
On the Randomized Firefly Algorithm

Iztok Fister, Xin-She Yang, Janez Brest and Iztok Fister Jr.

Abstract The firefly algorithm is a stochastic meta-heuristic that incorporates ran-
domness into a search process. Essentially, the randomness is useful when deter-
mining the next point in the search space and therefore has a crucial impact when
exploring the new solution. In this chapter, an extensive comparison is made between
various probability distributions that can be used for randomizing the firefly algo-
rithm, e.g., Uniform, Gaussian, Lévi flights, Chaotic maps, and the Random sampling
in turbulent fractal cloud. In line with this, variously randomized firefly algorithms
were developed and extensive experiments conducted on a well-known suite of func-
tions. The results of these experiments show that the efficiency of a distributions
largely depends on the type of a problem to be solved.

Keywords Chaos · Firefly algorithm · Randomization · Random sampling in
turbulent fractal cloud · Swarm intelligence

I. Fister (B) · J. Brest · I. Fister Jr.
Faculty of Electrical Engineering and Computer Science, University of Maribor,
Maribor, Slovenia
e-mail: iztok.fister@uni-mb.si

J. Brest
e-mail: janez.brest@uni-mb.si

I. Fister Jr.
e-mail: iztok.fister@guest.arnes.si

X.-S. Yang
School of Science and Technology, Middlesex University, London, UK
e-mail: x.yang@mdx.ac.uk

X.-S. Yang (ed.), Cuckoo Search and Firefly Algorithm, 27
Studies in Computational Intelligence 516, DOI: 10.1007/978-3-319-02141-6_2,
© Springer International Publishing Switzerland 2014

28 I. Fister et al.

1 Introduction

Automatic problem solving with a digital computer has been the eternal quest of
researchers in mathematics, computer science and engineering. The majority of
complex problems (also NP-hard problems [1]) cannot be solved using exact meth-
ods by enumerating all the possible solutions and searching for the best solution
(minimum or maximum value of objective function). Therefore, several algorithms
have been emerged that solve problems in some smarter (also heuristic) ways. Nowa-
days, designers of the more successful algorithms draw their inspirations from
Nature. For instance, the collective behavior of social insects like ants, termites,
bees and wasps, or some animal societies like flocks of bird or schools of fish have
inspired computer scientists to design intelligent multi-agent systems [2].

For millions of years many biological systems have solved complex problems by
sharing information with group members [3]. These biological systems are usually
very complex. They consists of particles (agents) that are definitely more complex
than molecules and atoms, and are capable of performing autonomous actions within
an environment. On the other hand, a group of particles is capable of intelligent
behavior which is appropriate for solving complex problems in Nature. Therefore, it
is no coincidence that these biological systems have also inspired computer scientists
to imitate their intelligent behavior for solving complex problems in mathematics,
physics, engineering, etc. Moreover, interest in researching various biological sys-
tems has increased recently. These various biological systems have been influenced
by swarm intelligence (SI) that can be viewed as an artificial intelligence (AI) disci-
pline concerned with the designing of intelligent systems.

It seems that the first use of the term ‘swarm intelligence’ was probably by Beni
and Wang [4] in 1989 in the context of a cellular robotic system. Nowadays, this
term also extends to the field of optimization, where techniques based on swarm
intelligence have been applied successfully. Examples of notable swarm intelligence
optimization techniques are ant colony optimization [5], particle swarm optimiza-
tion [6], and artificial bees colony (ABC) [7, 8]. Today, the more promising swarm
intelligence optimization techniques include the firefly algorithm (FA) [9–14], the
cuckoo search [15], and the bat algorithm [16, 17].

Stochastic optimization searches for optimal solutions by involving randomness
in some constructive way [18]. In contrast, if optimization methods provide the same
results when doing the same things, these methods are said to be deterministic [19].
If the deterministic system behaves unpredictably, it arrives at a phenomenon of
chaos [19]. As a result, randomness in SI algorithms plays a huge role because this
phenomenon affects the exploration and exploitation in search process [20]. These
companions of stochastic global search represent the two cornerstones of problem
solving, i.e., exploration refers to moves for discovering entirely new regions of a
search space, while exploitation refers to moves that focus searching the vicinity of
promising, known solutions to be found during the search process. Both components
are also referred to as intensification and diversification in another terminology [21].
However, these refer to medium- to long- term strategies based on the usage of mem-

On the Randomized Firefly Algorithm 29

ory (Tabu search), while exploration and exploitation refer to short-term strategies
tied to randomness [20].

Essentially, randomness is used in SI algorithms in order to explore new points
by moving the particles towards the search space. In line with this, several random
distributions can be helpful. For example, uniform distribution generates each point of
the search space using the same probability. On the other hand, Gaussian distribution
is biased towards the observed solution, that is that the smaller modifications occur
more often than larger ones [22]. On the other hand, the appropriate distribution
depends on the problem to be solved, more precisely, on a fitness landscape that
maps each position in the search space into fitness value. When the fitness landscape
is flat, uniform distribution is more preferable for the stochastic search process, whilst
in rougher fitness landscapes Gaussian distribution should be more appropriate.

This chapter deals with an FA algorithm that uses different randomization meth-
ods, like Uniform, Gaussian, Lévy flights, Chaotic maps, and the Random sampling
in turbulent fractal cloud. Whilst the observed randomization methods are well-
known and widely used (e.g., uniform, Gaussian, Lévi flights, and chaotic maps),
the random sampling in turbulent fractal cloud is taken from astronomy and, as we
know, it is the first time used for the optimization purposes. Here, two well-known
chaotic maps are also taken into account, i.e., Kent and Logistic.

The goal of our experimental work is to show how the different randomized
methods influence the results of the modified FA. In line with this, a function opti-
mization problem was solved by this algorithm. A suite of ten well-known functions
were defined, as defined in the literature.

The structure of the rest of the chapter is as follows: Sect. 2 describes a back-
ground information of various randomization methods. In Sect. 3, the randomized
firefly algorithms are presented. Experiments and results are illustrated in Sect. 4. The
chapter is finished summarizing our work and the directions for further development
are outlined.

2 Background Information

This section describes the background information about generating random variates
and computing their probability distributions, as follows:

• Uniform,
• Normal or Gaussian,
• Lévy flights,
• Chaotic maps,
• Random sampling in turbulent fractal cloud.

Continuous random number distributions [23] are defined by a probability density
function p(x), such that the probability of x occurring within the infinitesimal range
x to x + dx is p · dx . The cumulative distribution function for the lower tail P(x) is
defined as the integral

30 I. Fister et al.

P(x) =
∫ x

−∞
p(x) · dx, (1)

which gives the probability of a variate taking a value of less than x . The cumulative
distribution function for the upper tail Q(x) is defined as the integral

Q(x) =
∫ +∞

x
p(x) · dx, (2)

which provides the probability of a value greater than x .
The upper and lower cumulative distribution functions are related by P(x) +

Q(x) = 1 and satisfy the following limitations 0 ≤ P(x) ≤ 1 and 0 ≤ Q(x) ≤ 1.
In the remainder of this section, these randomized methods are presented in more
detail.

2.1 Uniform Distribution

Uniform continuous distribution has the density function, as follows:

p(x) =
{ 1

b−a a ≤ x ≤ b,

0 otherwise.
(3)

Note that each possible value of the uniform distributed random variable is within
optional interval [a, b], on which the probability of each sub-interval is proportional
to its length. If a ≤ u < v ≤ b then the following relation holds:

P(u < x < v) = v − u

b − a
. (4)

Normally, the uniform distribution is obtained by a call to the random number
generator [23]. Note that the discrete variate functions always return a value of
type unsigned which on most platforms means a random value from the interval
[0, 232 − 1]. In order to obtain the random generated value within the interval [0, 1],
the following mapping is used:

r = ((double)rand()/((double)(RAND_MAX) + (double)(1))), (5)

where r is the generated random number, the function rand() is a call of the random
number generator, and the RAND_MAX is the maximal number of the random value
(232 − 1).

On the Randomized Firefly Algorithm 31

2.2 Normal or Gaussian Distribution

Normal or Gaussian distribution is defined with the following density function:

p(x) = 1

σ
√

2π
e− 1

2 (x−a
σ

)2
. (6)

The distribution depends on parameters a ∈ R and σ > 0. This distribution is denoted
as N(a, σ). The standardized normal distribution is obtained, when the distribution
has an average value of zero with standard deviation of one, i.e., N(0, 1). In this case,
the density function is simply defined as:

p(x) = 1√
2π

e− 1
2 x2

. (7)

The Gaussian distribution has the property that approximately 2/3 of the samples
drawn lie within one standard deviation [22]. That is, the most of the modifications
made on the virtual particle will be small, whilst there is a non-zero probability of
generating very large modifications, because the tail of distribution never reaches
zero [22].

2.3 Lévy Flights

In reality, resources are distributed non-uniformly in Nature. This means, that the
behavior of a typical forager needing to find these resources as fast as possible
does not obey Gaussian distribution. In order to simulate foragers search strategies,
Lévy flights is closer to their behavior [24]. It belongs to a special class of α-stable
distributions defined by a Fourier transform [23]:

p(x) = 1√
2π

∫ +∞

−∞
e−i t x−|ct |α . (8)

The α-stable means that it exhibits the same probability density distributions for each
randomly generated variable. This density function has two parameters: scale c ∈ R

and exponent α ∈ [0, 2]. A main characteristic of this distribution is that it has an
infinite variance.

Interestingly, for α = 1 the density function reduces to the Cauchy distribution,
whilst for α = 2 it is a Gaussian distribution with σ = √

2c. For α < 1 the tails of
the distribution become extremely wide [24]. The more appropriate setting of this
parameter for optimization is therefore α ∈ (1.0, 2.0), where the distribution is non-
Gaussian with no variance (as in the case of Lévy flights) or with no mean, variance
or higher moments defined (as in the case of Cauchy distribution). Essentially, the
difference between non-Gaussian and Gaussian distributions is that the tail of the

32 I. Fister et al.

distribution by the former is wider than by the latter. This means, the probability of
generating very large modifications is much higher by Lévy flights than by Gaussian
distribution.

2.4 Chaotic Maps

Chaos is a phenomenon encountered in science and mathematics wherein a deter-
ministic (rule-based) system behaves unpredictably [19]. Let us assume a Logistic
equation defined as a map:

xn+1 = r xn(1 − xn), (9)

where xn ∈ (0, 1) and parameter r is a parameter. A generated sequence of numbers
by iterating a Logistic map (also orbit) with r = 4 are chaotic. That is, it posses the
following propositions [19]:

• the dynamic rule of generating the sequence of numbers is deterministic,
• the orbits are aperiodic (they never repeat),
• the orbits are bounded (they stay between upper and lower limits, normally, within

the interval [0, 1]),
• the sequence has sensitive dependence on the initial condition (also SDIC).

Similar behavior can also be observed by the Kent map [25]. The Kent map is
one of the more studied chaotic maps that has been used to generate pseudo-random
numbers in many applications, like secure encryption. It is defined as follows:

x(n + 1) =
⎧⎨
⎩

x(n)
m , 0 < x(n) ≤ m,

(1−x(n))
1−m , m < x(n) < 1,

(10)

where 0 < m < 1. Hence, if x(0) ∈ (0, 1), for all n ≥ 1, x(n) ∈ [0, 1]. In accordance
with the propositions in [25], m = 0.7 was used in our experiments.

2.5 Random Sampling in Turbulent Fractal Cloud

Stars formation begins with a random sampling of mass in a fractal cloud [26]. This
random sampling is performed by the initial mass function (IMF) and represents a
basis for a new sampling method named as random sampling in turbulent fractal
cloud (RSiTFC).

The method can be described as follows. Let us consider a fractal cloud that is
divided into a hierarchical structure consisting of several levels with a certain number
of cloud pieces containing a certain number of sub-pieces. Then, a sampling method
randomly samples a cloud piece from any level. The sampled pieces at the top of this

On the Randomized Firefly Algorithm 33

hierarchical structure are denser than the pieces at the bottom. When the cloud piece
is chosen the initial mass of that piece is identified and the piece representing the
formed star is removed from the hierarchy. This process is repeated until all of the
cloud is chosen [26]. This mentioned method is formally illustrated in Algorithm 1.

The algorithm RSiTFC consists of six parameters: scaling factor L , number of
levels H , number of sub-pieces for each piece N , fractal cloud pieces x , level h, and
piece number i . The scaling factor is determined as S = L−h when calculated from
the fractal dimension expressed as D = log N

log L . The number of levels H determines
the depth of the hierarchical structure. The number of pieces increases with level h
according to Poisson distribution PN (h) = N he−N /h!. The length of fractal cloud
pieces x is limited by N H and consists of elements representing the initial mass of the
star to be formed. Level h denotes the current hierarchical level, whilst i determines
the star to be formed.

Algorithm 1 RSiTFC(L , H, N , x, h, i)
Input: L scaling factor, H number of levels, N number of sub-pieces
Input: ∗x fractal cloud, h current level, ∗i piece number
1: if(i == 0)
2: x = new double [N H];
3: for(j = 0; j < N h; j + +)
4: x[∗i] = 2 ∗ (U (0, 1) − 0.5)/Lh + 0.5;
5: ∗i = ∗i + 1;
6: end for
7: else
8: for(j = 0; j < N h; j + +)
9: x[∗i] = x[∗i] + 2 ∗ (U (0, 1) − 0.5)/Lh;
10: ∗i = ∗i + 1;
11: end for
12: end if
13: if(h < H)
14: return RSiTFC(L , H, N , x, h + 1, i);
15: end if
16: return x ;

For example, let N = 2 be a constant number of sub-pieces for each piece. Then,
there is one cloud at the top level h = 0, with two pieces inside this cloud at h = 1, etc.
For H = 4, the total number of pieces is expressed as 1 + 2 + 4 + 8 + 16 = 31 [26].

3 Randomized Firefly Algorithms

Fireflies (Coleoptera: Lampyridae) are well known for bioluminescent signaling,
which is used for species recognition and mate choosing [27]. Bioluminiscence that
comprises a complicated set of chemical reactions is not always a sexual signal only
but also warns off potential predators. In the remainder of the chapter, an original FA

34 I. Fister et al.

algorithm is described that captures the bioluminiscent behavior of fireflies within
the fitness function. Further, this algorithm is then modified with various randomized
methods.

3.1 Original Firefly Algorithm

The light-intensity I of the flashing firefly decreases as the distance from source
r decreases in terms of I ∝ 1/r2. Additionally, air absorption causes the light to
become weaker and weaker as the distance from the source increases. This flashing
light represented the inspiration for developing the FA algorithm by Yang [9] in 2008.
Here, the light-intensity is proportional to the objective function of the problem being
optimized (i.e., I (s) ∝ f (s), where s = S(x) represent a candidate solution).

In order to formulate the FA, some flashing characteristics of fireflies were ideal-
ized, as follows:

• All fireflies are unisex.
• Their attractiveness is proportional to their light intensity.
• The light intensity of a firefly is affected or determined by the landscape of the

objective function.

Note that light-intensity I and attractiveness are in some way synonymous. While
the intensity I is referred to as an absolute measurement of emitted light by firefly,
the attractiveness is a relative measurement of the light that should be seen in the
eyes of beholders and judged by the other fireflies [9]. The light intensity I varies
with distance r is expressed by the following equation

I (r) = I0e−γ r2
, (11)

where I0 denotes the intensity of the light at the source, and γ is a fixed light
absorption coefficient. Similarly, the attractivenessβ that also depends on the distance
r is calculated according to the following generalized equation

β(r) = β0e−γ r2
. (12)

The distance between two fireflies i and j is represented as the Euclidian distance

rij = ‖si − s j‖ =
√√√√ D∑

k=1

sik − sjk, (13)

where sik is the k-th element of the i-th firefly position within the search-space, and
D denotes the dimensionality of a problem. Each firefly i moves to another more
attractive firefly j , as follows

On the Randomized Firefly Algorithm 35

si = si + β0e−γ r2
ij (s j − si) + α · Ni (0, 1). (14)

Equation (14) consists of three terms. The first term determines the position of
the i-th firefly. The second term refers to the attractiveness, while the third term
is connected with the randomized move of the i-th firefly within the search-space.
This term consists of the randomized parameter α, and the random numbers Ni (0, 1)

drawn from a Gaussian distribution. The scheme of FA is sketched in Algorithm 1.
The FA algorithm (Algorithm 2) runs on the population of fireflies P(t) that are

Algorithm 2 Original FA algorithm
1: t = 0; s∗ = ∅; γ = 1.0; // initialize: gen.counter, best solution, attractiveness
2: P(t)=InitFA(); // initialize the firefly population s(0)

i ∈ P(0)

3: while t ≤ MAX_GEN do
4: α(t) = AlphaNew(); // determine a new value of α

5: EvaluateFA(P(t), f (s)); // evaluate s(t)
i according to f (si)

6: OrderFA(P(t), f (s)); // sort P(t)
i according to f (si)

7: s∗ = FindTheBestFA(P(t), f (s)); // determine the best solution s∗
8: P(t+1)=MoveFA(P(t)); // vary attractiveness according Eq. (14)
9: t = t + 1;
10: end while
11: return s∗, f (s); // post process

represented as real-valued vectors s(t)
i = s(t)

i0 , . . . s(t)
in , where i = 1 . . . NP and NP

denotes the number of fireflies in population P(t) at generation t . Note that each firefly
s(t)

i is of dimension D. The population of fireflies is initialized randomly (function
InitFA) according to equation

s(0)
ij = (ubi − lbi) · rand(0, 1) + lbi , (15)

where ubi and lbi denote the upper and lower bounds, respectively. The main loop of
the firefly search process that is controlled by the maximum number of generations
MAX_GEN consists of the following functions. Firstly, the new values for the ran-
domization parameter α is calculated according to the following equation (function
AlphaNew):

� = 1 − 10−4/0.91/MAX_GEN ,

α(t+1) = 1 − � · α(t), (16)

where � determines the step size of changing the parameter α(t+1). Note that this
parameter monotony descends with the increasing of generation counter t . Secondly,
the new solution s(t)

i is evaluated according to a fitness function f (s(t)), where s(t)
i =

S(x(t)
i) (function EvaluateFA). Thirdly, solutions s(t)

i for i = 1 . . . N P were ordered

with respect to the fitness function f (s(t)
i) ascending, where s(t)

i = S(x(t)
i) (function

36 I. Fister et al.

OrderFA). Fourthly, the best solution the best solution s∗ = s(t)
0 is determined in the

population P(t) (function FindTheBestFA). Finally, the virtual fireflies are moved
(function MoveFA) towards the search space according to the attractiveness of their
neighbors’ solution (Eq. 14).

In the remainder of this paper, the randomized FA is discussed in more detail.

3.2 Variants of the Randomized Firefly Algorithm

Randomized FA (RFA) is based on the original FA that is upgraded using the men-
tioned randomized methods. In place of the original Eq. (14), the modified equation
is used by RFA, as follows:

si = si + β0e−γ r2
ij (s j − si) + α · Ri , (17)

where Ri denotes one of the randomized methods presented in Table 1.
As can be seen from Table 1, six randomized methods are used in the RFA algorithm
that also differ according to the interval of generated random values. The former
returns the random values in an interval [0, 1], like Uniform distribution, and both
chaotic maps, whilst the latter within an interval (−∞,+∞), like Gaussian, Lévy
flights, and RSiTFC. When the random value is generated within the interval [0, 1],
this value is extended to the interval [−1, 1] using a formula ri = 2(ri − 0.5).
However, the generated solution value sij is verified to lie within the valid interval sij ∈
[lb j , ub j], in both cases. Interestingly, some implementations of random generators
can be found in Standard C-library (as a standard random generator for generating
uniformly distributed random values), another in the GNU Scientific Library [23] (as
random generators for generating the Gaussian and Lévy flights distributed random
values), and the rest were developed from scratch (as chaotic maps and RSiTFC).
According to the used randomized method, six different variants of the RFA algorithm
are developed (as UFA, NFA, LFA, CFA1, CFA2, and FFA).

Table 1 Variants of the RFA algorithm

Randomization method Random generator Implementation RFA variant

Uniform distributed Ui (0, 1) Standard C-library UFA
Gaussian distributed Ni (−∞,+∞) GSL-library NFA
Lévy flights Li (−∞,+∞) GSL-library LFA
Kent chaotic map C K

i (0, 1) From scratch CFA1
Logistic chaotic map C L

i (0, 1) From scratch CFA2
RSiTFC Fi (−∞,+∞) From scratch FFA

On the Randomized Firefly Algorithm 37

4 Experiments and Results

An aim of our experimental work was to show that the developed randomized methods
has a substantial (if not significant) impact on the results of the RFA algorithm. In
line with this, six variants of the RFA algorithm (UFA, NGA, LFA, CFA1, CFA2, and
FFA) were compared on a suite of ten well-known functions taken from publications.
In the remainder of this chapter, the test suite is presented, then an experiment setup
is defined that is followed by a description of a PC configuration, on which the
experiments were performed. Finally, the results of the experiments are presented,
in detail.

4.1 Test Suite

The test suite consisted of ten functions which were selected from two references.
The first five functions were taken from Karaboga’s paper [7], in which the ABC
algorithm was introduced, while the last five were from the paper of Yang [28] that
proposed a set of optimization functions suitable for testing the newly-developed
algorithms.

The functions within the test suite can be divided into unimodal and multimodal.
The multimodal functions have two or more local optima. The function is separable,
when the set of variables can be rewritten as a sum of the function of just one
variable. The separable and multimodal functions are more difficult to solve. The
more complex functions are those that have an exponential number of local optima
randomly distributed within the search space. The definitions and characteristics of
functions constituting the test suite, can be summarized as follows:

• Griewangk’s function:

f1(s) = −
D∏

i=1

cos

(
si√

i

)
+

D∑
i=1

s2
i

4000
+ 1, (18)

where si ∈ [−600, 600]. The function has the global minimum f ∗ = 0 at s∗ =
(0, 0, . . . , 0). It is highly multimodal, when the number of variables is higher
than 30.

• Rastrigin’s function:

f2(s) = D ∗ 10 +
D∑

i=1

(s2
i − 10 cos(2πsi)), (19)

where si ∈ [−15, 15]. The function has the global minimum f ∗ = 0 at s∗ =
(0, 0, . . . , 0) and is also highly multimodal.

• Rosenbrock’s function:

38 I. Fister et al.

f3(s) =
D−1∑
i=1

100 (si+1 − s2
i)2 + (si − 1)2, (20)

where si ∈ [−15, 15] and whose global minimum f ∗ = 0 is at s∗ = (1, 1, . . . , 1).
This function, also known as the ‘banana function’ has several local optima.
Gradient-based algorithms are especially difficult to converge to the global optima
by optimizing this function.

• Ackley’s function:

f4(s) =
D−1∑
i=1

(20 + e − 20e
−0.2

√
0.5(s2

i+1 + s2
i)

− e0.5(cos(2πsi+1) + cos(2πsi))), (21)

where si ∈ [−32.768, 32.768]. The function has the global minimum f ∗ = 0 at
s∗ = (0, 0, . . . , 0) and it is highly multimodal.

• Schwefel’s function:

f5(s) = 418.9829 ∗ D −
D∑

i=1

si sin(
√|si |), (22)

where si ∈ [−500, 500]. The Schwefel’s function has the global minimum f ∗ = 0
at s∗ = (1, 1, . . . , 1) and is highly multimodal.

• De Jong’s sphere function:

f6(s) =
D∑

i=1

s2
i , (23)

where si ∈ [−600, 600] and whose global minimum f ∗ = 0 is at s∗ =
(0, 0, . . . , 0). The function is unimodal and convex.

• Easom’s function:

f7(s) = −(−1)D

(
D∏

i=1

cos2(si)

)
exp

[
−

D∑
i=1

(si − π)2

]
, (24)

where si = [−2π, 2π]. The function has several local minimum and the global
minimum f ∗ = −1 at s∗ = (π, π, . . . , π).

• Michalewicz’s function:

f8(s) = −
D∑

i=1

sin(si)

[
sin

(
is2

i

π

)]2·10

, (25)

On the Randomized Firefly Algorithm 39

where si = [0, π]. The function has the global minimum f ∗ = −1.8013 at
s∗ = (2.20319, 1.57049) within two-dimensional parameter space. In general, it
has several local optima.

• Xin-She Yang’s function:

f9(s) =
(

D∑
i=1

|si |
)

exp

[
−

D∑
i=1

sin(s2
i)

]
, (26)

where si = [−2π, 2π]. The function is not smooth because it has several local
optima and the global minimum f ∗ = 0 at s∗ = (0, 0, . . . , 0).

• Zakharov’s function:

f10(s) =
D∑

i=1

s2
i +

(
1

2

D∑
i=1

isi

)2

+
(

1

2

D∑
i=1

isi

)4

, (27)

where si = [−5, 10]. The function has the global minimum f ∗ = 0 at s∗ =
(0, 0, . . . , 0) with no local optima.

The lower and upper bounds of the design variables determine intervals that limit
the size of the search space. The wider this interval, the wider the search space. Note
that the intervals were selected so that the search space was wider than those proposed
in the standard literature. Another difficulty was represented by the dimensions of
the functions. Typically, the higher the dimensional function, the more difficult to
optimize. Note that functions with dimensions D = 10, D = 30 and D = 50 were
employed in our experiments.

4.2 Experimental Setup

The characteristics of RFA algorithms are illustrated in Table 2, from which it can
be seen that the specific FA parameters were set according to the propositions in [9],
i.e., α = 0.1, β = 0.2, and γ = 0.9. The population size was set as NP = 100,
because extensive experiments have shown that this value represents the good balance
between exploration and exploitation within the FA search process.

The number of fitness function evaluations depends on a dimension of problem
D and was limited to MAX_FEs = 1, 000 · D. However, the number of generations
used as termination condition in RFA can simply be expressed as MAX_GEN =
MAX_FES/NP. Because all the algorithms have stochastic natures they were run
25 times. The results from these algorithms were accomplished according to five
standard measures, as follows: the Best, the Worst, the Mean, the StDev, and the
Median values.

40 I. Fister et al.

Table 2 Characteristics of the RFA algorithms

Parameter Designation Setting

Randomized parameter α 0.1
Attractiveness β 0.2
Light absorption γ 0.9
Population size N P 100
Maximum number of evaluations MAX_FEs 1, 000 · D
Maximum number of generations MAX_GEN MAX_FEs/NP
Maximum number of runs MAX_RUN 25

4.3 PC Configuration

All runs were made on a HP Compaq using the following configurations:

1. Processor—Intel Core i7-2600 3.4 (3.8) GHz
2. RAM—4GB DDR3
3. Operating system—Linux Mint 12

All versions of the tested algorithms were implemented within the Eclipse Indigo
CDT framework.

4.4 Results

The following experiments were conducted, in order to show how the various ran-
domized methods influenced the results of the RFA algorithms:

• analyzing the characteristics of the various randomization methods,
• verifying the impact of these randomizing methods on the results of the RFA

algorithms,
• comparing the results of the RFA algorithms with other well-known meta-

heuristics, like BA, DE, and ABC.

The results of the mentioned experiments are observed in the remainder of this
chapter.

4.4.1 Characteristics of the Various Randomized Methods

In this experiment, characteristics of the randomized methods, such as:

• Uniform distributed,
• Gaussian distributed,
• Lévy flights,

On the Randomized Firefly Algorithm 41

Fig. 1 Results of the various randomized methods

• Kent chaotic maps,
• Logistic chaotic map, and
• Random sampling in turbulent fractal cloud

are taken into account. The results are illustrated in Fig. 1 that is divided into six
diagrams. Each of these presents a specific randomized method.

42 I. Fister et al.

The results diagrams were obtained as follows. A million random numbers were
generated for each method. Then, these were represented in a histogram plot that is a
natural graphical representation of the distribution of random values. Each histogram
consists of intervals coated on the x-axis denoting the value of the statistic variable,
and their frequencies coated on the y-axis. Indeed, the range of real values [−9.9, 9.9]
is divided into 101 intervals each of width 0.2. The interval zero comprises the range
[−0.1, 0.1], whilst intervals−50 and 50 capture values<−9.9 and>9.9, respectively.
However, the total sum of the frequencies is one million.

The following characteristics can be summarized from the presented plots:

1. At first glance, a Kent chaotic map is similar to the uniform distribution, but the
frequencies of the intervals slightly differ between each other by the former. On
the other hand, Logistic chaotic map is inversion of both previously mentioned,
because the border intervals 0 and 5 exhibit higher frequencies than the inner.

2. Gaussian distribution is more compact than Lévy flights, because the latter enables
the generating the random numbers that are outside the intervals −50 and 50. This
phenomenon can be seen in Fig. 1c as peeks in the first and last intervals.

3. The RSiTFC plot exhibits more peaks. This behavior might be useful by the
optimization of multi-modal problems.

In summary, three randomized methods generates random numbers into interval
[0, 1], whilst the other three into an interval that is much wider than mentioned. This
finding complies with Table 1.

4.4.2 Impact of Randomized Methods on the Results of the RFA Algorithms

In this experiment, an impact of various randomized methods on the results of the
RFA algorithms was verified. Therefore, the six variants of the RFA algorithms, i.e.,
UFA, NFA, LFA, CFA1, CFA2, and FFA were applied to the test suite as defined
in Sect. 4.1. Indeed, the experimental setup was employed as presented in Sect. 4.2.
Although the functions with dimensions D = 10, D = 30, and D = 50 were
optimized, only those results optimizing the functions with dimension D = 30 are
presented in Table 3, because of the limitation of the chapter’s length. The best results
are bold in this table.

As can be seen from Table 3, the FFA variant of RFA achieved the best results by
optimizing functions f1, f2, f4, f6, and f7, the LFA by functions f5, f9, and f10,
whilst the UFA outperformed the other algorithms by optimizing the function f3 and
the CFA1 by f8. Indeed, the functions f1, f2, and f4 are highly multi-modal.

The Friedman test was conducted in order to estimate the quality of the results.
The Friedman test [29, 30] compares the average ranks of the algorithms. A null-
hypothesis states that two algorithms are equivalent and, therefore, their ranks should
be equal. If the null-hypothesis is rejected, i.e., the performance of the algorithms
is statistically different, the Bonferroni-Dunn test [31] is performed that calcu-
lates the critical difference between the average ranks of those two algorithms.
When the statistical difference is higher than the critical difference, the algorithms

On the Randomized Firefly Algorithm 43

Ta
bl

e
3

D
et

ai
le

d
re

su
lts

of
th

e
R

FA
al

go
ri

th
m

s
(D

=
30

)

Fu
nc

tio
n

M
ea

su
re

U
FA

N
FA

L
FA

C
FA

1
C

FA
2

FF
A

f 1
M

ea
n

6.
65

E
−0

01
1.

08
E
+0

00
1.

05
E
+0

00
6.

55
E
−0

01
8.

89
E
−0

01
3.

09
E

−0
01

St
de

v
6.

40
E
−0

01
1.

07
E
+0

00
1.

05
E
+0

00
6.

96
E
−0

01
8.

48
E
−0

01
3.

32
E
−0

01
f 2

M
ea

n
2.

44
E
+0

02
3.

51
E
+0

02
4.

35
E
+0

02
2.

30
E
+0

02
3.

01
E
+0

02
2.

18
E

+0
02

St
de

v
2.

35
E
+0

02
3.

53
E
+0

02
4.

42
E
+0

02
2.

31
E
+0

02
2.

94
E
+0

02
2.

16
E
+0

02
f 3

M
ea

n
1.

12
E

+0
02

2.
25

E
+0

04
2.

00
E
+0

05
3.

95
E
+0

02
3.

14
E
+0

02
5.

89
E
+0

02
St

de
v

1.
01

E
+0

02
1.

72
E
+0

04
2.

39
E
+0

05
3.

71
E
+0

02
2.

35
E
+0

02
5.

88
E
+0

02
f 4

M
ea

n
2.

11
E
+0

01
2.

05
E
+0

01
2.

02
E
+0

01
2.

10
E
+0

01
2.

10
E
+0

01
1.

45
E

+0
01

St
de

v
2.

11
E
+0

01
2.

05
E
+0

01
2.

02
E
+0

01
2.

11
E
+0

01
2.

10
E
+0

01
1.

43
E
+0

01
f 5

M
ea

n
6.

78
E
+0

03
1.

46
E
+0

03
2.

55
E

+0
02

7.
17

E
+0

03
5.

44
E
+0

03
8.

64
E
+0

03
St

de
v

6.
75

E
+0

03
−1

.3
9E

+0
03

−3
.3

7E
+0

02
7.

12
E
+0

03
5.

41
E
+0

03
8.

45
E
+0

03
f 6

M
ea

n
5.

19
E
+0

00
2.

64
E
+0

02
9.

92
E
−0

01
3.

67
E
+0

00
7.

54
E
+0

00
3.

61
E

−0
01

St
de

v
5.

14
E
+0

00
2.

63
E
+0

02
6.

69
E
−0

01
3.

09
E
+0

00
7.

20
E
+0

00
3.

61
E
−0

01
f 7

M
ea

n
−3

.8
1E

−0
30

−6
.5

8E
−0

69
−8

.5
6E

−0
14

−1
.8

1E
−0

36
−4

.0
7E

−0
39

−1
.2

9E
−0

78
St

de
v

−3
.7

3E
−0

30
−4

.9
4E

−0
69

−9
.6

8E
−0

18
−1

.3
8E

−0
36

−2
.5

9E
−0

39
−4

.0
0E

−0
84

f 8
M

ea
n

−5
.1

5E
+0

00
−1

.2
0E

+0
01

−7
.6

0E
+0

00
−7

.7
3E

+0
00

−4
.8

2E
+0

00
−2

.6
0E

+0
00

St
de

v
−5

.3
5E

+0
00

−1
.2

3E
+0

01
−8

.2
4E

+0
00

−7
.9

4E
+0

00
−4

.7
6E

+0
00

−2
.6

3E
+0

00
f 9

M
ea

n
1.

70
E
−0

04
6.

72
E
−0

05
9.

11
E

−0
06

1.
15

E
−0

04
9.

21
E
−0

05
4.

69
E
−0

03
St

de
v

4.
72

E
−0

05
3.

13
E
−0

05
2.

37
E
−0

10
5.

59
E
−0

05
7.

81
E
−0

05
4.

09
E
−0

03
f 1

0
M

ea
n

1.
32

E
+0

04
2.

27
E
+0

02
1.

12
E

+0
02

6.
09

E
+0

02
1.

41
E
+0

03
3.

12
E
+0

05
St

de
v

1.
32

E
+0

04
2.

28
E
+0

02
8.

40
E
+0

01
6.

09
E
+0

02
1.

41
E
+0

03
3.

12
E
+0

05

44 I. Fister et al.

UFA

NFA

LFA

CFA1

CFA2

FFA

 1 2 3 4 5
Average rank (D=10)

 1 2 3 4 5
Average rank (D=30)

 1 2 3 4 5
Average rank (D=50)

Fig. 2 Results of the Friedman non-parametric test on different variants of RFA algorithms

are significantly different. The equation for the calculation of critical difference can
be found in [31].

Friedman tests were performed using a significance level 0.05. The results of
the Friedman non-parametric test are presented in Fig. 2 being divided into three
diagrams that show the ranks and confidence intervals (critical differences) for the
algorithms under consideration. The diagrams are organized according to the dimen-
sions of functions. Two algorithms are significantly different if their intervals in Fig. 2
do not overlap.

The first diagram in Fig. 1 shows that the FFA and KFA variants of RFA signif-
icantly outperform the results of all other variants of RFA (i.e., NFA, LFA, CFA2),
except UFA, according to dimension D = 10. However, the results became insignif-
icant when these were compared in regard to the dimensions D = 30 and D = 50. In
fact, the results of FFA and KFA variants of RFA still remained substantially better,
but this difference was not significant.

In summary, we can conclude that the selection of the randomized method has
a great impact on the results of RFA. Moreover, in some cases the selection
of the more appropriate randomized method can even significantly improve
the results of the original FA (Gaussian NFA). Indeed, the best results were
observed by the RSiTFC and Kent chaotic map.

4.4.3 Comparative Study

In this experiment, the original FA algorithm (NFA) was compared with other well-
known algorithms as bat algorithm (BA), differential evolution (DE), and artificial
bees colony (ABC) as well as the FFA algorithm that was exhibited as the most
promising variant of the developed RFA algorithms.

The specific BA parameters were set as follows: the loudness A0 = 0.5, the
pulse rate r0 = 0.5, minimum frequency Qmax = 0.0, and maximum frequency
Qmax = 0.1. The DE parameters were configured as follows: the amplification factor
of the difference vector F = 0.9, and the crossover control parameter CR = 0.5.
The percentage of onlooker bees for the ABC algorithm was 50 % of the colony,

On the Randomized Firefly Algorithm 45

Table 4 Comparing algorithms (D = 10)

Function Measure NFA FFA BA DE ABC

f1 Mean 7.19E−001 6.03E−002 8.99E+000 2.62E+000 6.26E−001
Stdev 7.00E−001 6.25E−002 6.44E+000 4.32E−001 1.99E−001

f2 Mean 6.59E+001 4.29E+001 1.46E+002 9.01E+001 1.24E+001
Stdev 6.99E+001 4.46E+001 7.44E+001 9.10E+000 4.36E+000

f3 Mean 5.51E+005 4.08E+001 8.91E+004 1.53E+004 2.05E+002
Stdev 9.62E+004 3.36E+001 1.45E+005 8.94E+003 2.62E+002

f4 Mean 2.02E+001 9.73E+000 1.02E+001 8.55E+000 4.08E+000
Stdev 2.02E+001 9.72E+000 3.23E+000 9.78E−001 9.03E−001

f5 Mean 1.37E+003 4.00E+003 2.19E+003 1.08E+003 5.99E+002
Stdev 1.38E+004 4.01E+003 2.58E+002 1.26E+002 1.25E+002

f6 Mean 8.02E+001 5.88E−002 2.38E+004 6.90E+003 1.23E+001
Stdev 8.03E+001 5.66E−002 1.75E+004 2.05E+003 1.68E+001

f7 Mean −3.89E−018 −5.15E−034 −6.46E−002 −3.96E−001 −1.13E−002
Stdev −3.88E−018 −4.11E−034 2.18E−001 1.40E−001 5.67E−002

f8 Mean −4.79E+000 −6.37E−001 −5.99E+000 −6.69E+000 −8.60E+000
Stdev −5.63E+000 −6.38E−001 1.04E+000 3.24E−001 2.89E−001

f9 Mean 3.49E−002 1.32E−001 1.39E−003 1.92E−003 6.10E−004
Stdev 2.15E−002 1.30E−001 6.95E−004 1.31E−004 5.96E−005

f10 Mean 6.98E+001 4.99E+003 2.05E+001 2.93E+001 2.38E+001
Stdev 6.96E+001 4.99E+003 2.03E+001 8.29E+000 7.80E+000

the employed bees represented another 50 % of the colony, whilst one scout bee
was generated in each generation (i.e., limits = 100, when the population size is
NP = 100).

The results of comparing the mentioned algorithms by optimizing the functions
with dimension D = 10, are presented in Table 4. Again, only one instance of data is
illustrated in the table, although the experiments were conducted on all three observed
dimensions. The best results of the algorithms are written in bold.

As can be seen from Table 4, the FFA algorithm outperformed the results of
the other algorithms when solving the functions f1, f3, f6, f7, and f8. Again the
majority of these functions are highly multi-modal. The ABC algorithm was the
best by solving the functions f2, f4, f5, and f9, whilst the BA algorithm excellently
solved the function f10.

Also here, the Friedman tests using the significance level 0.05 were conducted
according to all the observed dimensions of the functions. The results of these tests
are presented in Fig. 3, which is divided into three diagrams.

The first diagram illustrates the results of the Friedman test that observes the results
obtained by optimizing the functions with dimensions D = 10. It can be shown from
this diagram that ABC and FFA outperformed the results of all other algorithms in
test (i.e., NFA, BA, and DE) significantly. Furthermore, the ABC outperformed the
results of the same algorithms when also optimizing the functions with dimension
D = 30, whilst the FFA algorithm was substantially better than those on the same

46 I. Fister et al.

NFA

FFA

BA

DE

ABC

 1 2 3 4 5
Average rank (D=10)

 1 2 3 4 5
Average rank (D=30)

 1 2 3 4 5
Average rank (D=30)

Fig. 3 Results of the Friedman non-parametric test on suite of test algorithms

instances. Finally, on the functions with dimension D = 50, the ABC achieved
significantly better results than BA and DE. Here, both firefly algorithms exhibited
good results.

In summary, the FFA variant of RFA outperforms the results of the original FA
algorithm significantly by optimizing the test functions with dimension D =
10, and substantially by optimizing the test functions with dimensions D = 30
and D = 50. Indeed, the ABC algorithm outperforms significantly all the other
experiments in tests except FFA. In general, the results of experiments have
been shown that the Gaussian distribution method is appropriately selected by
the original FA algorithm.

5 Conclusion

In this chapter, an extensive comparison of various probability distributions is per-
formed that can be used to randomize the firefly algorithm, e.g., uniform, Gaussian,
Lévi flights, chaos maps and the random sampling in turbulent fractal cloud. In line
with this, various firefly algorithms with various randomized methods were devel-
oped and extensive experiments were conducted on well-known suite of functions.

The goal of the experiments were threefold. Firstly, the mentioned randomized
methods were analyzed. Secondly, an impact of randomized methods on the results
of the RFA algorithms were verified. Finally, the results of the original FA algorithm
and FFA variant of RFA were compared with the other well-known algorithms like
ABC, BA, and DE.

In summary, the selection of an appropriate randomized method has a great impact
on the results of RFA. Moreover, this selection depends on the nature of the problem
to be solved. On the other hand, selecting the appropriate randomized method can
improve the results of the original FA significantly.

In the future, further experiments should be performed with the random sampling
in turbulent fractal cloud that exhibits the excellent results especially by optimizing
the multi-modal functions.

On the Randomized Firefly Algorithm 47

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co, New York (1979)

2. Blum, C., Li, X.: Swarm intelligence in optimization. In: Blum, C., Merkle, D. (eds.) Swarm
Intelligence: Introduction and Applications, pp. 43–86. Springer, Heidelberg (2008)

3. Beekman, M., Sword, G.A., Simpson, S.J.: Biological foundations of swarm intelligence. In:
Blum, C., Merkle, D. (eds.) Swarm Intelligence: Introduction and Applications, pp. 3–41.
Springer, Berlin (2008)

4. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. Proceedings of NATO
Advanced Workshop on Robots and Biological Systems, pp. 26–30. Tuscany, Italy (1989)

5. Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In: Corne, D., Dorigo,
M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32. McGraw Hill, London (1999)

6. Kennedy, J., Eberhart, R.C.: The particle swarm optimization: social adaptation in information
processing. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 379–
387. McGraw Hill, London (1999)

7. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function opti-
mization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

8. Fister, I., Fister, I. Jr., Brest, J., Žumer, V.: Memetic artificial bee colony algorithm for large-
scale global optimization. In: IEEE Congress on Evolutionary Computation, Brisbane, Aus-
tralia, pp. 3038–3045. IEEE Publications (2012)

9. Yang, X.-S.: Firefly algorithm. In: Yang, X.-S. (ed.) Nature-Inspired Metaheuristic Algorithms,
pp. 79–90. Wiley Online, Library (2008)

10. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foun-
dations and Applications, pp. 169–178. Springer, Berlin (2009)

11. Fister, I. Jr., Yang, X.-S., Fister, I., Brest, J.: Memetic firefly algorithm for combinatorial opti-
mization. In: Filipič, B., Šilc, J. (eds.) Bioinspired optimization methods and their applications
: proceedings of the Fifth International Conference on Bioinspired Optimization Methods and
their Applications—BIOMA 2012, pp. 75–86. Jožef Stefan Institute (2012)

12. Gandomi, A.H., Yang, X.-S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Com-
mun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)

13. Fister, I., Yang, X.-S., Brest, J., Fister Jr, I.: Memetic self-adaptive firefly algorithm. In: Yang,
X.-S., Xiao, R.Z.C., Gandomi, A.H., Karamanoglu, M. (eds.) Swarm Intelligence and Bio-
Inspired Computation: Theory and Applications, pp. 73–102. Elsevier, Amsterdam (2013)

14. Fister, I., Fister Jr., I., Yang, X.-S., Brest, J.: A comprehensive review of firefly algorithms.
Swarm and Evolutionary Computation (2013). Available via ScienceDirect. http://www.
sciencedirect.com/science/article/pii/S2210650213000461. Cited 03 Jul 2013

15. Yang, X.-S., Deb, S.: Cuckoo search via Levy flights. In: World Congress on Nature and
Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications (2009)

16. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Cruz, C., Gonzlez, J.R., Krasno-
gor, N., Pelta, D.A., Terrazas, G. (eds.) Nature Inspired Cooperative Strategies for Optimization
(NISCO 2010), vol. 284, pp. 65–74. Springer, Berlin (2010)

17. Fister Jr, I., Fister, D., Yang, X.-S.: A Hybrid bat algorithm. Electrotech. Rev. 80, 1–7 (2013)
18. Hoos, H.H., Stützle, T.: Stochastic local search: Foundations and applications. Morgan Kauf-

mann, San Francisco (2004)
19. Feldman, D.P.: Chaos and Fractals: An Elementary Introduction. Oxford University Press,

Oxford (2012)
20. Črepinšek, M., Mernik, M., Liu, S.H.: Analysis of exploration and exploitation in evolutionary

algorithms by ancestry trees. Int. J. Innovative Comput. Appl. 3, 11–19 (2011)
21. Hertz, A., Taillard, E., de Werra, D.: Tabu search. In: Aarts, E., Lenstra, J.K. (eds.) Local

Search in Combinatorial Optimization, pp. 121–136. Princeton University Press, New Jersey
(2003)

22. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)

http://www.sciencedirect.com/science/article/pii/S2210650213000461.
http://www.sciencedirect.com/science/article/pii/S2210650213000461.

48 I. Fister et al.

23. Galassi, D., et al.: GNU Scientific Library: Reference Manual, Edn. 1.15. Network Theory
Ltd, Bristol (2011)

24. Jamil, M.: Zepernick: Lévy flights and global optimization. In: Yang, X.-S., Xiao, R.Z.C.,
Gandomi, A.H., Karamanoglu, M. (eds.) Swarm Intelligence and Bio-Inspired Computation:
Theory and Applications, pp. 49–72. Elsevier, Amsterdam (2013)

25. Zhou, Q., Li, L., Chen, Z.-Q., Zhao, J.-X.: Implementation of LT codes based on chaos. Chin.
Phys. B 17(10), 3609–3615 (2008)

26. Elmegreen, B.G.: The initial stellar mass function from random sampling in a turbulent fractal
cloud. Astrophys. J. 486, 944–954 (1997)

27. Long, S.M., Lewis, S., Jean-Louis, L., Ramos, G., Richmond, J., Jakob, E.M.: Firefly flashing
and jumping spider predation. Anim. Behav. 83, 81–86 (2012)

28. Yang, X.-S.: Appendix A: Test Problems in Optimization. In: Yang, X.-S. (ed.) Engineering
Optimization, pp. 261–266. John Wiley and Sons, Inc., New York (2010)

29. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)

30. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings.
An. Math. Stat. 11, 86–92 (1940)

31. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.
7, 1–30 (2006)

	2 On the Randomized Firefly Algorithm
	1 Introduction
	2 Background Information
	2.1 Uniform Distribution
	2.2 Normal or Gaussian Distribution
	2.3 Lévy Flights
	2.4 Chaotic Maps
	2.5 Random Sampling in Turbulent Fractal Cloud

	3 Randomized Firefly Algorithms
	3.1 Original Firefly Algorithm
	3.2 Variants of the Randomized Firefly Algorithm

	4 Experiments and Results
	4.1 Test Suite
	4.2 Experimental Setup
	4.3 PC Configuration
	4.4 Results

	5 Conclusion
	References

