
MultiLibOS: An OS architecture for Cloud Computing

Dan Schatzberg, James Cadden, Orran Krieger, Jonathan Appavoo
Boston University

Abstract
Cloud computing allows consumers on-demand access
to massive computational capacity. Researchers have ar-
gued that new operating systems are needed to address
the challenges of scale, elasticity, and fault tolerance in-
herent to the cloud.

The cloud not only introduces new challenges, but also
simplifies the role of the operating system. We describe
how these simplifications enable a new model for devel-
oping and deploying OS functionality that we call Mul-
tiLibOS. This model can be used to enable many, poten-
tially domain specific, runtimes and operating systems to
address the challenges and broaden the applicability of
cloud computing. The model allows OS, hardware and
application researchers to innovate unconstrained by the
requirements of backwards compatibility while still pro-
viding a strategy to enable full compatibility with com-
modity operating systems.

1 Introduction

Cloud computing has not resulted in fundamental
changes to operating systems. Instead, distributed appli-
cations that could utilize its unique opportunity for scale
and elasticity are built on top of middleware that stitches
together multiple commodity operating systems to pro-
vide higher-level abstractions.

Others have argued that new operating systems built
for the cloud can achieve much greater efficiency [29,
33]. However, what has been generally overlooked is
that not only does the cloud introduce new challenges,
but also it comes with major simplifications to the role of
the operating system.

All the security concerns, and much of the complex re-
source management is provided by the cloud Infrastruc-
ture as a Service (IaaS) management and isolation layer
rather than by the OS that runs within the nodes 1. A

1Throughout this paper we use the term node to refer to either a

cloud operating system does not necessarily need to sup-
port multiple applications or multiple users. In fact, since
the application is distributed, full functionality does not
need to be supported on every node.

Cloud applications are a heterogeneous composition
of functions spread across libraries and distributed col-
lections of computers of a datacenter scale system. We
suggest that OSes should reflect this structure. Rather
than running multiple instances of a single general pur-
pose OS, we should compose applications using a collec-
tion of many special purpose OSes tuned to the needs of
the application and nature of the hardware.

In this paper, we do not advocate for a single new op-
erating system. Rather we propose a model for construct-
ing application driven compositions of OS functionality.
This will permit application requirements for scale, elas-
ticity and fault-tolerance to be addressed in a more pre-
cise and effective manner.

We next discuss in more detail the simplified role an
operating system has in the cloud. We present the pro-
posed model in the following section. Finally we dis-
cuss the implications for meeting the challenges of cloud
computing.

2 Reduced Role of the OS

For security and auditability, IaaS providers isolate their
tenants at a very low level (either physically or virtually).
Individual tenants own and manage logical computers,
networks and disks within an IaaS cloud. Typically, for
scale-out cloud applications, each application runs on a
set of nodes dedicated to that application. In this envi-
ronment three of the major objectives that existing com-
modity operating systems were designed to meet are ei-
ther relaxed or eliminated.

Firstly, the burden to support multiple users is re-
moved from the operating system. In this new environ-

virtual machine or a physically isolated machine

1



ment, users are each given their own nodes each running
their own applications and operating systems. This iso-
lation eliminates the need for many low level checks and
accounting in the software, and reduces the requirement
for internal barriers between trusted and untrusted code.

Secondly, the IaaS management software assigns en-
tire nodes to a single application. Hence, the function-
ality associated with balancing and arbitrating competi-
tive use of resources across multiple applications is the
responsibility of the provider. Much of the complexity
of existing operating systems (e.g., scheduling, memory
management, etc.) is redundant.

Thirdly, a symmetric structure is unnecessary in a
large-scale distributed application. A distributed appli-
cation that runs across many nodes does not require full
OS functionality on all of its nodes. This applications can
instead partition some nodes that only have specialized
functionality while other nodes are designated to have
full functionality.

We believe that these three simplifications: 1) not hav-
ing to support multiple users on a node, 2) not having to
support multiple applications on a node, and 3) not hav-
ing to support full OS functionality on every node, sim-
plifies the required system functionality on each node.

3 A Way Forward

Today, in the cloud, users deploy general purpose oper-
ating systems. Issues of scale, fault tolerance, and elas-
ticity are addressed by middleware. If the cloud is the
computer of the future, it is the responsibility of the OS
community to provide the abstractions to allow that com-
puter to be more easily and efficiently harnessed by dis-
tributed applications.

The natural inclination, and the approach taken by
most distributed OS projects [9, 10, 17, 26, 29, 30, 33] is
to build a single general purpose OS, where the same OS
functionality is replicated on every node. This introduces
two challenges. First, most efforts take a clean slate ap-
proach that often sacrifices the rich functionality and in-
terfaces of existing general purpose OSes. Second, it is
our experience, that issues of scale and fault tolerance
(even on a relatively modest machine), are very difficult
to address in a general way [16, 19]. The proliferation
of domain specific middleware services and libraries for
the cloud [11, 18, 22, 23, 24] that provide very different
programming models supports this concern.

The observation of the reduced role of the operating
system, discussed previously, suggests a way forward.
Since we do not require the same functionality on all
nodes, it becomes possible to augment a general purpose
OS running on some nodes with new functionality run-
ning on other nodes. Since we don’t have to support mul-
tiple users or multiple applications on a single node, new

OS functionality can instead be provided by application
specific library OSes linked into the application’s own
address space.

We therefore propose that operating system func-
tionality be structured in a model we call MultiLibOS.
A cloud application adopting this model is distributed
across both nodes running full function OSes and bare
hardware nodes. The full function OS nodes support
complete OS functionality and legacy compatibility. The
rest of the hardware executes a distributed library oper-
ating system where the system functionality is provided
by libraries linked directly into the application address
space that can be highly customized to the characteris-
tics of the hardware or the application 2.

The intuition behind this model is that it is much sim-
pler to solve many small problems rather than trying
to provide general solutions. The complexity of tradi-
tional operating systems is driven by sharing of system
resources across multiple applications and users and the
fact that one body of operating system code is used for
all purposes. With the MultiLibOS model, we exploit
the on-demand nature of resource allocation and deallo-
cation in the cloud to allow applications to acquire dedi-
cated resources for a particular sub-function, such as pro-
cessing a stream of images for a particular feature, and
then releasing the resources. The hardware acquired for
this purpose, as well as the libraries used by the applica-
tion on that hardware, can hence be focused on aspects
unique to that single application sub-function running
in isolation. Issues of protection, fairness and general
multiplexing are eliminated. Rather, application-centric
aspects of system software can take a front seat: appli-
cation specific APIs, light-weight hardware abstraction,
distributed primitives, etc.

Examples

We believe that the MultiLibOS model has broad appli-
cability, not only offering value for standard scale-out
cloud applications, but also potentially enabling appli-
cations that are poorly suited to today’s cloud. To con-
cretize the discussion, we describe two example appli-
cations that follow in the MultiLibOS model. The first
being a standard web application that receives incremen-
tal benefits from the MultiLibOS model. The second de-
scribes a new application not feasible with the standard
model of deploying OS functionality in the cloud.

First, consider a typical web application comprised
of four standard components: front-end Apache [13]
servers, Java business logic, memcached [14] instances,

2Unlike previous library OS researchers [12], the model does not
require a specialized exokernel to allow multiple applications to share
a machine. Instead, the provisioning and isolation provided by the IaaS
provider is sufficient for the large scale applications targeting cloud
computing.

2



A MultiLibOS Web Application

NODENODENODE NODE

NODENODENODE NODE

jvm-libOS

biz-logic

jvm-libOS

biz-logic

dhash-libOS

memcached

dhash-libOS

memcached

Linux

Apache

Linux

DB

dhash-libOS

memcached

dhash-libOS

memcached

Elastic set of application nodes

Figure 1: How a typical web app might be restructured
as a MultLibOS Application.

and database servers. A typical deployment may dis-
tribute these components across many nodes each run-
ning on top of the same operating system. With the Mul-
tiLibOS model, new OS functionality can be introduced
to incrementally optimize this application.

As illustrated in Figure 1, in a MultiLibOS model,
Apache and the database can run on standard Linux in-
stances with full network protocol compatibility. Mean-
while, the Java business logic and memcached servers
can run on their own custom library operating systems.
The nodes dedicated to each subfunction can be added
and removed rapidly depending on the demand on the ap-
plication. Previous work has demonstrated that substan-
tial advantages in Java performance results from special-
ized library OSes [2, 31]. The memcached library OS,
while maintaining its API, could be implemented using a
hardware tuned distributed hash table that in a fine-grain
fashion exploits the features of the underlying platform,
e.g., [3].

Next, consider an online neural imaging service that
provides complex image analysis. This application has
two components: a web front-end that provides an inter-
face to the application, and a computationally intensive
imaging library. These components can be separated by
providing the web accessibility on Apache Linux nodes
while the core computation is run on nodes loaded with a
custom library OS. The library OS can exploit the char-
acteristics of the hardware and application to optimize
for scale and elasticity in isolation from the protocol
compatibility provided by Linux nodes. The simplicity
of the back-end library OS allows new nodes to be spun
up for seconds at a time, enabling the extreme elastic-
ity necessary to allow massive computational resources
to be exploited for short bursts of time. This interactive
supercomputing can allow for computationally intensive
workloads, currently restricted to scheduled batch com-
putation, to run as part of a daily work flow.

4 Implications

In the previous section we described the MultiLibOS
model, and suggested some of the advantages in the con-
text of two simple examples. In this section we describe
key implications of the model.

Full functionality

The integration of commodity OSes into our model im-
plies that optimizing existing applications and introduc-
ing new system support for scale, elasticity and fault-
tolerance can be done incrementally. Additionally, the
development of new applications can greatly benefit
from the ability to exploit the interoperability and tools
provided by the commodity OSes.

With the MultiLibOS model, the baremetal libraries
do not need to replace the full OS functionality, instead
they augment it. We have the same advantage that we
had in past OS research projects which reproduced the
functionality of general purpose OSes [19]. Applica-
tions written against legacy interfaces can incrementally
exploit the new features of the OS only where relevant.
However, we get that advantage without the huge invest-
ment done to reproduce that legacy compatibility. In our
previous research, we found that 90% of our time was
spent on the last 5% of compatibility with commodity
operating systems.

The use of commodity operating systems in the Mul-
tiLibOS model is not just important for existing appli-
cations. When writing entirely new applications, the
commodity operating systems still provide many bene-
fits. These applications can integrate with existing sys-
tem tools and primitives such as signals, pipes, scripts,
etc. Furthermore, applications can address the needs for
protocol and API compatibility by integrating with the
large body of software written for commodity operating
systems.

Simplicity

While library OSes can be very sophisticated [28], in
the MultiLibOS model we expect them to be very sim-
ple 3 for two reasons. First, they don’t require complex
scheduling, resource management or security. Second, it
is much easier to produce special purpose code to sup-
port a specific application than to write general purpose
OS code.

Libra [2] demonstrated that a simple library OS is suf-
ficient to support complex middleware like a JVM. We

3Simplicity in this context is not just limited to development cost.
Since a library OS is deployed and configured for a single application
both the testing and the distribution are hugely simplified. The testing
only needs to be concerned with the functionality of the one applica-
tion, and the library can be distributed with the application.

3



expect this to be the case for other managed code envi-
ronments and for middleware services, like MPI libraries
which can be designed to be highly efficient [25].

Simplicity has further implications to elasticity and
specialization, as discussed later. In addition, simplic-
ity is critical to allow radical system techniques to be
introduced and explored. OS research projects have ex-
plored new ideas in the context of clean-slate approaches
because only in a simple project is it practical to ex-
plore new ideas. Plumbing innovation through a complex
general purpose OS is an enormous challenge. In many
cases, the innovation, if successful, requires integration
into a general purpose system for widespread adoption.
A key characteristic of our model is that we expect that
simple library OSes can have an instant impact and be
directly applicable to real applications.

Elasticity

Since tenants pay for capacity from an IaaS provider on a
consumption basis, they are increasingly concerned with
the efficiency of their software. Efficiency is far more
visible to a customer that pays for every cycle than those
that purchased computers large enough to meet peak de-
mand, especially if those computers are idle much of
the time. One key way to achieve efficiency is elastic-
ity; having the resources used by the application vary de-
pending on what the applications demands are.

The MultiLibOS model encourages the design of
lightweight systems. Only the software necessary to sup-
port the application is deployed on the baremetal nodes.
A small system image allows for fast deployment on the
cloud. Additionally, due to limited functionality (e.g.,
no need for device discovery), the system is able to boot
quickly.

The design of a general purpose operating system is
often times at odds with the goals of an elastic applica-
tion. A general purpose operating system is designed to
boot once, initialize, and run for a long period of time.
In contrast, an elastic system may lazily initialize compo-
nents. The resource usage model is also different. A gen-
eral purpose OS will discover all devices and use what
resources are provided to it. An elastic system can ex-
ploit the ability of a hypervisor to add or remove cores or
memory as necessary. This system can more accurately
reflect the applications demand for resource consump-
tion.

In the above discussion, we have discussed elasticity
from the perspective of deploying, booting, and manag-
ing the resources of an individual node. More specu-
latively, we believe that the MultiLibOS model has ad-
ditional implications for elasticity across nodes. Since
there is no separation between the application and the
OS, full information is available on the load and demands

on different components to determine when nodes should
be added or removed. Also, since the model encourages
decomposing an application into subfunctions that are
deployed on different nodes, it will be easier to under-
stand the impact of changing the resources of a specific
subfunction.

Application Specialization

The MultiLibOS model allows libraries to be written that
are specialized to a subset of applications. Applications
that do not benefit from specific OS functionality need
not use the library that provides it. In contrast, to get a
low-level optimization into a general purpose operating
system it has to be justified for general use.

Previous work has shown that applications benefit
from low-level optimizations. Applications and managed
code environments having control over page tables have
achieved greater efficiency [6, 31]. Specialized support
for message passing, locks and event driven systems have
gradually been incorporated into various operating sys-
tems [4, 5, 15]. In a network centric system, low level
control over the networking hardware can have a dra-
matic effect on multi-core performance [27].

Providing specialized functionality is, in our opinion,
critical to meet the challenges of the cloud. Our experi-
ence in building high-performance system software for
large-scale shared memory multiprocessors [16, 19] is
that there is no right answer for parallel applications. To
achieve high performance, the operating system needs to
be customized to meet the needs of that application. We
believe that the same holds true for fault tolerance and
elasticity.

In addition to being necessary to meet the cloud chal-
lenges, our experience with a customizable operating
system is that it reduces code complexity. It is much
simpler to write efficient special purpose code to solve
a specific problem than it is to write general purpose OS
code [1]. The choice of libraries to execute a specific
application computation on a specific hardware platform
can all be made when a library OS is composed.

Hardware Specialization

The MultiLibOS model is a natural fit for the heterogene-
ity of the cloud. Just as the model allows for customiza-
tion to the needs of an application, library OSes can be
optimized to the characteristics of specific hardware.

IaaS datacenters are intrinsically heterogeneous. Non-
uniform latencies and bandwidth exist between differ-
ent parts of the datacenter. Large datacenters may have
many generations of hardware, each with different quan-
tities and characteristics of processing, memory, and net-
working. Different systems may have different prop-

4



erties, e.g., networking properties like scatter gather
and RDMA, or different compute accelerators like GP-
GPUs. HP’s Moonshot [21] embraces heterogeneity in
the cloud by constructing a system out of server car-
tridges which have a wide variety of configurations for
different applications.

We hypothesize, that the MultiLibOS will enable even
greater heterogeneity in the cloud. In the MultiLibOS
model, full functionality is not provided on all nodes and,
therefore, there may be opportunities for hardware devel-
opers to provide radically different hardware [32] which
would not support general purpose software.

Integrated Systems

The MultiLibOS model implies a path for exploiting the
natural trend towards higher degrees of integration in
cloud infrastructure.

We hypothesize that datacenters will increasingly be
constructed using highly-integrated large scale systems.
Rather than building large systems out of commodity
network, compute and storage, the parts of an integrated
system are designed for large scale operation. These sys-
tems are optimized for aggregate price, performance and
manageability as opposed to per-node performance. This
shift towards integrated datacenter scale systems can be
observed in systems such as HP’s Moonshot [21], IBM’s
BlueGene [8], and SeaMicro [20].

Highly integrated systems will require the kinds of
specialization described above. As we have seen in
high performance computing, much better efficiency is
achieved using specialized kernels that exploit all the fea-
tures of the hardware while stripping out the majority of
general OS functionality (e.g., multi-user, multi-program
support and general purpose paging [7].)

Low-level optimizations become more important with
highly-integrated systems. With clusters of commodity
hardware, the network latency is typically high enough
that the performance of general purpose system soft-
ware is adequate. However, in highly-integrated sys-
tems, where the relative latency of the network is typi-
cally much lower, the system software will have greater
impact on application performance.

In this section we highlighted several implications to
the MultiLibOS model that suggest its utility as a frame-
work for future cloud OS research. While we focused on
the advantages of the model, we acknowledge that there
are significant challenges in adopting this model. Chal-
lenges range from very pragmatic tooling and configura-
tion, to more conceptual questions regarding the gran-
ularity of decomposition appropriate for different sys-
tems.

5 Concluding Remarks

The cloud is changing the computing platform in funda-
mental ways. The assumptions that our current operating
systems were designed for are no longer valid. These op-
erating systems do not provide the critical services that
large scale distributed applications require. Although
some of these services can be provided by middleware,
we believe that this comes at the cost of performance,
especially as highly integrated datacenter scale systems
become more common.

We have proposed a model for introducing new operat-
ing system functionality into the cloud while preserving
full OS functionality. In the MultiLibOS model, an ap-
plication is distributed across nodes running full function
operating systems and nodes with library operating sys-
tems. Subfunctions of an application can be partitioned
onto different nodes each with their own library OS. The
operating system functionality of each library OS can be
customized to the needs of the application and the char-
acteristics of the hardware.

With the MultiLibOS model, we believe that that oper-
ating systems will have as much room for innovation as
application level libraries do today. In contrast to today’s
world where there is a small number of operating sys-
tems, we believe that the MultiLibOS model will result
in many families of library OSes, each addressing dif-
ferent concerns for different classes of applications and
systems.

We believe that this model can enable additional inno-
vation by both application developers and hardware ar-
chitects. Hardware that achieves major gains for even a
subfunction of an application can be usefully deployed.
Gains in the hardware will drive improved system func-
tionality that, in turn, will allow the massive compu-
tational power of today’s clouds to be accessible to a
broader range of applications.

We are developing an instance of a MultiLibOS, called
EbbRT 4 which explores some of the implications dis-
cussed above as well as the challenges of tooling, con-
figuration and decomposition. We have found the ability
to take an application focused approach powerful, where
we can build functionality only as needed. By exploit-
ing commodity operating systems in the model, we have
been able to focus our efforts on some of the more radi-
cal research ideas, with greatly reduced effort compared
to previous systems we worked on.

4http://www.github.com/sesa/ebblib

5



References

[1] J. Appavoo, K. Hui, C. A. N. Soules, R. W.
Wisniewski, D. M. Da Silva, O. Krieger, M. A.
Auslander, D. J. Edelsohn, B. Gamsa, G. R.
Ganger, P. McKenney, M. Ostrowski, B. Rosen-
burg, M. Stumm, and J. Xenidis. Enabling Au-
tonomic Behavior in Systems Software with Hot
Swapping. IBM Syst. J., 42(1):60–76, January
2003.

[2] J. Appavoo, K. Hui, C. A. N. Soules, R. W.
Wisniewski, D. M. Da Silva, O. Krieger, M. A.
Auslander, D. J. Edelsohn, B. Gamsa, G. R.
Ganger, P. McKenney, M. Ostrowski, B. Rosen-
burg, M. Stumm, and J. Xenidis. Libra : A Library
Operating System for a JVM in a Virtualized Ex-
ecution Environment Libra Libra Hypervisor. Sys-
tem, 2007.

[3] Jonathan Appavoo, Amos Waterland, Dilma
Da Silva, Volkmar Uhlig, Bryan Rosenburg, Eric
Van Hensbergen, Jan Stoess, Robert Wisniewski,
and Udo Steinberg. Providing a cloud network in-
frastructure on a supercomputer. In Proceedings of
the 19th ACM International Symposium on High
Performance Distributed Computing, HPDC ’10,
pages 385–394, New York, NY, USA, 2010. ACM.

[4] G. Banga, J.C. Mogul, P. Druschel, et al. A scalable
and explicit event delivery mechanism for unix. In
USENIX Annual Technical Conference, pages 253–
265, 1999.

[5] A. Baumann, P. Barham, P. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The Multikernel. SOSP ’09. ACM
Press, New York, New York, USA, 2009.

[6] Adam Belay, Andrea Bittau, Ali Mashtizadeh,
David Terei, David Mazières, and Christos
Kozyrakis. Dune: safe user-level access to priv-
ileged cpu features. In Proceedings of the 10th
USENIX conference on Operating Systems Design
and Implementation, OSDI’12, pages 335–348,
Berkeley, CA, USA, 2012. USENIX Association.

[7] R. Brightwell, A. B. MacCabe, and R. Riesen.
On the appropriateness of commodity operating
systems for large-scale, balanced computing sys-
tems. In Proceedings of the 17th International
Symposium on Parallel and Distributed Processing,
IPDPS ’03, pages 68.1–, Washington, DC, USA,
2003. IEEE Computer Society.

[8] D. Chen, J. J. Parker, N. A. Eisley, P. Heidelberger,
R. M. Senger, Y. Sugawara, S. Kumar, V. Salapura,

D. L. Satterfield, and B. Steinmacher-Burow. The
IBM Blue Gene/Q Interconnection Network and
Message Unit. Proceedings of 2011 International
Conference for High Performance Computing, Net-
working, Storage and Analysis on - SC ’11, page 1,
2011.

[9] D. R. Cheriton. The V Kernel: A Software Base
for Distributed Systems. IEEE Softw., 1(2):19–42,
April 1984.

[10] D.R. Cheriton, M.A. Malcolm, L.S. Melen, and
G.R. Sager. Thoth, a portable real-time operating
system. Communications of the ACM, 22(2):105–
115, 1979.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters. In Pro-
ceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Vol-
ume 6, OSDI’04, pages 10–10, Berkeley, CA, USA,
2004. USENIX Association.

[12] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: an operating system architecture for
application-level resource management. In Pro-
ceedings of the fifteenth ACM symposium on Op-
erating systems principles, 1995.

[13] R. T. Fielding and G. E. Kaiser. The apache http
server project. IEEE Internet Computing, pages
88–90, 1997.

[14] Brad Fitzpatrick. Distributed caching with mem-
cached. Linux J., 2004(124):5–, August 2004.

[15] H. Franke, R. Russell, and M. Kirkwood. Fuss,
futexes and furwocks: Fast userlevel locking in
linux. In AUUG Conference Proceedings, page 85.
AUUG, Inc., 2002.

[16] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm.
Tornado: Maximizing Locality and Concurrency in
a Shared Memory Multiprocessor Operating Sys-
tem. In Proceedings of the third symposium on Op-
erating systems design and implementation, OSDI
’99, pages 87–100, Berkeley, 1999. USENIX Asso-
ciation.

[17] Graham Hamilton and Panos Kougiouris. The
spring nucleus: A microkernel for objects. Tech-
nical report, Mountain View, CA, USA, 1993.

[18] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Bir-
rell, and Dennis Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks.
In Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007,

6



EuroSys ’07, pages 59–72, New York, NY, USA,
2007. ACM.

[19] Orran Krieger, Marc Auslander, Bryan Rosen-
burg, Robert W. Wisniewski, Jimi Xenidis, Dilma
Da Silva, Michal Ostrowski, Jonathan Appavoo,
Maria Butrico, Mark Mergen, Amos Waterland,
and Volkmar Uhlig. K42: building a complete op-
erating system. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Com-
puter Systems 2006, EuroSys ’06, pages 133–145,
New York, NY, USA, 2006. ACM.

[20] G. Lauterbach. Recovery act: Seamicro vol-
ume server power reduction research development.
Technical report, SeaMicro, 2012.

[21] Kevin Lim, P. Ranganathan, Jichuan Chang, C. Pa-
tel, T. Mudge, and S.K. Reinhardt. Server de-
signs for warehouse-computing environments. Mi-
cro, IEEE, 29(1):41 –49, jan.-feb. 2009.

[22] Yucheng Low, Danny Bickson, Joseph Gonzalez,
Carlos Guestrin, Aapo Kyrola, and Joseph M.
Hellerstein. Distributed graphlab: a framework
for machine learning and data mining in the cloud.
Proc. VLDB Endow., 5(8):716–727, April 2012.

[23] Grzegorz Malewicz, Matthew H. Austern, Aart J.C
Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Man-
agement of data, SIGMOD ’10, pages 135–146,
New York, NY, USA, 2010. ACM.

[24] Sergey Melnik, Andrey Gubarev, Jing Jing Long,
Geoffrey Romer, Shiva Shivakumar, Matt Tolton,
and Theo Vassilakis. Dremel: interactive analysis
of web-scale datasets. Commun. ACM, 54(6):114–
123, June 2011.

[25] José Moreira, Michael Brutman, José Castaños,
Thomas Engelsiepen, Mark Giampapa, Tom Good-
ing, Roger Haskin, Todd Inglett, Derek Lieber, Pat
McCarthy, Mike Mundy, Jeff Parker, and Brian
Wallenfelt. Designing a highly-scalable operating
system: the blue gene/l story. In Proceedings of
the 2006 ACM/IEEE conference on Supercomput-
ing, SC ’06, New York, NY, USA, 2006. ACM.

[26] J. K. Ousterhout, A. R. Cherenson, F. Douglis,
M. N. Nelson, and B. B. Welch. The Sprite Net-
work Operating System. Computer, 21(2):23–36,
February 1988.

[27] Aleksey Pesterev, Jacob Strauss, Nickolai Zel-
dovich, and Robert T. Morris. Improving network
connection locality on multicore systems. In Pro-
ceedings of the 7th ACM european conference on
Computer Systems, EuroSys ’12, pages 337–350,
New York, NY, USA, 2012. ACM.

[28] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olin-
sky, and G. C. Hunt. Rethinking the Library OS
from the Top Down. In Proceedings of the six-
teenth international conference on Architectural
support for programming languages and operating
systems, ASPLOS ’11, pages 291–304, New York,
NY, USA, 2011. ACM.

[29] B. Rhoden, K. Klues, D. Zhu, and E. Brewer.
Improving per-node efficiency in the datacenter
with new os abstractions. In Proceedings of the
2nd ACM Symposium on Cloud Computing, SOCC
’11, pages 25:1–25:8, New York, NY, USA, 2011.
ACM.

[30] A. S. Tanenbaum and S. J. Mullender. An
Overview of the Amoeba Distributed Operating
System. SIGOPS Oper. Syst. Rev., 15(3):51–64,
July 1981.

[31] Gil Tene, Balaji Iyengar, and Michael Wolf. C4:
the continuously concurrent compacting collector.
In Proceedings of the international symposium on
Memory management, ISMM ’11, pages 79–88,
New York, NY, USA, 2011. ACM.

[32] Rob F. van der Wijngaart, Timothy G. Mattson,
and Werner Haas. Light-weight communications
on intel’s single-chip cloud computer processor.
SIGOPS Oper. Syst. Rev., 45(1):73–83, February
2011.

[33] D. Wentzlaff, C. Gruenwald, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. Miller,
and A. Agarwal. An Operating System for Mul-
ticore and Clouds: Mechanisms and Implementa-
tion. In Proceedings of the 1st ACM symposium
on Cloud computing, SoCC ’10, pages 3–14, New
York, NY, USA, 2010. ACM.

7


