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Abstract-Based on Monte Carlo technique, this paper develops 

a probabilistic power flow (PPF) algorithm to evaluate the 

influence of photovoltaic (PV) generation uncertainty on 

distribution networks. Not only the randomness, but also the 

correlation of PV power and the moments when PV generators 

start and stop producing power in a day are taken into account 

with the presented method using the theory of conditional 

probability and nonparametric kernel density estimation. The 

measured power data of photovoltaic generator in Oregon State, 

USA and 34 node distribution test network are used to 

demonstrate the application of the presented method in PPF 

analysis. 

Index Tenns-correlation, Monte Carlo, photovoltaic generation, 

probabilistic power flow, random. 

I. INTRODUCTION 

Solar photovoltaic (PV) generation has been increasingly 
developed in recent years across the world. Almost 30 OW of 
new solar PV capacity came into operation worldwide in 
2011, thereby increasing the current global total PV capacity 
by 74% (70 OW) [1]. Power flow in distribution system with 
grid-connected PV systems changes randomly because of the 
uncertain output power of PV generators. It is unable to reflect 
the random change's impact on the operation of distribution 
system roundly by simply using traditional deterministic 
power flow analysis, but the problem is solved through 
probabilistic power flow (PPF) analysis. 

Compared to the deterministic power flow, PPF 
characterizes the uncertainty in system information by 
describing the variation in terms of a suitable probability 
distribution. Work related to the probabilistic analysis in 
power system flow first appeared in 1974. Borkowska [2] first 
proposed the concept of PPF and implemented an algorithm 
based on convolution. The PPF is applied to analysis the 
power system containing PV in recent years. A cumulant 
based probabilistic power flow algorithm is applied for the 
distribution system containing PV generators with the 
assumption that the probability density function of PV output 
is Beta distribution [3]. The probabilistic model is acquired by 
combining the beta distribution of solar irradiance and the 
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normal distribution of the forecast error of PV cell 
temperature, and then the cumulant method is applied to 
compute the cumulative probability of bus voltage magnitude 
and line flow [4]. The clearness index is presented to denote 
the impact of clouds to radiation in [5] and [6]. The 
probabilistic model of PV power is derived from the 
probabilistic density function of the clearness index proposed 
in [7] and the Monte Carlo technique is used to analysis the 
PPF of distribution system[5]. The probabilistic models of 
global and diffuse irradiation are established respectively in [6] 
and based on the functional relationship of PV output and 
irradiation, the probability density function is derived for PV 
power. The above probability models of PV do not consider 
the chronology of PV variation. The dynamic probability 
model of PV generation is presented in reference [8] Solar 
irradiation is supposed to be stochastic and regular. The sine 
function of time is adopted to reflect daily regularity. The 
random variates, which are assumed to obey certain 
parametric distribution and be independent with each other, 
are used to express the hindering effect of hourly cloud cover 
variation on solar irradiation. However, not only the 
chronology of PV generation is not completely considered, but 
also the moments that PV generators start and stop producing 
power in a day is considered to be deterministic. 

This paper proposes a novel PPF method which taken into 
account the uncertainty of PV power and the moments that PV 
generators start and stop producing power in a day. The main 
contributions of the paper include the following: 

• The nonparametric kernel density estimation theory,
which has been applied to modeling the randomness
of wind speed [9] and studies probability distribution
only based on the data without any prior knowledge or
assumption, is used to derive the probabilistic PV
model.

• The chronological probabilistic model of PV power is 
developed by combining the conditional probability
theory and nonparametric kernel density estimation.

• The joint probability distribution of the moments
when PV generators start and stop producing power in



• 

a day are evaluated by nonparametric kernel density 
estimation technique. 

Based on the Monte Carlo technique, the method of 
PPF for distribution networks is developed and tested 
by 34 node test system. 

The rest of the paper is organized as follows. The novel 
chronological probability model of PV generation is proposed 
in Section II. The joint probability distribution of the start and 
stop moments of PV output is established in Section III. The 
PPF method is developed based on Monte Carlo technique in 
Section IV. The proposed method is illustrated by the 34 node 
test distribution network in Section V, followed by 
conclusions in Section VI. 

II. THE CHRONOLOGICAL PROBABILITY MODEL OF PV 

POWER 

A. Nonparametric kernel density estimation theory for PV 
power 

1) Univariate kernel density estimation of PV power
Let Ph P2, • • •  , P3 denote n samples of PV power p at t

o'clock; thus, the real probability density functionfip) can be 
estimated by the following kernel density function [10]: 

(1) 

where h denotes the bandwidth, k(*) denotes the kernel 
function, and n is the sample size. k(*)should be a symmetric 
single-peak probability density function. 

If the sample size n is sufficiently large, then (1) will 
converge into fip) [ll]. From (1) , the precision of the kernel 
density estimation depends on the selection of bandwidth h 
and kernel function k(*). Bandwidth has little effect on the 
accuracy of kernel density estimation. Consequently, 
bandwidth h is crucial for the accurate estimation offip). 

The Gaussian function is selected as the kernel function in 
this paper, which is a popular choice recommended in 
mathematics books [II].The method in Reference [9] is 
introduced for optimum bandwidth selection, which only 
relies on the kernel function and measured data and does not 
contain any information about the true density of the whole 
population. The minimization problem of the optimum 
bandwidth hop in an analytical expression is as follows: 
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2) Multivariate kernel density estimation of PV power
Multivariate kernel density estimation theory is introduced 

to develop the chronology probabilistic model of PV power at 
multiple hours because multivariate probability distribution 
cannot be obtained by using univariate kernel estimation, 
which is only suitable in deriving the density function of PV 
power at certain moments. 

Let vector P=[p" P2, ... , Pd] represent the PV hourly power
output and d the number of hours in a day. Assuming that n 
day samples are present and the ith day sample is Pi=[Pih 
Pi2, ... , Pied, we can denote the multivariate kernel estimation
offiP) as follows [12]: 

fH(P)=
! 

f. 
1 K[R-l(p_�)J (3) 

n i=l deteR) 
where H is the d*d symmetric positive definite matrix and K(*) 
denotes a multivariate kernel function operating on d 
arguments. To simplify calculation, H is assumed a diagonal 
matrix H=diag [hi, h2, • • •  , hd] and K(*) is replaced by the
following multiplicative kernel function: 

(4) 

where k(*) is a univariate kernel function and is also supposed 
to be Gaussian kernel function. Hence, (3) is simplified as 
follows: 

fH(P)=
!

f. { 1 k(Pl-�I)*
n i=! �h2···hd � 

k(P2 -�2) ... k(Pd -�d)} 
h2 hd 

(5) 

Many effective methods are available in calculating the 
optimum bandwidth of univariate kernel density estimation. 
However, the development of methods for optimum 
bandwidth selection for multivariate kernel density estimation 
has a slow pace. Mathematically and in applications, the rule 
of thumb method taking multivariate normal distribution as 
the reference distribution is used to select optimum bandwidth. 
However, this method is only optimal for reference probability 
density functions and will fail for multimodal densities for 
instance [l3]. Hence, the Cross-Validation (CV) [12] method, 
which requires no assumption or reference distribution, is 
applied to select the optimum bandwidth in this paper. 

The estimation error of fH(P) can be represented by the 
integrated squared error (IS£). The bandwidth H that 
minimizes the ISE is the optimum bandwidth. 

min ISE(H ) = f[ fH (P)- f (p)f dP
= f f� (P)dP-2 f fH (P) f (P)dP + f f2(p)dP (6)

In (6), the first term can be easily calculated from the data, 
and the last term does not depend on H and can be ignored as 
far as minimization over H is concerned. Hence, only the 
second term of (6) is unknown and must be estimated. Thus, 

E(fH (P)) = f fH (P) f (P)dP (7) 

Here, ElfH(P)) can be replaced by a leave-one-out 
estimator, which is also the unbiased estimation of E(ji,(P)). 

1 n �fH (P)) = -IA-i(p;)n i=! 
(8) 

where, 
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By substituting the unbiased estimation of E(fi,(P» in (8) into (6) and ignoring the last term in (6) , we can obtain following analytical expression: 
min ISE(H) = ff� (P)dP-2 ffH (P)f(P)dP 
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By choosing the Gaussian function as kernel function and 
substituting (5) into (10), we can transform (10) into the following: 

min ISE(H ) = 
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This is a non-constraint optimization problem, The interior point method is adopted to solve the optimum bandwidth H. 
The joint probability model of the PV power output at multiple hours can be obtained by multi variable kernel estimation. However, the multivariate kernel density 

estimation theory is usually not applied if d 2: 5 [12] because the amount of measured data and computational effort of this technique increases rapidly with the variate dimension d. The number of hours that the PV generator produces power in a day is always higher than 5. Hence, the multivariate kernel estimation theory is not suitable in establishing the PV probability model directly. 
B. Chronological probability model of PV power 

To take advantage of high precision characteristic and avoid excess demand for measured data and computation of multivariable kernel density estimation theory, this paper establishes the chronological probability model of PV power at multiple hours by combining the multivariate kernel estimation and the conditional probability theory. 
Let vector P=[p" P2,"" Pd] represent the PV hourly power output and d the number of hours in a day. Assuming that n day samples are present and the ith sample is Pi=[Pil, Pi2, ... , Phi], we can assume that the PV outputs at adjacent hours are relevant to each other. Take the power output at i o'clock Pi as an example, we can denote that the value of PH has an impact on the probability distribution of Pi' According to the conditional probability theory, the conditional probability density functionfipi!Pi_l) is as follows [14]: 

(12) 

where fipi-" Pi) is the joint probability density function of Pi and Pi-I' 

The conditional probability density function of the hourly 
PV output can be acquired successively by (12), such as fip2!PI), fip3!P2) , ... , fipd!Pd-I)' Consequently, the probability distributions of the hourly PV output consider the correlation between PV powers at adjacent hours. Hence, the stochastic and chronological characteristic of PV output can be correctly presented. Moreover,fipi_d andfipi_" Pi) are the key points in determining the accuracy of the proposed chronological probability model. Univariate and multivariate (the dimension of the variate is two) kernel density estimation are adopted to evaluate fipi-I) and fipi-" Pi) with high precision. Let It/PH) 
andfH(Pi-" p;), which are shown in (13) and (14), be the kernel 
estimation Offipi-l) and fipi. " p;); thus, 
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where h is the bandwidth of the univariate kernel density estimationlt,(Pi_l) and hi, hi-1 is the bandwidth of multivariate 
kernel estimationfH(PH, p;). By substituting (l3) and (14) into (12), we can obtain the kernel estimation offipi_" p;). 

The stochastic and chronological characteristic of PV power is simulated successfully by the proposed method, and the dimension of the involved multivariate kernel estimation is only two. The new method is easy to implement with less computation and has no excess demand for measured data of 
PV generator compared with the PV model, which is based on the multivariate kernel estimation. The modeling method is also used to acquire the probabilistic model of load in this paper. 

III. THE JOINT PROBABILITY MODEL OF THE START AND 

STOP MOMENTS OF THE PV OUTPUT 

PV generation depends on solar radiation. Thus, power is only produced during daytime because of alternating day and night. The start and stop moments of the PV output in a day are uncertainty. 
Assuming that the start and stop moments of PV output are fs and fe' and Ts and Te are the measured data of fs and fe'

respectively, then Ts=[ Ts" Ts2,"" Tsn], Te=[ Te" Te2, ... , Ten]·Moreover,fits, fe) is the joint probability density function of fsand te,. Based on the multivariate kernel estimation theory 
with dimension of the variate being two, the kernel density estimation function offifs, fe) is acquired as follows:

fH (ts ,fe) =.!. t_l_k(fS - Tsi )k(fe - Tei) (15) 
n i=l hl� hi � 

where hI. h2 is the bandwidth offH(tn fe) that can be solved by the CV method. The kernel function k(*) is also chosen as theGaussian kernel function. 



IV. THE PPF FOR DrSTRffiUTION NETWORKS BASED ON 

MONTE CARLO TECHNIQUE 

Once the statistical models are defined in terms of probability density function, Monte Carlo simulations involves repeating the simulation process using in each simulation a particular set of values of the hourly PV output and load generated in accordance with the corresponding probability density function. The PPF calculation method of distribution networks containing PV generation is developed based on the Monte Carlo technique. The procedure is as follows and the flow chart is shown in Fig.l. 

No 

Input PV power data and network 
parameters 

for k= I : kma, 

Generate random samples of I, and I, 

for 1= I,: I, 

Generate random sample of hourly 
PV power and load 

r-----------�----------_, No 
Power flow calculation by Newton­

Raphson method 

Save bus voltage magnitude and line 
flow 

Figure 1. Flow Chart of Probabilistic Power Flow Analysis 

1) Input the measured data of PV power, the electricaland geometrical parameters of the distribution

network. Initialize the maximum and minimum iteration time kmax. 

2) Based on the proposed joint probabilistic model of tsand te in Section III, generate random sample of ts and te using the rejection sampling method [15]. 
3) Generate the hourly PV power and load during timeinterval [ts , tel using the chronological probabilitymodel of PV power in section II.
4) The Newton-Raphson method is used to solve thepower flow with the hourly stochastic sample of PV

power and load.
5) Save the result of every power flow calculation, suchas bus voltage and line flow.
6) The coefficient of variance '1 is taken as convergencecriterion. If '1 is less than the given precision r; or k is up to kmax, exit; otherwise, let k=k+ 1 and proceed toStep 2.

V. CASE STUDY 

The proposed method for probabilistic power flow has been implemented using MATLAB and is tested on the 34 node distribution network [16] (Fig. 2). The hourly measured power data of PV generator in Ashland, United States are selected for the case study [17]. 
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Figure 2. 34 Node Distribution Network 

15
0

,�-��r=�==W='i1h=== PV==il 
----•. Without PV 

100 

Voltage(pu.) 

a) 3 o'clock

40
r-----=--c-c=====i] -WithPV 

-----. Without PV 

Voltage(pu.) 

b) 12 o'clock
Figure 3. Histogram of the Voltage Magnitude at Node 26 

The 90kW PV generator is connected to the system at node 26. The proposed method in this paper is used to analysis the PPF of 34 node distribution network. The histogram of voltage magnitude of node 26 at 3, 12 o'clock are shown in 
Fig. 3. There is almost no change after the PV generator is installed at node 26 for the voltage at 3 o'clock since the PV generator produces no power during at night. However, at 12 o'clock, the voltage probability distribution becomes much different if the PV generator is connected to the network. The probability in interval [0.94, 0.98] is increased. Hence, it is 



demonstrate that PV can improve the voltage level during the daytime. 
Fig. 4 and 5 show the hourly probabilistic distribution curves of line flow through line 24-26 with or without PV generator respectively. It can be observed that PV generation has no impact on the line flow at night. However, the 

probability of line flow locating [0.05, 0.1] is decreased, and the probability locating [0, 0.05] is largely increased during the daytime. Hence, the line flow is only affected by the PV generation during the daytime. 
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Figure 4. Histogram of Line Flow through Line 24-26 without PV 
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line flow and improve the voltage level during the daytime only. 
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