By using AlertAggregator, the ACS aggregates
the same type of probing attacks from the same source
into one Sadmind P ing alert.

Phase 3 consists of multiple
Sadmind Amslverify Overflow and Admind alerts.
All these alerts have the same source IP and destination
IP implying that the attacker tries several times to break
into the system running Sadmind service by using a
buffer-overflow attack. According to the description of
Realsecure, the Admind is also an unauthorized access
attempt to remote administration of Solaris machines.
Thus, we believe that RealSecure raises two alerts for
a single attack. This can also be observed from the
number of these two attacks and their timestamp. In
Phase 4, the attacker uses rsh and telnet to install and
start mstream daemon and master program, which
triggered the Rsh, MStream Zombie and some telnet
alerts. The telnet alerts are not correctly correlated
because the correlation engine produces low correlation
probabilities for them. Moreover, the mstream DDOS
alert in phase 5 has not been correlated into the hyper-
alert graph shown in Figure 3 because the attacker was
using spoofed IP addresses, and initially, the correlation
weights for mstream DDOS and any other alerts is set to
a very small value. Therefore, if the connection between
mstrean DDOS and Mstream Zombie is desired, the
corresponding correlation weight must be initialized with
a large value.



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 253

Figure 3: LLDOS1.0 hyper-alerts generated by using updated ACM

Three such hyper-alert graphs are generated by the
ACS, representing the scenarios that the attacker uses the
same method to compromise three hosts in the network.
This is consistent with the description in the DARPA LL-
DOS1.0 documentation. In addition to the LLDOS1.0
attack scenario described above, the ACS also identifies
some other scenarios. For example, an attacker tries to
gain unauthorized access to several hosts inside the net-
work. This activity triggers multiple Email Ehol alerts.
These alerts are correlated by the ACS to generate the
corresponding hyper-alert. One other similar scenario dis-
covered by the ACS contains multiple FTP alerts such
as FTP User, FTP Pass and FTP Syst. However, all
of these scenarios are not documented in DARPA2000
dataset. One possible explanation is that, the attacker
performed multiple unauthorized accesses to several ma-
chines, but failed to break in, and thus the intrusion does
not escalate.

Figure 3 illustrates the specific attack scenarios. It
is possible for a security analyst to recognize the attack
strategy by analyzing the hyper-graph. However, attack-
ers might try to confuse the correlation system in order to
cover their attack plans. They can generate some “noise
alerts” and change the order of the steps. Therefore,
hyper-alert graphs that are generated by correlation sys-
tem could be very large and complex and contain many
irrelevance alerts. It might not be very useful for the se-
curity analyst to understand the attackerś strategies or

plans.

The attack strategy extraction method proposed in this
paper is based on the statistical information in the ACM.
It has the potential to filter out the “noise alert” and
find the sequence of actions that attacker use to achieve
the intrusive goal. Figure 4 is one of the attack graphs
extracted from the ACM, while Table 4 shows the corre-
sponding forward correlation strengths in ACM. This is a
representation of the attack strategy used by the attacker
in the LLDOS1.0 scenario. It shows the major steps and
all the possible transitions that the attack followed in
order to achieve its goal. Note that the self-looped cy-
cles in the graph represent the situation that the attacker
may repeat these steps in order to succeed. As shown
in the hyper-alert graph (Figure 3), the attacker success-
fully breaks in the machine after several tries of Sadmind
buffer-overflow attack. The cycle contain only two nodes
(Sadmind Amslverify Overflow, Admind) also implies
that these two alerts are actually triggered by the same
attack. Recall the discussion about causal relation-
ship in the ACM. We can conclude that there is no
causal relation between these two alerts. They can be
viewed as two parallel events. On the other hand, the
Sadmind P ing attack can be considered as the prepa-
ration of Sadmind Amslverify Overflow attack. Fig-
ure 4 only shows the most frequent paths or transitions
since Πf threshold is set to a high value, as described in
ConstruGraphsFormACM algorithm.

num3
Sticky Note



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 254

Table 3: Correlation weights in ACM
Alert 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0.3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 9.3 8.16 6.27 2.37 0.01 0.01 0.01 0.69 0.69 0.01
2 1.75 29.87 19.54 139.09 16.1 19.29 16.11 0.01 0.01 3.79 2.17 2.33 0.6 0.01 3.49 1.29 0.01 0.01 0.01
3 0.87 45.74 34.84 228.07 29.52 25.27 24.86 12.25 0.65 1.68 1.12 1.23 0.32 0.98 0.92 1.1 0.01 0.01 0.01
4 1.75 782.27 628.25 3533.93 550.71 528.85 527.02 13.49 0.65 4.37 2.2 2.39 0.62 4.16 17.87 48.31 0.01 0.01 0.01
5 0.01 9.03 5.32 29.57 19.71 27.31 26.21 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.27 1.48 0.01 0.01 0.01
6 0.01 9.03 1.09 29.05 20.79 19.71 27.33 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.27 1.48 0.01 0.01 0.01
7 0.01 8.76 1.09 29.05 21.22 20.15 19.35 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.27 1.48 0.01 0.01 0.01
8 0.01 11.82 0.01 29.34 3.06 3.06 3.06 11.53 3.88 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
9 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.64 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
10 0.7 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 30.79 31.53 72.87 26.25 0.01 0.01 0.01 4.11 4.12 0.01
11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 31.4 22.74 32.14 16.96 0.01 0.01 0.01 4.11 4.12 0.01
12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 20.88 2.79 0.01 0.01 0.01 3.29 3.29 0.01
13 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.97 0.01 0.01 0.01 0.01 0.01 0.01
14 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.35 0.01 0.01 0.01 0.01 0.01
15 0.01 0.88 0.01 2.64 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.32 1.17 0.01 0.01 0.01
16 0.01 1.16 0.01 4.24 0.28 0.28 0.28 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.27 0.01 0.01 0.01
17 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.08 0.01 0.01 0.01 0.01 0.69 0.01
18 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.08 0.01 0.01 0.01 0.01 0.01 0.01
19 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Figure 4: An attack graph for LLDOS1.0 extracted from
ACM

3.1.2 LLDOS 2.0.2 - Scenario Two

The second scenario in DARPA 2000 dataset also consists
of five phases that starts from probing and ends with a
DDoS attack. The main difference between LLDOS1.0
and LLDOS2.0.2 is that, in LLDOS2.0.2, the attack uses a
HINFO query instead of ICMP echo reply to discover live
hosts. Moreover, the attacker uses a more stealthy way
to compromise several hosts and install trojan mstream
DDoS software. To do so, he/she first breaks in a host,
and then uses it to compromise other hosts in the network,
instead of compromising them individually from the same
source as in LLDOS1.0 scenario. The attack scenario con-
sists of the following five phases:

• Phase 1: The attacker probes a machine
(172.016.115.020), which is a DNS server in the net-
work.

• Phase 2: The attacker breaks in this machine via
exploiting the Sadmind vulnerability.

• Phase 3: The attacker uses FTP to upload mstream
DDoS software and attack script to the compromised
machine.

• Phase 4: The attacker tries to break in two more
machines, but only one attempt is successful .

• Phase 5: The attacker telnets to the DDoS mas-
ter machine (the first compromised machine) and
launches the mstream DDOS against the final vic-
tim of the DDoS attack.

The experimental result is similar to the one in LL-
DOS1.0. Realsecure generates 17 different types of alerts
(see Table 5). The total number alerts in this scenario
is 494. Again, Realsecure does not raise alerts for the
probing activity. Therefore Phase 1 is not shown in the
corresponding hyper-alert graph. Phase 5 is also miss-
ing in Figure 5 since the attacker again uses spoofed IP
addresses. Instead, the Stream DoS is correlated with
a Port Scan alert as a separate hyper-alert graph. The
IDS identifies other phases by raising the following alerts:
Sadmind Amslverify Overflow, Admind, Ftp Put and
MStream Zombie. These alerts are correctly correlated
by the ACS. Figure 5 is the corresponding hyper-alert
graph that is generated to represent this scenario.

As we mentioned above, one of the main differ-
ence between LLDOS1.0 and LLDOS2.0.2 is the way in
which the attacker comprises several machine in the net-
work. This difference can only be observed by looking
at the IP addresses of Sadmind Amslverify Overflow
and Admind alerts. ACS allows user to explore more
information about a particular alert by selecting them.
With this feature, one can identify that, in the hyper-
alert graph shown in Figure 5, the target of first



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 255

Table 4: Forward correlation strength in ACM
Alert 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.292 0.225 0.085 0.000 0.000 0.000 0.025 0.025 0.000
2 0.007 0.117 0.076 0.544 0.063 0.000 0.063 0.000 0.000 0.015 0.008 0.009 0.002 0.000 0.014 0.005 0.000 0.000 0.000
3 0.002 0.112 0.085 0.557 0.072 0.062 0.061 0.030 0.002 0.004 0.003 0.003 0.001 0.002 0.002 0.003 0.000 0.000 0.000
4 0.000 0.118 0.095 0.532 0.083 0.080 0.079 0.002 0.000 0.001 0.000 0.000 0.000 0.001 0.003 0.007 0.000 0.000 0.000
5 0.000 0.076 0.045 0.248 0.166 0.229 0.220 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.012 0.000 0.000 0.000
6 0.000 0.083 0.010 0.267 0.191 0.181 0.251 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.014 0.000 0.000 0.000
7 0.000 0.086 0.011 0.286 0.209 0.199 0.191 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.015 0.000 0.000 0.000
8 0.000 0.179 0.000 0.445 0.046 0.046 0.046 0.175 0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.780 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012
10 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.181 0.185 0.427 0.154 0.000 0.000 0.000 0.024 0.024 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.281 0.204 0.288 0.152 0.000 0.000 0.000 0.037 0.037 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.687 0.092 0.000 0.000 0.000 0.108 0.108 0.000
13 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.843 0.009 0.009 0.009 0.009 0.009 0.009
14 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.660 0.019 0.019 0.019 0.019 0.019
15 0.002 0.171 0.002 0.512 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.062 0.227 0.002 0.002 0.002
16 0.002 0.175 0.002 0.639 0.042 0.042 0.042 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.041 0.002 0.002 0.002
17 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.557 0.005 0.005 0.005 0.005 0.356 0.005
18 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.857 0.008 0.008 0.008 0.008 0.008 0.008
19 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053

Sadmind Amslverify Overflow alert is actually the
source of the second Sadmind Amslverify Overflow
alert.

Figure 5: A hyper-alert graph for LLDOS2.0.2 scenario

Figure 6 is the attack graph extracted from LL-
DOS2.0.2. It is easy to find out that it has a sim-
ilar pattern with the one extracted from LLDOS1.0.
In both cases, the attacker compromises several ma-
chines (in different ways) by exploiting the vulnerabil-
ity of the Sadmind service, and installs DDoS daemons
on these machines by using either rsh or ftp. We have
already mentioned that the self-looped cycles represent
repeating steps performed by the attacker, such as the
Sadmind Amslverify Overflow attack in both scenar-
ios in DARPA 2000 dateset. In our experiments, we iden-
tify that there are two types of repetition. The attacker
can repeat one type of attack on a particular machine (e.g
in LLDOS1.0 scenario), or repeat it on different machines

Figure 6: An attack graph for LLDOS2.0.2 extracted from
ACM

in the network (e.g., in LLDOS2.0.2 scenario). Encoding
this information in attack graphs provides good represen-
tation of the nature of attack strategies.

As previously mentioned, Ning et al. [8, 10] propose a
correlation method to extract attack strategies from in-
trusion alerts, which is similar to ours. The experimen-
tal results on the DARPA 2000 dataset show that both
approaches produce the similar graph representation for
attack strategies. However, our approach is different than
theirs in that it does not need to define a large number of
rules in order to correlate the alerts. Moveover, the ACS
is adaptive to the emerge of new attack patterns because
new alerts are automatically added to the ACM, which
allows the administrator to generate new attack graphs
in order to study new attack strategies.



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 256

4 Conclusions and Future Work

4.1 Conclusions

Alert correlation is an important technique to aggregate
the outputs from multiple IDSs, filter out spurious alerts,
and provide a high-level view of the security state of the
network. The research in this area is getting active re-
cently because of the fact that generating huge number
of alerts has become a major problem of traditional IDSs.
A number of correlation approaches have been suggested.
However, very few of them provide the capability of au-
tomatic extracting attack strategies from alerts. Most of
them simply cluster the alerts into different groups.

Table 5: 17 types of alerts reported by RealSecure in
LLDOS2.0.2

ID Alert Name
1 RIPAdd
2 Email Ehlo
3 Email Almail Overflow
4 FTP Syst
5 FTP Pass
6 FTP User
7 Sadmind Amslverify Overflow
8 Admind
9 HTTP Cisco Catalyst Exec
10 FTP Put
11 Email Turn
12 HTTP Java
13 Mstream Zombie
14 HTTP ActiveX
15 Port Scan
16 Stream DoS
17 EventCollector Info

This paper presents an alert correlation technique
based on two neural network approaches: Multilayer Per-
ceptron and Support Vector Machine. The goal of the
proposed correlation technique is not only to group alerts
together, but also to represent the correlated alerts in a
way that they reflect the corresponding attack scenarios.
The probabilistic outputs of MLP and SVM is proved to
be helpful for constructing such attack scenarios. Both
MLP and SVM have their own strengthes for alert cor-
relation. When knowledge for assigning accurate prob-
abilities to training data is available, MLP can produce
more precise correlation probabilities. Labeling training
patterns for SVM is much easier but the outputs are less
accurate than the ones produced by MLP. Another ad-
vantage of using SVM is that its training speed is fast
and it is possible to incrementally update it in a real time
environment.

An alert correlation system is implemented to demon-
strate the effectiveness of proposed technique. Experi-
ments performed using the DARPA 2000 intrusion detec-
tion scenario specific datasets shows that the proposed
technique can successfully correlate a large number intru-

sion alerts into scenarios. The hyper-alert graphs that
are generated by correlation engine correctly reflect the
multi-stage attacks in the dataset. The use of ACM is
also proved to be effective for extracting high level attack
strategies.

4.2 Future Work

Some extensions that can be make to this work are
summarized in the following:

Identifying more features for correlation

In this work we only used six features for the alert
correlation. MLP and SVM have the ability to handle
high dimension input. So, the proposed alert correlation
technique can be improve by introducing more features.
Recent research shows that vulnerability and topology
information about the protected network can be incor-
porated into the correlation process to produce more
meaningful results. But the challenge is how to extract
the features from those information and quantify and
normalize them.

Real-time correlation

Correlation techniques will become more useful if they
can be used in a real time environment and provide
instant information about the attacks that are happening
in the network. The alert correlation system that is
developed in this paper can be extended and used for
real-time correlation. However, some other issues such
as performance and user interface need to be addressed
before it becomes a viable alternative.

Recognizing the variations of attack strategies

Attackers often change attack patterns to achieve their
goal. For example, they may use different attacks to
gather information and compromise the target system
to gain root access. Attack graphs provide useful
information for analyst to study the variations of attack
pattern. But automated analysis techniques on top of
attack graphs can greatly reduce the system administra-
tor/analyst’s workload and therefore should be further
investigated. Some graph theories can be used to analyze
the similarity of attack graphs, and knowledge about the
similarity of different type of alerts are also important
for studying the variations of attack strategies.

Target recognition and risk assessment

Attack graphs enable network administrators to under-
stand the strategies of attackers. In order to protect the
network, the administrators normally will perform risk
assessments against the attack strategies. By incorporat-
ing the vulnerability and topology information, it is also
possible to identify the potential victims of a particular
attack. How to combine all this information and come
up with effective response plan may prove to be a very
valuable research.



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 257

References

[1] B. E. Boser, I. Guyon, and V. Vapnik, “A train-
ing algorithm for optimal margin classifiers,”, COLT,
pp. 144-152, 1992.

[2] F. Cuppens and A. Miege, “Alert correlation in a
cooperative intrusion detection framework,” in Pro-
ceedings of 2002 IEEE Symposium on Security and
Privacy, pp. 202-215, 2002.

[3] F. Cuppens and R. Ortalo, “Lambda: A language
to model a database for detection of attacks,” in
Proceedings of Recent Advances in Intrusion Detec-
tion, 3rd International Symposium, (RAID 2000),
LNCS 1907, pp. 197-216, Springer-Verlag, Toulouse,
France, Oct. 2000.

[4] O. M. Dain and R. K. Cunningham, “Fusing a het-
erogeneous alert stream into scenarios,” in Proceed-
ings of the 2001 ACM Workshop on Data Mining for
Security Applications, pp. 1-13, 2001.

[5] S. T. Eckmann, G. Vigna, and R. A. Kemmerer,
“STATL: an attack language for state-based intru-
sion detection,” Journal of Computer Security, vol.
10, no. 1-2, pp. 71-103, 2002.

[6] S. Haykin, Neural Networks: A Comprehensive
Foundation (2nd Edition), Prentice Hall, July 1998.

[7] MIT Lincoln Laboratory, 2000 Darpa Intrusion De-
tection Scenario Specific Data Sets, 2000.

[8] P. Ning and Y. Cui, An Intrusion Alert Correlator
Based on Prerequisites of Intrusions, Tech. Report
TR-2002-01, North Carolina State University, USA,
Jan. 2002.

[9] P. Ning, Y. Cui, and D. S. Reeves, “Construct-
ing attack scenarios through correlation of intrusion
alerts,” in Proceedings of the 9th ACM conference on
Computer and communication security, ACM Press,
pp. 245-254, Washington D.C., USA, Nov. 2002.

[10] P. Ning and D. Xu, “Learning attack strategies from
intrusion alerts,” in Proceedings of the 10th ACM
conference on Computer and communication secu-
rity, ACM Press, pp. 200-209, Washington D.C.,
USA, Oct. 2003.

[11] P. Ning, Y. Cui, D. S. Reeves, and D. Xu, “Tech-
niques and tools for analyzing intrusion alerts,” ACM
Transactions on Information and System Security
(TISSEC), vol. 7, no. 2, pp. 274-318, 2004.

[12] North Carolina State University Cyber Defense Lab-
oratory, Tiaa: A Toolkit for Intrusion Alert Analysis,
http://discovery.csc.ncsu.edu/software/correlator
/ver0.4/index.html, Apr. 10th, 2005, last accessed.

[13] J. Platt, Probabilistic Outputs for Support Vector
Machines and Comparisons to Regularized Likelihood
Methods, MIT Press, 1999.

[14] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and
J. M. Wing, “Automated generation and analysis of
attack graphs”, in SP ’02: Proceedings of the 2002
IEEE Symposium on Security and Privacy, IEEE
Computer Society, pp. 273, Washington, DC, USA,
2002.

[15] K. L. S. J. Templeton, “A requires/provides model
for computer attacks,” in Proceedings of the 2000
Workshop on New Security Paradigms, pp. 31-38,
Feb. 2001.

[16] A. Valdes and K. Skinner, “Probabilistic alert cor-
relation,” in Proceedings of Recent Advances in
Intrusion Detection, 4th International Symposium,
(RAID 2001), LNCS 2212, pp. 54–68, Springer-
Verlag, Davis, CA, USA, Oct. 2001.

Bin Zhu received his Master degree in
Computer Science from University of
New Brunswick (UNB) in year 2005.
He received his B.Eng in Industrial
automation from Beijing Institute of
Clothing Technology in 1997. He is
currently with the Network Security
Lab / University of New Brunswick

as security software developer since July 2005. Previ-
ously, he was with Privacy, Security & Trust (PST) re-
search group in National Research Council (NRC) from
July 2004 to June 2005. He also worked in the indus-
trial as software developer for 5 years before his study
at UNB. His research interests include Intrusion Detec-
tion, Machine Learning, Software Engineering and Data
Visualization.

Ali A. Ghorbani (M’95) received
his PhD (1995) and Master’s (1979)
from the University of New Brunswick,
and the George Washington Univer-
sity, Washington D.C., USA, respec-
tively. He was on the faculty of the
Department of Computer Engineering,
Iran University of Science and Tech-

nology, Tehran, Iran, from 1987 to 1998. Since 1999 he
has been at the faculty of Computer Science, University
of New Brunswick (UNB), Fredericton, Canada, where he
is currently a Professor of Computer Science. He is also
a member of the Privacy, Security and Trust (PST) team
at the National Research Council (NRC) of Canada.

He has held a variety of positions in academia for the
past 24 years. His research originated in software devel-
opment, where he designed and developed a number of
large-scale systems. His current research focus is Neu-
ral Networks, Web intelligence, agent systems, complex
adaptive systems, and trust and security. He established
the Intelligent and Adaptive Systems (IAS) and Network
Security research groups in 2002 and 2004, respectively,
at the faculty of Computer Science, UNB. The IAS group
(http://ias.cs.unb.ca) pursues research on machine and
statistical learning, data mining, intelligent agents and
multiagent systems and Web intelligence. The NSL group
(http://nsl.cs.unb.ca) is home to R&D in computer and
network security.

He authored more than 100 research papers in journals
and conference proceedings and has edited four volumes.



International Journal of Network Security, Vol.3, No.3, PP.244–258, Nov. 2006 258

He is on the editorial board of the Computational Intelli-
gence (CI), an international journal.

Dr. Ghorbani a member of ACM, IEEE Computer
Society, and ANNS.




