
Construction of a Trusted SaaS Platform

Chaoliang Zhong∗, Jun Zhang†, Yingju Xia‡, Hao Yu§
Information Technology Laboratory

Fujitsu Research and Development Center
Beijing, China

{∗clzhong, †jzhang, ‡yjxia, §yu}@cn.fujitsu.com

Abstract—As a part of Cloud computing, Software as a
Service(SaaS) enables users to cut their costs by outsourcing
software as a service on-demand, in which both computation
and storage are handled on server-side. However, data must
be decrypted into memory when performing the computa-
tion, even though they can be encrypted during storage and
transmission. In this case, the privileged administrators of
SaaS providers are able to inspect or modify users’ data and
computations. As a result, the users will not trust the SaaS
providers, which is the number one factor blocking the wide
adoption of SaaS.

To address this problem this paper proposes a trusted
SaaS platform(TSP). Besides guaranteeing data security during
storage and transmission, TSP enforces a trusted execution envi-
ronment(TEE) that guarantees the confidentiality and integrity
of the users’ data and computations.

Keywords-Cloud Computing; SaaS; Trusted Computing;

I. INTRODUCTION

In recent software industry, Software as a Service(SaaS)
model has been growing rapidly and seems to have a
promising future. Rather than selling a software licence
and installing the software on users’ machines, the service
provider operates an application on its infrastructure stack
and licenses it to the users as a service on demand over
Internet [1].

Although the users are attracted by the reduction of Total
Cost of Ownership(TCO) [2] and other advantages of the
adoption of SaaS(e.g., better resources utilization, more
application access scalability, global outsourcing possibility,
etc.) [3], the users are afraid of the loss of control of their
data after adopting SaaS services, because SaaS applications
process users’ data on machines that are owned by a SaaS
provider and may be physically thousands of miles away
from the users [4]. That is to say, the users are still hesitating
to put their data into the SaaS cloud. The users’ concerns are
reasonable, because their data, especially business sensitive
data are the core competitive power for them. It could
damage the users’ companies if the business sensitive data
are leaked when the users are using a SaaS application.
Here, the SaaS users’ demand is simple but challenging:
nobody(even the administrators of SaaS providers) but the
owner of the data knows the content of the data.

There is an analogy that is widely used to persuade the
users to trust the SaaS providers: your data are more secure

in the cloud, just like your money is more secure in the
bank [5]. This kind of persuasion makes no sense, because
the money a user deposits in his bank account is not different
from any others’ money, while a user’s data are unique,
confidential, business sensitive and different from any other’s
data essentially. Therefore, although top SaaS providers are
continuously constructing their reputation to build the users’
confidence(e.g., Google Docs deals with security issues [6])
and service level agreement(SLA) is now widely used to
govern the SaaS providers’ use of users’ data at the legal
level [4], nothing but a technical solution that guarantees
the confidentiality and integrity of data in SaaS model can
convince the hesitating users to adopt SaaS model.

Data encryption may be an effective approach to protect-
ing data security for SaaS users during transmission and stor-
age [7], [8]. Some research has also been done on computing
on encrypted data [9], though currently there is not a mature
solution to this issue. Moreover, after all, the unencrypted
data are easier to process for SaaS providers. Given that SaaS
providers are more willing to provide the services that can
only process the users’ unencrypted data, and the data must
reside in the memory of the SaaS provider’s host during
computation, and anyone(e.g., administrators of the host)
who can access this host can inspect or modify the users’
unencrypted data, this paper attempts to provide a solution
that guarantees the confidentiality and integrity of users’ data
during computation in SaaS model.

Conventional trusted computing platforms like Terra [10]
are able to prevent the owner of a physical machine from
inspecting or interfering with a computation running in a
virtual machine(VM) that is hosted in the physical machine,
and thus can effectively secure the computation running
in the VM. However, these platforms cannot address this
problem due to the following two reasons. First, they do
not specify who will launch the VM that is responsible for
performing the computation. If the VM is launched by a
SaaS provider, as the owner of the VM, the SaaS provider
can certainly inspect or modify the computation. Second,
in a conventional SaaS system, any application needs a
model of computation, a model of storage and a model of
communication [11], [12], just as the simplified architecture
shown in Fig. 1, in which a conventional SaaS system
consists of three kinds of servers, storage, compuataion

2010 Fifth IEEE International Symposium on Service Oriented System Engineering

978-0-7695-4081-8/10 $26.00 © 2010 IEEE

DOI 10.1109/SOSE.2010.34

244

Conventional SaaS System

Transmission
Server

Computation
Server

Storage Server

Database

SaaS Client

Browser
HTTP

applications

Figure 1. Conventional SaaS System

and transmission respectively. Although these platforms can
guarantee each of the three servers is trusted, they cannot
guarantee the SaaS system is trusted as well. For example,
the transmission server is able to transfer the user’s data to an
untrusted computation server, even though itself is trusted.
Actually, transmission and storage servers are not neccessary
to be trusted.

The approach proposed in Towards Trusted Cloud Com-
puting [13] can only be used for IaaS and cannot solve this
problem due to the following reasons. The first reason is the
same as that of conventional trusted computing platforms,
that is to say, TCCP does not specify who will launch
the VM either. Second, the architecture used in TCCP
is Client/Server model and it is easy to implement data
encryption with user’s private trusted key on client-side. In
SaaS system, however, the client is a browser, in which the
encryption is only used for transmission(e.g., TLS [14]).
Third, the protocols presented in TCCP cannot be used
to solve this problem. In TCCP, the protocols are mainly
utilized for node registration and securing VM launch and
migration. However, in SaaS system, the users’ main purpose
is guaranteeing that the SaaS providers process their data and
respond the result without inspection or modification, rather
than guaranteeing the security of their VMs.

To address this problem, this paper proposes a trusted
SaaS platform(TSP) that enables a trusted third party to
launch a VM as a trusted execution environment(TEE) on
the computation server. Though the privileged administrators
of SaaS providers can access the physical host of TEE, they
cannot access the TEE because the TEE is not launched
by them. By taking advantage of trusted virtual machine
monitor(TVMM) [10](see section II-B), the privileged ad-
ministrators cannot tamper with the TEE. The TEE is also
where all of the decryption, computation and encryption take
place, so it can ensure the confidentiality and integrity of
users’ data and computations that are outsourced to SaaS
services. Moreover, the TSP guarantees the data stored on
the storage server and the data exchanged among these
entities(i.e., SaaS client, transmission server, storage server
and computation server, etc.) are all encrypted by taking

advantage of a USB device on the SaaS client and protocols
among these entities, so that the data won’t be inspected or
modified during transmission and storage.

In this paper we show how to design the TSP by taking
advantage of trusted computing technologies. Section II
introduces SaaS and one of the open source implemen-
tations of IaaS called Eucalyptus, introduces the related
technologies, and presents the essential conflict between
SaaS users and providers. Section III presents our design of
TSP. Finally, section IV concludes this paper and discusses
about the future work.

II. BACKGROUND

A. Cloud Computing

Cloud computing refers to both the applications delivered
as services over the Internet and the hardware and system
software in the datacenters that provide those services [11].
In the higher layer of cloud computing, the services them-
selves have long been referred to as SaaS, while in the lower
layer, the services that deliver the hardware to users and
allow users to have access to entire VMs hosted by the
providers are reffered to as Infrastructure as a Service(IaaS).

Data confidentiality and auditability is one of the top 10
obstacles to the adoption of cloud computing [11]. Nuno
Santos et al. [13] has proposed a solution for IaaS, while
there is no ideal solution proposed for SaaS currently.

1) Software as a Service: In the higher layer of cloud
computing, SaaS(e.g., salesforce.com, etc.) offers users com-
plete online applications as services over Internet [1]. Both
the users and providers can benefit from moving to the SaaS
model(e.g., the reduction of TCO [2], [3]). However, the
users are still hesitating to put their data into the SaaS cloud,
since they are afraid of the loss of control of their data after
adopting SaaS services [4].

In a SaaS system, any application needs a model of
computation, a model of storage and a model of commu-
nication [11], [12]. According to the three models, Fig. 1
presents a simplified architecuture of conventional SaaS sys-
tems, which includes three kinds of servers, namely storage,
compuataion and transmission, respectively. Our solution
to this problem is based on this simplified architecture, in
which the SaaS client is the users’ terminal and contains
a WEB browser. The applications providing users with a
graphical user interface(GUI) is running on that browser.
The WEB browser communicates with the transmission
server to send requests and receive responses. The SaaS
system handles users’ requests and responds the results with
the collaboration of the three kinds of servers.

From the perspective of users, the SaaS system provides
three kinds of operations, namely data storage, retrieval
and process. The solution proposed in this paper also aims
to guarantee the data security when performing these three
operations.

245

2) Infrastructure as a Service: In the lower layer of cloud
computing, IaaS providers such as Amazon allow their users
to have access to entire VMs hosted by the providers. A user
of the system is responsible for providing the entire software
stack running inside a VM.

IaaS is also faced with the similar problem of SaaS.
Fortunately, a solution to this problem for IaaS has already
been proposed in [13]. Thus, in this paper, we do not
focus on IaaS. Instead, we leverage one of the open source
implementations of IaaS, namely Eucalyptus [15], to launch
the VM of TEE in our solution.

The system of Eucalyptus manages one or more clusters
whose nodes run a virtual machine monitor(VMM) to host
VMs. Eucalyptus comprehends a set of components to
manage the clusters. A simplified architecture of Eucalyptus
is presented in [13], in which all those components are
aggregated in a single cloud manager(CM) that handles a
single cluster. There is a node controller(NC) that commu-
nicates with CM to execute the commands of CM such as
launch, terminate VMs on each node of the cluster. Readers
can refer to [15] for more details.

B. Trusted Computing

Trusted computing developed and promoted by Trusted
Computing Group(TCG) [16] involves a set of hardware and
software technologies that enable the construction of trusted
platforms that can guarantee computers consistently behave
in expected ways. In particular, the TCG proposed a standard
for the design of trusted platform module(TPM) chip that is
now bundled with commodity hardware. The TPM contains
an endorsement private key(EK) that uniquely identifies
the TPM(thus, the physical host), and some unmodifiable
cryptographic functions. The respective manufacturers sign
the corresponding public key to guarantee the validity of the
key and correctness of the chip.

By leveraging the TPM chips, trusted platforms [10], [17]
allow changes to the computers to be detected by authorized
parties. This mechanism called remote attestation works as
follows. At boot time, the host computes a measurement
list ML containing a sequence of hashes of the software
involved in the boot sequence, namely the BIOS, the boot-
loader, and the software implementing the platform. The
ML is securely stored inside the host’s TPM. To attest to
the platform, a remote party challenges the platform running
at the host with a nonce nU . The platform asks the local
TPM to create message containing both the ML and the nU ,
encrypted with the TPM’s private EK. The host sends the
message back to the remote party who can decrypt it using
the EK’s corresponding public key, thereby authenticating
the host. By checking that the nonces match and the ML
corresponds to a configuration it deems trusted, a remote
party can reliably identify the platform on an untrusted host.

A trusted platform like Terra [10] implements a trusted
virtual machine monitor(TVMM) that enforces a closed box

execution environment, meaning that a guest VM running
on top cannot be inspected or modified by administrators
with full privileges over the host. The TVMM guarantees
its own integrity until the machine reboots. Thus, remote
parties can attest to the platform running at the host to
verify that a TVMM is running, and thus make sure that
their computation running in a guest VM is secure.

Given that a conventional trusted platform can secure the
computation in a VM on a single host, a intuitive approach to
securing the computations of SaaS services is to deploy the
platform at each computation server inside a SaaS system
and perform the computation in the secured VM. However,
this approach is insufficient. First, the party who ought to
launch the VM is not specified and the party obviously
cannot be the SaaS provider, because if the VM is launched
by the SaaS provider, as the owner of the VM, the SaaS
provider can certainly inspect or modify the computation.
Second, there is a clear need for a mechanism that enforces
the computation to be performed in the VM rather than
outside it. Therefore, the TSP needs to provide a sequence
of protocols that can satisfy the above two requirements.

C. Trusted Cloud Computing Platform

The trusted cloud computing platform(TCCP) [13] pro-
vides a closed box execution environment by extending the
concept of trusted platform to an entire IaaS backend. The
TCCP guarantees the confidentiality and integrity of a user’s
VM, and allows a user to determine up front whether or not
the IaaS enforces these properties.

The trusted computing base of the TCCP includes two
components: a TVMM and a trusted coordinator(TC). Each
node of the backend runs a TVMM that hosts users’ VMs,
and prevents privileged users from inspecting or modifying
them. The TVMM protects its own integrity over time,
and complies with the TCCP protocols. That is to say, the
TVMM is not only a VMM that hosts the VMs but also a
component with the functionality of NC that communicates
with the CM to receive and execute the commands such as
launch, terminate VM.

The TC manages the set of trusted nodes that can run a
user’s VM securely. To be trusted, a node must be located
within the security perimeter, and run the TVMM. To meet
these conditions, the TC maintains a record of the nodes
located in the security perimeter, and attests to the node’s
platform to verify that the node is running a trusted TVMM
implementation. A user can verify whether the IaaS service
secures its computation by attesting to the TC.

To secure the VMs, each TVMM running at each node
cooperates with the TC in order to 1) confine the execution
of a VM to a trusted node, and to 2) protect the VM state
against inspection or modification when it is in transit on the
network. The critical moments that require such protections
are the operations to launch, and migrate VMs. The TCCP
specifies several protocols to secure these operations.

246

Transmission
Server

SaaS Client

Browser

TPM
TEE

Decryption module

Computation module

USB Device
User keys

TC public key

Encryption

Decryption

ETE

CMTC

Trusted SaaS System

Computation Server

Storage Server

Database

Encryption module TVMM

Figure 2. Trusted SaaS Platform

TCCP assumes an external trusted entity(ETE) that hosts
the TC, and securely updates the information provided
to the TC about the set of nodes deployed within the
IaaS perimeter, and the set of trusted configurations. TCCP
envisions that the ETE should be maintained by a third party
with little or no incentive to collude with the IaaS provider.
Thus, sysadmins that manage the IaaS have no privileges
inside the ETE, and therefore cannot tamper with the TC.

The TSP takes advantage of the trusted computing base
of the TCCP and the computation server that hosts the
TEE is treated as a trusted node. However, the protocols
presented in TCCP are not suitable for TSP, because they
are mainly utilized for node registration and securing VM
launch and migration, while the main purpose of TSP is
to guarantee that the SaaS providers process users’ data
and respond the result without inspection or modification,
namely the security of the three operations(i.e., data storage,
data retrieval and data process) provided by SaaS providers.
Therefore, the TSP needs to present new protocols that are
suitable for this purpose.

D. Essential conflict and our solution

The administrators of SaaS providers have privileged
control over all of the transmission, storage and computation
servers. The SaaS providers require the data provided by
users are not encrypted or can be decrypted by them. In this
case, the privileged administrators even need not to install
special software to perform an attack and thereby access
SaaS users’ data or modifiy the computation. As a result,
the SaaS users are not willing to provide the unencrypted
data or the data that can be decrypted by SaaS providers.

This is the conflict between the confidentiality and in-
tegrity of data required by the SaaS users and the decryptable
and computable data required by the SaaS providers. Assum-
ing that the data have been encrypted with a public key of a

trusted third party besides the transmission encryption(e.g.,
TLS [14]) on SaaS client, in order to solve this conflict, our
solution is to seperate the running control of the computation
from the design of the computation. The design of the
computation means how to process the unencrypted data and
certainly should be completed by the SaaS providers, while
the running control of the computation means who and how
to control the running of the computation and should be
accomplished by the trusted third party rather than the SaaS
providers. The unencrypted data are required only when the
computation is running and the running of the computation
is controlled or protected by a trusted third party, so that the
SaaS providers are not able to inspect or modify the data
and computation. The TSP presented in section III provides
a mechanism that implements this seperation.

III. TRUSTED SAAS PLATFORM

We present the TSP that guarantees the confidentiality and
integrity of a user’s data and computations by enforcing a
TEE which is a VM launched by a trusted third party on
the computation server. The TSP enhances the simplified
architecture of the conventional SaaS system to enable the
TEE without greatly changing it. The TSP also guarantees
the data stored on the storage server or exchanged among
entities of a SaaS system are all encrypted, so that the
data cannot be inspected or modified during transmission
and storage. From the perspective of users, a SaaS system
provides three kinds of operations, namely data storage,
retrieval and process. These operations are accomplished
with the collaboration of the entities of the SaaS system. The
TSP presents several protocols for guaranteeing the security
of these operations by specifying the communications among
the entities.

A. Overview

As depicted in Fig. 2, the TSP includes the entities that
are also involved in conventional SaaS systems: SaaS client,
SaaS transmission server(STS), SaaS storage server(SSS)
and SaaS computation server(SCS). By drawing lessons
from TCCP [13], the TSP also involves a new entity called
external trusted entity(ETE), which hosts a remote trusted
coordinator(TC) and a cloud manager(CM).

The TSP takes advantage of trusted computing to enforce
the TEE on SCS. The trusted computing base of the TSP
includes two components: a TVMM and a TC. The TVMM
runs on the SCS, hosts the VM providing the TEE and
prevents privileged users of the physical host of SCS such
as the administrators of SaaS providers from inspecting or
modifying the memory of TEE. The TVMM protects its own
integrity over time. The SCS embed a certified TPM chip
and must go through a secure boot process to install the
TVMM. Due to space limitations we will not go into detail
about the design of the TVMM, but readers can refer to [17]
for an architecture that can be leveraged to build a TVMM.

247

The TC manages the SCS that can be trusted and run the
VM of TEE securely. In order to be trusted, the SCS must
run a TVMM and register with the TC when its physical
machine is being launched. After that TC will attest to the
TPM of SCS to verify that the SCS is running a TVMM.
The related protocol is presented in section III-C1.

Besides hosting and protecting the VM of TEE, the
TVMM can receive and execute the commands(e.g., launch,
terminate VM, etc.) of CM as well. In the final step of
SCS registration, if the SCS is reckoned to be trusted, TC
will luanch the VM of TEE on the SCS by asking the
CM to send a command to the TVMM. In that command,
the information for launching the VM is included. The
information involves an image file that is stored on the CM
before being transferred to SCS and contains three modules,
namely decryption, computation and encryption. In TSP, the
computation module is required to be provided by the SaaS
provider. Therefore,

• Since the VM of TEE is launched by the TC, the
administrators of the SaaS provider are not able to be
logged in it.

• Moreover, because the TVMM is running, the admin-
istrators of the SaaS provider are not able to inspect or
modify the data and computations in the VM of TEE.

• However, because the computation module is provided
by the SaaS provider, the VM can execute the compu-
tation of the SaaS provider to process the users’ data.

In the above mechanism, the running of the computation is
controlled by the ETE, while the design of the computation
is completed by the SaaS provider. Consequently, the run-
ning control of the computation is seperated from the design
of the computation, and the confidentiality and integrity of
users’ data and computations are guaranteed.

B. Entities

The entities involved in TSP are controlled by different
parties respectively. The SaaS client is controlled by the
SaaS users. The ETE is controlled by the trusted third party.
The trusted SaaS system which consists of STS, SCS and
SSS is controlled by the SaaS providers.

SaaS Client: As the terminal of SaaS users, the SaaS
client contains two components: a WEB browser and a USB
device. The SaaS applications that provide users with a
graphical user interface(GUI) run on the WEB browser. The
USB device is provided by the trusted third party. In the USB
device, there are user private-public keys of an asymetric
cryptographic keypair, a TC public trusted key, decryption
and encryption functions and a URI of TC. The keys and
functions stored in the USB device are utilized to encrypt the
messages from SaaS client to STS or decrypt the messages
from STS to SaaS client. In particular, the HTTP requests
from SaaS client consist of the data and operations that
are encrypted with a generated session key. The generated
session key encrypted with the TC public trusted key is a

symetric cryptographic key and is sent together within the
encrypted HTTP requests to STS.

SaaS Transmission Server: The STS is a WEB server
that receives the requests from SaaS client directly. On one
hand, since the contents of these requests are encrypted and
the STS is not able to decrypt them, the STS has no choice
but to forward them to a trusted SCS that can handle these
requests. On the other hand, the result of computation from
SCS or result of storage from SSS are also encrypted, the
STS has no choice but to forward them to the SaaS client.
Thus, the above mechanism guarantees the confidentiality
and integrity of requests and responses relayed by STS.
Besides, since the STS can detect the real-time load of each
SCS and SSS when the SaaS system is running and the
number of SCS and SSS can be dynamicly changed on-
demand, the SaaS system can benifit from load balancing
and scalability.

SaaS Computation Server: The SCS is a server running
the VM of TEE. As depicted in Fig. 2, the SCS involves a
TVMM and a TPM. The functionality of TVMM includes:

• hosting the VM of TEE.
• guaranteeing the data and computations in the VM of

TEE will not be inspected or modified.
• complying with the protocol of SCS registration(see

section III-C1), receiving and executing the commands
of CM(e.g., launch VM, terminate VM, etc.).

The functionality of TPM is remote attestation(see section
II-B). In order to be trusted, the SCS must run a TVMM and
register with TC when its physical host is being launched.
TC then attests to the TPM to verify that the SCS is running
a trusted TVMM(see section III-C1). In the final step of SCS
registration, if the SCS is trusted, TC will launch the VM of
TEE by asking the CM to send a command to the TVMM.

When receiving the requests that are sent from the SaaS
client, forwarded by the STS and encrypted with a generated
session key, the SCS invokes the TEE to handle the requests.
The TEE decrypts the data with the decryption module,
processes them with the computation module, encrypts the
result of the computation module with the encryption mod-
ule and returns the encrypted result to the SCS. Finally, The
SCS responds the result to the STS or stores them on SSS.

In the TEE, only the encryption module and the decryp-
tion module that are provided by the trusted third party can
interact with the SCS, while the computation module pro-
vided by the SaaS provider is a internal module and cannot
interact with the outside of TEE. Thus, the unencrypted data
in the TEE are secured and impossible to be leaked.

SaaS Storage Server: The SSS is a server that handles
the retrieval and storage requests and operates the database
servers directly. These requests either come from SCS di-
rectly or come from SaaS client indirectly. All data stored
on SSS are encrypted with users’ public trusted key and can
only be decrypted with users’ private trusted key on SaaS
client, which ensures the security of data during transmission

248

Table I
NOTATIONS

Notation Description〈
Kp, KP

〉
Private-public keys(asymetric)

{y}Kx Data y are encrypted with key Kx

EKx Endorsement keys
TKx Trusted keys
Kx Session key(symetric)
nx Unique numbers generated by x

data User’s unencrypted data
loc of data Where the SSS can find the data

op Operation:storage,retrieval,process,etc.
str op Storage operation
op res The result of operation

str op res The result of storage operation
comp res The result of TEE’s computation module

MLx Measure list of x
Uuser User identifier provided by user himself
USTS User identifier provided by STS

and storage. The public data that need not to be encrypted
may be separated from the users’ private data and stored on
another database server by extending this architecture.

External Trusted Entity: The ETE hosts two compo-
nents: TC and CM. The TC can attest to the TPM of SCS to
verify that the TVMM is running when the SCS is launched
and sends a registration request to the TC. If the TVMM is
running, the SCS is reckoned to be trusted and the TC will
launch the VM of TEE on the SCS by asking the CM to send
a command to the TVMM. The ETE should be maintained
by a third party with little or no incentive to collude with
the SaaS provider. The administrators that manage the SaaS
system have no privileges inside the ETE, and therefore
cannot tamper with the TC and CM.

C. Message Flows

In this section, We describe the protocol that TC uses to
manage the SCS (SCS registration) and the protocols that
secure the operations involving data storage, data retrieval
and data process. When performing these operations, the
TSP needs to guarantee that 1) the data are always encrypted
in the SaaS system but outside the TEE. 2) the data can
be decrypted in the TEE. To satisfy these requirements,
the parties involved in these operations follow the protocols
depicted in Fig. 4, 5 and 6. These protocols are designed on
the fact that, among the components of the service, the user
only trusts the TC. In these protocols, we use the notations
described in Table I for cryptographic operations.

1) SCS registration: The TC dynamically manages the set
of trusted SCSes that can host a VM of TEE by maintaining
a directory containing the public endorsement key EKP

SCS

identifying the TPM of SCS, and the expected measurement
list MLSCS for each SCS. The ETE makes some properties
of the TC securely available to the public, namely the
EKP

TC , the MLTC , and the TKP
TC(identifying the TC).

Both the MLSCS and the MLTC express the canonical

1.

2.

3.

4

SCSn

TCEKSCSTC nnML p
TC

,},{

P
TC

p
SCS TK

P
SCSEKTCSCS TKnML },},{{

Kaccepted }{

ETE

1.

TC CM

TPM

2. 3. 4. 5.

TVMM 4.

5.
P
SCSTKVMKaccepted },{

SCS

TPM TVMM

VMKTEETEE VMVM }#,{

Figure 3. SCS Registration

configurations that a remote party is expected to observe
when attesting to the platform running on a SCS or on the
TC, respectively.

To be trusted, SCS must register with TC by complying
with the protocol depicted in Fig. 3. In step 1 and 2, SCS
attests to the TC to avoid an impersonation of the TC
by an attacker: SCS sends a challenge nSCS to the TC,
and the TC replies with its bootstrap measurement MLTC

encrypted with EKp
TC to guarantee the authenticity of the

TC. If the MLTC matches the expected configuration, it
means the TC is trusted. Reversely, the TC also attests to
SCS by piggybacking a challenge nTC in message 2, and
checking whether the SCS is authentic, and is running the
expected configuration(step 3). The SCS generates a key
pair

〈
TKp

SCS , TKP
SCS

〉
, and sends its public key to the

TC. If both peers mutually attest successfully, the TC adds
TKP

SCS to its SCS database, and sends message 4 containing
a session key KV M generated by the TC to confirm that the
SCS is trusted. Key TKSCS certifies that the SCS is trusted.

In the final step of SCS registration, if the SCS is trusted,
the TC asks the CM to send message 5 to the TVMM
of SCS. The message 5 contains V MTEE and V MTEE’s
hash encrypted with the session key KV M to guarantee
its confidentiality and integrity during transmission. The
TVMM then launches the VM of TEE with its initial state
V MTEE by asking TPM for KV M to decrypt the message
5. The initial state V MTEE contains a VM image file and a
trusted keypair of TEE

〈
TKp

TEE , TKP
TEE

〉
. A copy of the

public trusted key of TEE TKP
TEE is reserved in the TC’s

trusted TEE database corresponding to the trusted SCS that
hosts the TEE, so that TC can authentic the identity of TEE
when the TEE requires the TC to decrypt the session key as
described in section III-C2 and III-C4.

In the case that a trusted SCS reboots, the TSP must
guarantee that the SCS’ configuration remains trusted, other-
wise the SCS could compromise the security of the TSP. To
ensure this, the SCS only keeps TKp

SCS in memory causing
the key to be lost once the machine reboots. The SCS is thus
banned from the TSP, since it will not be able to decrypt
messages encrypted with the previous key, and must repeat
the registration protocol.

2) Data storage: In this section, we present the protocol
depicted in Fig. 4 to secure the data storage operation.

First, the user’s SaaS client generates a session key K,
and sends message 1 to STS containing the following three

249

SaaS Client TC

STS

TEE

Decryption module

1.

2.

3. 4.

7.

8. TCTKuser

Kuser
P
u

URInK

UTKopstrdata

P
TC

,},{

,},,_,{

STSTCTKuser

Kuser
P
u

UURInK

UTKopstrdata

P
TC

,,},{

,},,_,{

P
TC

p
SCS

P
TC TKTKSCSTKuser SCSnTEEnK },},,},{{{

Trusted SaaS System

SCS

SSS

yp

Computation module

Encryption module

5. 6.

p
TC

P
SCS

P
TEE TKTKSCSTKuser nnK }},},{{{

userTK
Udata P

u
,}{

resopstr __

Kusernresopstr },__{

Kusernresopstr },__{

Figure 4. Data Storage

parts. The first part is encrypted with K and contains data,
operation, user’s public trusted key TKP

u and user identifier
Uuser provided by user himself. The second part is encrypted
with TC’s public trusted key TKP

TC and contains the session
key K. The third part is the URITC without encryption.
Encrypting the session key K with TKP

TC ensures that
only the TC can authorize someone to access the first
part including the user’s data and operation. The TC only
authorizes trusted SCSes. The URITC indicates which TC
should SCS communicate with for acquiring the K.

Upon receiving message 1 from SaaS client, since the
STS cannot decrypt this message, it has no choice but to
forward the message to a trusted SCS. Before forwarding,
the STS adds an extra part USTS to the message 1, which
denotes the user’s identity. Upon receiving message 2, since
the SCS cannot decrypt this message outside TEE, it invokes
the TEE to handle this message. In order to access the data
and operation in the message, the decryption module of
TEE sends message 3 to the TC that decrypts K on TEE
and SCS’s behalf. Message 3 is encrypted with TKp

SCS ,
so that the TC can verify whether the SCS is trusted. If
the corresponding public key is not found in TC’s trusted
SCS database, the request is denied. This would have
been the case had the STS forwarded the message to an
untrusted SCS. Otherwise, the SCS is reckoned to be trusted.
Furthermore, the TC verifis whether the TEE exists and is
running on the corresponding trusted SCS by searching in
TC’s trusted TEE database. If the TC is convinced that the
TEE is running on the corresponding trusted SCS, it decrypts
the K from message 3, encrypts the K with TKP

TEE and
TKP

SCS , and sends message 4 containing the encrypted K
to the TEE, such that only the TEE of the SCS can read the
K. The decryption module of TEE is now able to decrypt
and invoke the computation module to process the data,
operation, TKP

u and Uuser.
Since the operation is a storage operation in this section,

the computation module just checks whether the Uuser

equals to USTS to prevent masquerade attacks [18] and then
forwards the data, operation, TKP

u and Uuser to the encryp-

SaaS Client TC

STS

1.

3.

4.
userUdataofloc ,__

userUdataofloc ,__

Udata P ,}{
SCS

Trusted SaaS System

SSS

2. userTK
Udata P

u
,}{

P
uTK

data}{

Figure 5. Data Retrieval

tion module directly if it is not an attack. The encryption
module encrypts the data with TKP

u to construct message
5 and sends it to SSS. The SSS stores the encrypted data
associated with the user and responds the operation result.
Finally, the TEE sends message 7 forwarded by STS to SaaS
client containing the operation result to report whether the
data storage operation is successfully executed.

3) Data retrieval: The protocol depicted in Fig. 5 is
presented to secure the user’s data retrieval operation. In
practical systems, the data may be retrieved according to
many features. In this paper, however, for description con-
venience, we assume that the user’s data are always stored
and retrieved according to their locations in database.

First, the user sends message 1 to STS containing the
location of the requested data and the user’s identifier. The
STS checks whehter the identifier Uuser is legal and its
corresponding user has already been logged in the SaaS
client to prevent masquerade attacks [18]. If it is not an
attack, the STS forwards this message to SSS which queries
the database to retrieve and return the encrypted data to STS
in message 3. Upon receiving message 3, STS responds the
encrypted data to the user’s SaaS client. Finally, the user is
able to access the requested data decrypted with the user’s
private trusted key stored in the USB device at SaaS client.

4) Data process: The protocol depicted in Fig. 6 is
presented to secure the user’s data process operation.

First, the user needs to fetch the data that need to be
processed from the trusted SaaS system. The same as section
III-C3, we assume that the user’s data are always stored and
retrieved according to their locations in database. From step
1 to 4, the user fetches the data with the protocol presented
in section III-C3. After the data are fetched, the SaaS client
decrypts the data with the user’s private trusted key stored in
the USB device, and sends message 5 to STS. The message 5
is similar to the message 1 of data storage protocol presented
in section III-C2. The only difference between them is the
operation. In data storage protocol, the operation is specified
to storage, while in data process protocol, the operation
is not specified. Instead, it may be any operation that the
computation module can support.

The steps from 6 to 8 are the same as the steps from 2 to 4
of data storage protocol. After these steps are completed, the
computation module of TEE can now access the decrypted
data of message 5 and process them with the operation

250

TCTKuserKuser
P
u URInKUTKopdata P

TC
,},{,},,,{

userUdataofloc ,__

userUdataofloc ,__

STSTCTKuserKuser
P
u UURInKUTKopdata P

TC
,,},{,},,,{

userTK
Udata P

u
,}{

P
uTK

data}{

Trusted SaaS System

SaaS Client TC

STS SCS

SSS

1.

2. 3.

4. 5.

6.

7. 8.

9. 10.

11.

12.

p
TC

P
SCS

P
TEE TKTKSCSTKuser nnK }},},{{{

userTK
Urescomp P

u
,}_{

resopstr __

Kusernresop },_{

Kusernresop },_{

P
TC

p
SCS

P
TC TKTKSCSTKuser SCSnTEEnK },},,},{{{

Figure 6. Data Process

that the message 5 requires. The result of computation
module is encrypted by the encryption module with the
user’s public trusted key decrypted from message 5, and sent
to SSS within message 9. The SSS stores this computation
result according to the user identifier within message 9,
and responds the operation result to SCS. Finally, the SCS
returns the encrypted computation result to the SaaS client
via STS with message 11 and 12.

IV. CONCLUSION AND FUTURE WORK

In this paper, we argue that SaaS users’ concerns about the
confidentiality and integrity of their data and computations
are the number one factor blocking the wide adoption of
SaaS. We present the design of a trusted SaaS platform(TSP)
that enforces SaaS providers to provide a trusted execution
environment(TEE), in which the confidentiality and integrity
of SaaS users’ data and computation are guaranteed. We
are implementing a fully functional prototype based on our
design currently and plan to evaluate its performance in the
near future.

REFERENCES

[1] A. Konary, S. Graham, and L. Seymour, “The future of soft-
ware licensing: Software licensing under siege,” International
Data Corporation, White Paper, Mar. 2004.

[2] Ellram and L. M, “Total cost of ownership: an analysis
approach for purchasing,” International Journal of Physical
Distribution and Logistics Management, vol. 25, no. 8, pp.
4–23, 1995.

[3] D. C. Chou and A. Y. Chou, “Software as a Service (SaaS)
as an outsourcing model: An economic analysis,” in Proc.
SWDSI’08, Houston, Texas, USA, Mar. 2008, pp. 386–391.

[4] B. R. Kandukuri, R. P. V., and A. Rakshit, “Cloud security
issues,” in Proc. the 2009 IEEE International Conference on
Services Computing, Bangalore, India, Sep. 2009, pp. 517–
520.

[5] T. Espiner. (2009, Nov.) Google: Data is
more secure in the cloud. [Online]. Available:
http://news.zdnet.co.uk/security/0,1000000189,39854667,00.htm

[6] J. Mann. (2009, Mar.) Google Docs deals with security issue.
[Online]. Available: http://www.techspot.com/news/33839-
google-docs-deals-with-security-issue.html

[7] F. Chong, G. Carraro, and R. Wolter. (2006,
Jun.) Multi-tenant data architecture. [Online]. Available:
http://msdn.microsoft.com/en-us/library/aa479086.aspx

[8] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data
storage security in cloud computing,” in Proc. IWQoS’09,
Charleston, South Carolina, USA, 2009.

[9] A. Sahai, “Computing on encrypted data,” in Proc. ICISS
2008, Hyderabad, India, Dec. 2008, pp. 148–153.

[10] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh,
“Terra: A virtual machine-based platform for trusted comput-
ing,” in Proc. SOSP’03, 2003.

[11] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia, “Above the
clouds: A berkeley view of cloud computing,” EECS
Department, University of California, Berkeley, Technical
Report UCB/EECS-2009-28, Feb. 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html

[12] L. Youseff, M. Butrico, and D. D. Silva, “Toward a unified
ontology of cloud computing,” in Proc. Grid Computing En-
vironments Workshop on Supercomputing Conference(SC’08),
Austin, Texas, USA, Nov. 2008, pp. 1–10.

[13] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards
trusted cloud computing,” in Proc. HotCloud’09, San Diego,
CA, USA, Jun. 2009.

[14] T. Dierks and C. Allen, “The TLS protocol,” Internet
Engineering Task Force, RFC 2246, Jan. 1999. [Online].
Available: http://www.ietf.org/rfc/rfc2246.txt

[15] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “Eucalyptus: A technical
report on an elastic utility computing architecture linking
your programs to useful systems,” UCSB Computer Science,
Technical Report 2008-10, 2008.

[16] (2009) The TCG website. [Online]. Available:
https://www.trustedcomputinggroup.org

[17] D. G. Murray, D. G. Murray, and S. Hand, “Improving xen
security through disaggregation,” in Proc. VEE’08, New York,
NY, USA, 2008, pp. 151–160.

[18] E. Guttman, L. Leong, and G. Malkin, “Users’
security handbook,” Internet Engineering Task Force,
RFC 2504, Feb. 1999. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2504.txt

251

