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Biometric Verification Using Thermal
Images of Palm-Dorsa Vein Patterns

Chih-Lung Lin and Kuo-Chin Fan, Member, IEEE

Abstract—A novel approach to personal verification using the
thermal images of palm-dorsa vein patterns is presented in this
paper. The characteristics of the proposed method are that no
prior knowledge about the objects is necessary and the parameters
can be set automatically. In our work, an infrared (IR) camera is
adopted as the input device to capture the thermal images of the
palm-dorsa. In the proposed approach, two of the finger webs are
automatically selected as the datum points to define the region of
interest (ROI) on the thermal images. Within each ROI, feature
points of the vein patterns (FPVPs) are extracted by modifying
the basic tool of watershed transformation based on the properties
of thermal images. According to the heat conduction law (the
Fourier law), multiple features can be extracted from each FPVP
for verification. Multiresolution representations of images with
FPVPs are obtained using multiple multiresolution filters (MRFs)
that extract the dominant points by filtering miscellaneous features
for each FPVP. A hierarchical integrating function is then applied
to integrate multiple features and multiresolution representations.
The former is integrated by an inter-to-intra personal variation
ratio and the latter is integrated by a positive Boolean function. We
also introduce a logical and reasonable method to select a trained
threshold for verification. Experiments were conducted using the
thermal images of palm-dorsas and the results are satisfactory
with an acceptable accuracy rate (FRR:2.3% and FAR:2.3%). The
experimental results demonstrate that our proposed approach is
valid and effective for vein-pattern verification.

Index Terms—Inter-to-intra personal variation ratio, multiple
multiresolution filters, positive Boolean function (PBF), vein-pat-
tern verification, watershed transformation.

1. INTRODUCTION

ECENTLY, personal verification has become an important
Rand high-demand technique for security access systems.
Traditional personal verification methods, such as passwords,
personal identification numbers (PINs), magnetic swipe cards,
keys, and smart cards offer only limited security and are unreli-
able. For example, cards or keys may be lost or stolen, and PINs
may be known by unauthorized persons. Fortunately, human
physiological features possess the properties, such as univer-
sality, uniqueness, permanence, collectability, acceptability, and
circumvention [1]. In order to remedy security problems in-
herent in traditional personal verification methods, biometric
verification techniques have been intensively studied and devel-
oped to improve the reliability of personal verification.

All biometric verification techniques deal with various
human physiological features including fingerprints, hand
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geometry, handwritten signatures, retinal patterns, and facial
images [1]. In addition, the use of infrared (IR) images of
biological features, such as the IR images of faces [1], [2]
and the subcutaneous vascular network of the palm-dorsum,
has also been investigated [3], [4]. Factors that may influence
the popularity, applicability and performance of biometric
verification techniques are uniqueness, repeatability, maximum
throughput, whether operable under controlled light or not,
invasiveness or noninvasiveness, immunity from forgery, suc-
cessful identification of dark-skinned subjects, false rejection
rate (FRR) and false acceptance rate (FAR), ease of use, user
cooperation, cleanliness and so on. Up to now, it is not sur-
prising that there has been no biometric verification technique
that can satisfy all these requirements [5].

In this paper, we will present a novel personal verification
method based on the vein patterns of palm-dorsa. As we know,
a vein pattern exists on the skin surface between the roots of the
five fingers and the wrist of the palm-dorsum. This pattern offers
stable, unique and repeatable features for personal identification
purposes [1].

Many verification technologies utilizing the biometric fea-
tures of the palm have been developed [6]-[14] over the past
decade. Han et al. [6] applied Sobel and morphological oper-
ators to extract the palmprint feature points from palm images.
Then, they used the template matching with normalized correla-
tion function and the backpropagation neural network to verify
the identity of persons. You et al. [7] applied the texture en-
ergy of palmprint for coarse-level identification. Feature points
were then extracted for fine-level identification. Lin et al. [8] ex-
tracted a wide line integrated profile (WLIP), a variation of the
wide line integrated profile (VWLIP), and finger width (FW)
features from finger images. The similarities of the first two fea-
tures and the dissimilarities between the third feature were mea-
sured using a correlation function and the Euclidean distance,
respectively. Verification was accomplished by a fuzzy infer-
ence engine based on the similarity/dissimilarity measures. Han
et al. [9] extracted the features of finger width, length, and the
palmprint, put these features into a principal component anal-
ysis (PCA) process to filter meaningful features, and used the
generalized learning vector quantization (GLVQ) approach to
verify the identity of persons. Jain et al. [10] extracted hand
shape features. A deformable matching technique was then ap-
plied to match the hand shapes, and a shape distance was de-
fined to evaluate the hand shape similarities. Zhang et al. [11]
transferred palmprints to line sections. They applied the datum
point-invariant characteristics and the line-matching technique
to verify palmprint features. Joshi et al. [12] utilized the medius
finger creases to generate a finger crease profile and then trans-
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formed this profile to a WLIP. They adopted a normalized cor-
relation function to determine the similarities of different per-
sons. Im et al. [13], [14] employed a CCD camera to capture
vein-pattern images. Their research focuses on implementing
fixed-point operation to improve the verification speed and re-
duce the hardware cost. Rice [3] used IR LEDs and IR-sensi-
tive photodiodes in an array as the sensor to capture the infrared
images of palm-dorsa. The images were transferred to binary
images and the vein patterns were exhibited. An exclusive OR
operator was performed on two binary images and the output
of the operator is used as a score to evaluate the similarity be-
tween the two images. Cross et al. [4] applied thermal images
of the subcutaneous vascular network of the back of the hand
for biometric identification. This technique needed an IR light
source to provide sufficient IR light within the 0.7—1.4-pm spec-
trum for a CCD camera to capture the thermal images. Finally,
they used constrained sequential correlation to match the vein
signatures.

Generally speaking, high-quality images retain detailed in-
formation of biometric features. As a consequence, the infor-
mation derived from biometric features will be richer, and the
verification rate will be higher. Thus, the high-quality images of
biometric features are a prerequisite for a high-verification-rate
system. In order to capture high-quality images and maintain
the characteristic details of biometric features, all such methods
need sufficient light sources (include visible or infrared) for cap-
turing the images. All methods are constrained by the lighting
conditions. The pattern of blood vessels is hardwired into the
body at birth and remains relatively unaffected by aging, except
for predictable growth, which is also the case with fingerprints
[1]. To overcome the drawbacks caused by inadequate lighting
conditions and maintain the verification accuracy, we develop
a reliable and robust system that relies on the vein patterns in
thermal images of the palm-dorsa taken under all lighting con-
ditions including total darkness.

The remainder of the paper is organized as follows. In
Section II, we will briefly describe the characteristics of
the equipment used in capturing the thermal images of the
palm-dorsa. The collection and establishment of the palm-dorsa
vein-pattern database is also addressed in the section. The
methods used for preprocessing and locating the region of
interest (ROI) of the palm-dorsa vein-pattern images are
presented in Section III. Section IV discusses the procedures
used in extracting the feature points of vein pattern (FPVP)
and the extraction of multiple vein-pattern features from each
FPVP. Multiresolution analysis (MRA) using multiresolution
filters (MRFs) is addressed in Section V to extract the dominant
points of each FPVP as the multiresolution representation. The
integration functions of multiple features and multiresolution
representation are discussed in Section VI to enhance the
discrimination capability. Section VII presents the scheme of
automatic selection of the training threshold for verification.
Experimental results are demonstrated in Section VIII to verify
the validity of the proposed approach. Finally, concluding
remarks are given in Section IX.

Shown in Fig. 1 is the block diagram of the proposed ap-
proach. First, the thermal images of the palm-dorsa are captured
by an IR camera as the input data. Then, a median filter is em-

ployed to process the thermal images to remove noise. The four
finger-web locations are found and the square ROI is obtained
based on the extracted second and fourth finger webs. Next, ac-
cording to the characteristics of thermal images, FPVPs within
each ROI are extracted by modifying the basic tool of water-
shed transformation. Multiple features can thereby be extracted
from each FPVP based on the heat conduction law (the Fourier
law) for verification. Moreover, multiresolution representations
of images can also be obtained using multiple MRFs that ex-
tract the dominant points by filtering miscellaneous features for
each FPVP. A hierarchical integrating function is then applied to
integrate multiple features and multiresolution representations.
The former is integrated by an inter-to-intra personal variation
ratio (weights) and the latter is integrated by a positive Boolean
function (PBF). A logical and reasonable method is introduced
to select a trained threshold for verification. Generally speaking,
there are two main stages in the proposed approach. One is the
enrollment stage that constructs the template library. The other
is the verification stage in which the identity of the test samples
is verified.

II. THERMAL IMAGES COLLECTION

To utilize vein patterns for verification, we must consider a
very important issue, which is how to obtain the vein-pattern
images. The vein pattern on the palm-dorsum is not easy to ob-
serve in visible light. Skin surface features [15], such as moles,
warts, scars, pigmentation, and hair usually cover the vein pat-
tern. In addition, subcutaneous fat and hand gesturing may also
obscure the visibility of the vein pattern. Fortunately, the vein
differs in temperature from the surrounding skin and the skin
possesses a temperature gradient. Based on these two properties
and the well-known heat radiation law, the Stefan-Boltzmann
law, thermal images of the vein patterns can be generated as
follows:

W=e¢-0-T* 00

where W is the radiant emittance (W/cm?), e is
the emissivity, o is the Stefan-Boltzmann constant
(=2 5.6705 x 1072 W/cm? K*), and T is the tempera-
ture (K) of the object surface. For human skin, ¢ is estimated
to be 0.98 to 0.99 [16]. The greatest intensity of IR radiation
emitted by the human body is about 10 mW /cm? in the range
of 3—14 pm [17], which is dependent on the emissivity of the
skin, the skin temperature, the air molecules, the humidity of
the air, and the distance between the IR camera and the object.
The well-known Planck curve, shown in Fig. 2, illustrates
the relationship between the spectrum radiant emittance and
the wavelength [18]. The IR transmission spectra for the
atmosphere are 3-5 and 8-14 pm, as shown in Fig. 3 [19],
which means that the radiant emittance of the IR spectrum at
3-5 and 8-14 pm possesses only minimum attenuation in the
atmosphere. By analyzing (1), o is a constant and ¢ is also
a constant for individuals. The IR detector is packaged in a
Dewar flask at the back of the lens. It does not come directly
into contact with the air, so the influence of convection can
be ignored. The temperature 7" of the skin surface is the only
variable which dominates the W that significantly affects the
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Fig. 1. Block diagram of the proposed approach.
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Fig. 2. Planck curve: spectrum radiant emittance versus wavelength.

thermal image contrast and quality. If the sensitive spectrum of
an IR camera is 3-5 or 8-14 pm, the captured thermal images
will be absolutely independent of visible light which is with
a spectrum at 0.4—0.7 pum. Thus, the effects of unwanted skin
surface features caused by visible light can be avoided to reduce
the complexity of thermal images. In addition, the thermal
images are robust under a wide range of lighting conditions.
Thermal images of the palm-dorsa exhibit high contrast and are
easily processed for verification, as shown in Fig. 4. However,
there are still some factors that will affect the distinctiveness of
the vein pattern, such as the thickness of the skin, the degree of
venous engorgement, the condition of the vein walls, and the
nearness of the vein to the surface [20].

The IR camera applied to capture thermal images was an In-
fraCam that is produced by the Inframetrics Corp. The specifi-
cations of InfraCam are described as follows:

Detector: PtSi 256 x 256 element FPA
IR wavelength: 3.4-5 ym



202 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 2, FEBRUARY 2004

Wavenumber icml)

5000 2000 1250 1000 333
100 -
30— u Midwave Window |
\ s (3-5um jw.f"*\/"“,_\

8

T
2
_

Tranamiltunce (%)

© I : M ” i Long Wave Window
L \ {814 um) 7
L
9 | I [ 1 / : : ’ A
0 i 2 J + 3 5 3 9 10 N 12 3 14 15
Wavelength (um)
r AdA M LY 1) ) Iy . A “u A 4 1
HEER| . . i { | i
92— 420 [>e7) M0 207 ~0y 420 <0, olo7
H20 20 9%

Absorbing Molecule

Fig. 3.

IR transmission spectrum of the atmosphere for a 1.8-km horizontal path at sea level with 40% relative humidity.
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Fig. 4. Thermal images captured from four different palm-dorsa: (al—a4), (b1-b4), (c1-c4), and (d1-d4).

NETD: 0.07 °C at 23 °C ambient temperature.
FOV: 8° x 7°.

MRT: 0.05 °C at 0.5 cycle/mrad.

Output: RS-170 TV format.

The IR camera outputs an analog image signal. Since
computers do not accept analog signals, a frame grabber is
needed to capture the thermal images for computer processing.
The thermal image was digitized into 640 x 480 pixels with
a grayscale resolution of 8 b per pixel. In order to verify the
validity of the proposed approach, 960 thermal images of
palm-dorsa are collected as the database in our study. They

were captured from 32 volunteers, with 30 thermal images of
each volunteer. The volunteers include three female and 29
male adults. To obtain high verification accuracy, it is important
to construct an objective verification database. Therefore, we
captured thermal images at three different times with each at
an interval of at least one week. A total of 10 thermal images
were acquired each time. In addition, the thermal images were
captured under random light conditions, even in a dark environ-
ment without any light source. Thus, the database includes the
variations of thermal images under various conditions. Each
thermal image has a size of 640 x 480 and 256 gray levels.



LIN AND FAN: BIOMETRIC VERIFICATION USING THERMAL IMAGES OF PALM-DORSA VEIN PATTERNS 203

III. PREPROCESSING AND EXTRACTION OF THE ROI

As shown in Fig. 4, thermal images with little noise were
captured by the IR camera. The familiar median filter can be
effectively utilized to reduce noise.

To increase the verification accuracy and reliability, the fea-
tures of vein patterns extracted from the same region in different
thermal images of the palm-dorsa are compared for verification.
The region to be extracted is known as the ROI. For this reason,
it is important to fix the ROI to be in the same position in dif-
ferent palm-dorsum images to ensure the stability of the prin-
cipal extracted vein features. It also has significant influence
on the accuracy of verification. However, it is difficult to fix
the ROI at the same position in different palm-dorsum images
without using a docking device to constrain the palm position. In
our previous work [21], we selected the second and fourth finger
webs as the datum points to define the ROI. The two finger webs
can substitute for docking devices and determine the approxi-
mate (not absolute) immovable ROI, thus reducing the displace-
ment of the ROI to an acceptable range in palm-dorsum thermal
images. The procedures are stated as follows.

Step 1) Adopt the mode method in [22] to automatically de-
termine the threshold for the segmentation of the
palm region.

Use the inner border tracing algorithm [22] to find
the palm border.

Locate the middle point of the intersection line that
is formed by the wrist and the bottom margin of the
thermal image of the palm-dorsum.

Compute the Euclidean distance between each
border pixel and the wrist middle point. These
distances are adopted to construct a distance distri-
bution diagram whose shape is quite similar to the
geometric shape of a palm.

Apply wavelet transformation to determine the four
local minimums of the distance distribution diagram.
They are the locations of the four finger webs.
Select the second and fourth finger webs as the
datum points to define a square ROL.

Step 2)

Step 3)

Step 4)

Step 5)

Step 6)

The details of the procedures can be found in [21]. Fig. 5 demon-
strates the flowchart and illustrative example to show the pro-
cedures of how to determine the ROI. The ROIs extracted from
different images of the same palm-dorsum are shown in Fig. 6.
They cover almost the same region in different images captured
from the same palm-dorsum.

IV. FEATURE POINTS AND MULTIPLE FEATURES EXTRACTION

Biometric verification based on a single feature does not yield
a very low error rate. In order to further reduce the error rate,
many researchers have turned their attention to the use of mul-
tifeature verification. Several interesting references in the liter-
ature [23]-[25] discussing this topic have been published and
good results have been achieved. In this paper, we also extract
multiple features to decrease the verification error rate.

The first law as stated in (1) reveals that the temperature T’
of the skin surface is the only variable which dominates the

contrast and quality of thermal images. Moreover, heat conduc-
tion affects the temperature distribution on the skin surface. Ac-
cording to the Fourier law

dr
Qu=—kA (W) @

where (); is the rate of heat flow through area A in the posi-
tive [ direction, and constant k is the thermal conductivity of the
material, the temperature gradient will vary over the same ob-
ject surface. The temperature gradient direction changes slowly
from high to low. This heat conduction law (2) means that the
rate of heat flow due to conduction in a given direction is propor-
tional to the area and the temperature gradient in that direction.

A. Feature Points Extraction

A healthy person free of fever or inflammation will have a
steady temperature state, which means that the rate of heat flow
Q; is constant. The composition of the skin varies slightly, and
this variation can be ignored. Thus, the thermal conductivity &k
is constant for an individual. The skin thickness for the same
palm-dorsum does not vary over a short time. Hence, the area
A can also be assumed to be constant. The temperature gradient
and gradient direction can therefore be determined by the tem-
perature 7" and the distance /. Based on the Stefan—Boltzmann
law, the temperature 71" of the skin surface dominates the ra-
diation emittance W. The IR camera will exhibit the received
radiation emittance as the gray values in the thermal images.
Thus, the skin surface temperature 7' significantly dominates
the thermal image quality. The effects of unwanted skin surface
features caused by visible light can now be avoided to reduce
the complexity of the thermal images. The thermal images are
also robust under a wide range of lighting conditions. In prin-
ciple, the temperature varies smoothly over the same object sur-
face, except for heat-insulating materials, which means that the
temperature gradient is not large, especially for poor heat-insu-
lating materials. The human body consists of about 70%—-75%
water and can thus be treated as a poor heat insulator because
water is a poor heat insulator. By observing the thermal images
of the palm-dorsa, we note that the gray level of the thermal
images changes smoothly from a high to low temperature, as
shown in Fig. 7(a). This means that the temperature gradient
in the thermal images also changes smoothly. This observation
conforms to the Fourier law that the magnitude of the tempera-
ture gradient is small. According to the observation, the familiar
edge detectors based on gradient magnitudes, such as wavelet
transformations, gradient operators, and Laplacian and morpho-
logical operators, cannot effectively extract the FPVPs from
palm-dorsum thermal images. In addition, the feature points ex-
tracted from vein patterns by edge detectors are located at the
edges of the veins, not at their actual locations. The FPVPs ex-
tracted via wavelet transformation with Daubechies 1 (dbl) are
shown in Fig. 7(b). In the figure, the feature points are superim-
posed on the corresponding ROI, which demonstrates that the
feature points extracted by wavelet transformation are located
at the edges of veins. By analyzing thermal images, the gray
value of the veins is higher than that of the surrounding skin
under normal conditions. Based on this analysis, we modify the
basic tool for watershed transformation [26] in order to extract
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Flowchart and illustrative figures to show the procedures of how to determine the ROI. (a) The flowchart of how to determine the ROI. (b) The original

thermal image of the palm-dorsum. (c) The palm region is segmented by the mode method and transferred to binary image. (d) The palm border pixels (white
points) are extracted by the inner border tracing algorithm. They are superimposed to the palm image to demonstrate that they match the palm region very well.
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the FPVPs more effectively. The basic tool for watershed trans-
formation is called the region maximum in [26], which can se-
lect pixels with a high gray value within a region as the candi-
dates for watershed points. Here, the region maximum method
is applied to extract the FPVPs, with two extra restrictions being
added. One is that the pixel with a high regional maximum value
is also the central point of the region. Another is that its gray
value must be larger than the mean of the pixel value inside the
region. The modified basic tool for watershed transformation
is called the modified region maximum which can be stated as
follows.
1) Function f:Z% — Z where f(z,y) is the gray value of
pixel (z,y).
2) The topographic surface S is the set of all pixels
{(zi,9), fi(zi,v:)} belonging to Z% — Z.
3) A path Dbetween  s1((x1,91), f(215,91)) and
s2((z2,y2), f(z2,y2)) is any sequence {s;} of S
with s; adjacent to s;41. S, is the region surrounding s;
4 M = {Sz| Y s;, S5 € Syi,if @ 7£J — fz > fj where fz is
the center of S,; and f; is larger than the mean of S,.;}.

5) The set M of all the regional maxima for f contains the
feature points that compose the vein patterns.

The images that only include FPVPs are named feature point
images (FPIs). Fig. 8 shows the FPIs superimposed on the cor-
responding original ROISs to confirm the location of FPVPs and
vein patterns. The white points in Fig. 8 represent the FPVPs.
These results demonstrate that this algorithm can efficiently ex-
tract FPVPs such that the verification rate based on the FPVPs
is improved.

B. Multiple Features Extraction

Once the FPVPs have been correctly determined, intuitively,
the feature number of the FPVPs inside the FPI will be larger, so
the verification rate will be higher. It is very important to select
the features representing the FPVPs. Based on the Fourier law,
the FPVP locations, gray values of the FPVPs, and the distance
between the FPVPs determine the temperature gradient and the
gradient direction. Therefore, the = and y coordinates, the gray
values, the temperature gradient, and the gradient direction of
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Fig. 6. ROIs extracted from different images in Fig. 4. They cover almost the same regions in different images of the same palm-dorsum.

the FPVPs are selected as the features. The feature vector is
denoted as FV and is given as follows:

FV(z,y)=[z y I G 8 FPy] 3)

where 2 and y are the coordinates, I = f(z,y) is the gray
value, G = [(9f/0x)% + (0f /9y)?]*/? is the temperature gra-
dient, § = tan—1[(0f/9y)/(df/Oz)] is the gradient direction,
and FPy is the FPVP’s number. If (z,y) is an FPVP, then
FPn(z,y) = 1, otherwise, FPny(x,y) = 0 in the FPIs.

V. MULTIRESOLUTION ANALYSIS AND MULTIRESOLUTION
REPRESENTATION

As we know, it is difficult to analyze the information con-
tent of an image merely from the gray-level intensity of the
image. Local variations of the image intensity are more impor-
tant. A multiresolution representation provides a simple hier-
archical framework for interpreting image information [27]. At
different resolutions, the information about an image generally
represents different physical structures in the image. Many pa-
pers [7], [28]-[30] have discussed the application of multireso-
lution representations in image analysis.

Although the ROI has been carefully located according to the
finger webs, it still cannot ensure that the ROI will always be
located in the same position in different palm-dorsum thermal
images. To resolve this problem, MRA is applied to decompose
the FPI into multiscale FPIs, which we call subFPIs in the fol-
lowing discussion. The finer resolution is similar to watching a
nearby object which possesses detailed information. It is sen-
sitive to disturbances and noise. On the other hand, a coarser
resolution is similar to watching a far object which possesses
gross information. It is less sensitive to disturbances and noise.
Thus, the effects of ROI displacements in different thermal im-
ages can be reduced to a more acceptable degree in low-resolu-
tion images.

Many MRFs have been presented in the literature. They can
be categorized into two groups [28]: linear filters and nonlinear
filters. Linear filters were developed long ago which include
Gaussian filters, Fourier transformations, and wavelet transfor-
mations. Recently, nonlinear filters have become popular for
morphological operators. Both are used for analyzing the single
feature, gray levels, of images. In addition, they directly discard
the pixels while down sampling. If the discarded pixels happen
to be feature points, this will unfortunately result in the loss of
the significant information about the biometric features at the
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(b)

Fig. 7. (a) The temperature distribution shows that the temperature of thermal
images varies smoothly. (b) Feature points (white points) extracted by wavelet
transformation superimposed on the corresponding ROI show that they are
located at the edges of the vein patterns and are unstable.

next-level resolution. To remedy this problem, we propose a
novel approach to the MRA of FPIs using multiple MRFs.
Multiple features of FPVPs are extracted which possess dif-
ferent properties. While decomposing the FPI to the next level
resolution, a single MRF cannot preserve all of the properties
of the multiple features of each FPVP. Some information about
the multiple features may be lost or decreased. In this paper,
we propose the use of multiple MRFs to retain the properties
of multiple features of the FPVPs at the next-level resolution
while decomposing the FPIs. First, a novel MRF called a mo-
ment filter is employed. The moment is a well-known parameter
that has been extensively applied to represent the features of ob-
jects in image processing. We apply it as an MRF to construct
multiscale FPIs with the moments of intensity, gradient, and di-
rection features and call it the moment filter in the following dis-
cussion. The moment filter can preserve the information about
these three features of the FPVPs in FPIs while simultaneously
reducing the resolution. However, it cannot attain this effective-
ness for the x and y coordinates and the FP . Another MRF is
needed to maintain the coordinate and FP y information while
reducing the FPI resolution. The second MRF is called a mean
filter which computes the means of the z and y coordinate as
representation for the next-level resolution. The mean filter pre-
serves the locational information about FPVPs well. In addition,
the number of feature points inside a local window is very im-
portant information which describes the significance of the vein

pattern inside a local window. Since moment and mean filters
are unsuitable for the F'Py, we propose using another MRF to
count the FP y inside the local square windows for representa-
tion of the next-level resolution, and we call it the counter filter.
The three MRFs are described in Sections V-A—C.

A. Moment Filter

MDP{"™™ (p, q) = mom™ (FPVP,, (2, ;)
i€ {1,2,...,2m x 2"} (4)

where MDPgm’")(p,q) represents the nth moments of I

at the mth level resolution whose coordinates are p and g,

and FPVP,,(z;,y;) indicates the FPVPs inside a 2 m x 2

m window for the FPVP (z,y) in the original FPIs. In the

same manner, MDP /" (p, ¢) and MDP#™"(p, q) are the nth

moments of G and # at the mth level resolution, respectively.
The moment operator mom( ft) can be expressed as

mom"(ft) =Y > (e —2)*(y—9) ft(z,y)  (5)

where ft(z,y) represents the feature intensity, n = (k + () is
the nth-order moment, and 2 and y are the mean values of the
« and y coordinates, respectively.

B. Mean Filter

Mx (p7 q)(m) = mean(FPVPw (xh yi))?
i€ {1,2,...,2"x 2™} (6)

where M..(p,q)™ is the mean value of the x; coordinates of
FPVP,,(z;,y;) inside a 2 x 2 m? window in the original FPIs,
and M, (p, )™ represents the mean value of the y; coordinates.

C. Count Filter

C](cm) (p, q) = count(FPVP(z;,vy;)),
i€ {1,2,...,2™ x 2™} %)

where C'f™(p, q) is the number of FPVP,,(z;,y;) inside the
2™ x 2™ windows and represents the number of FPVPs at the
mth-level resolution.

Multiple MRFs, such as moment, mean, and counter filters,
are utilized to process the original FPIs and to generate mul-
tiresolution representations. Each feature point in a multires-
olution representation of an FPI possesses information about
the number, location, intensity, gradient, and gradient direction
of the FPVPs and includes the information about neighboring
FPVPs at the last level resolution; these are called the domi-
nant points in the following discussion. They can also help to re-
duce the data amount of template and decrease the computation
load. For example, the dominant point can reduce 256 x 256 to
32 % 32,16 x 16 and 8 x 8 at the third, fourth, and fifth levels,
respectively. Multiple MRFs can extract the dominant points
from the FPIs and construct the following new-resolution FPIs.
In this paper, each original FPI is decomposed independently by



LIN AND FAN: BIOMETRIC VERIFICATION USING THERMAL IMAGES OF PALM-DORSA VEIN PATTERNS 207

(a4)

Fig. 8.
points) and the vein patterns.

the multiple MRFs into three resolutions with dominant points
at the third, fourth, and fifth levels, called subFPI3, subFPIy,
and subFPI5, respectively. Fig. 9 shows the multiple features of
dominant points at the third, fourth, and fifth levels that are ob-
tained by applying multiple MRFs to filter the FPI of Fig. 8(a2).

VI. DESIGN OF AN INTEGRATION FUNCTION
A. Integration Function for Multiple Features

In principle, if the number of features is larger, the informa-
tion representing the object will be more. If the features are
combined with a suitable method, the verification rate can be
improved. Many literatures [23]-[25] have introduced multifea-
ture applications to improve the accuracy of biometrics verifi-
cations. In this paper, we also extract multiple features from the
FPVPs to increase the verification rate.

A crucial challenge for increasing the verification rate with
multiple features is how to combine multiple features to obtain
the maximum effect. Neural networks [25], [31]-[33] and fuzzy
inference [8], [34] are the most familiar solutions for combining

FPIs generated from the ROIs in Fig. 4. They are superimposed on the corresponding ROIs to demonstrate the consistency between the FPVPs (white

multiple features. Their validity for multifeature verification has
been proven. In this paper, we adopt the properties of individual
feature to combine multiple features. The properties are interob-
ject distinctions and intraobject similarities. Therefore, we se-
lect weights based on these properties to combine the multiple
features.

The weights should reflect the relative discriminating power
of each feature. How to integrate multiple features is an issue in
multifeature verification. One very difficult but important task
is to determine an optimal weight for each feature. In order to
achieve a high verification rate, the samples must possess dis-
tinctions between the inter-objects and similarities between the
intra-objects. Thus, we adopt the inter-to-intra personal varia-
tion ratio of training samples to predict the efficacy of a fea-
ture representation for verification [29]. The applying of the
inter-to-intra personal variation ratio WT' as a weight matrix
when integrating multiple features is defined as (see details in
[35]) follows:

M)

wT™ :tr(C’m(m) Cm

intra—1

®)
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V

(al) (a2) (a3)

(b1 (b2) (©3)
£ M -
(¢ (c2) (c3)

(ad) (a5) (a6)
(b4) (b5) (b6)

(c4) (c5) (c6)

Fig. 9. Multiple features of dominant points at the third, fourth, and fifth levels that are obtained by applying multiple MRFs to filter the FPI of Fig. 8(a2).
These figures are normalized in gray-level and magnified in scale for easy observation. (al)—(a6) represent the features, # mean, y mean, I moment, G moment,
6 moment, and FP 5 count in the third level, respectively. Similarly, (b1)-(b6) and (c1)—(c6) show the filtered multiple features in the fourth and fifth levels,

respectively.

omi), = ((pPy - oP™)
x (DP§" - W@)T) o
Cmi), = ((WE’") _ ﬁgm))
X (Wf;m) - W(m))T> 10
where m represents the mth resolution, Cmiy, . is the

average intrapersonal covariance matrix of multiple fea-
tures of the dominant points at the mth resolution,
CmD,.. 1is the interpersonal covariance matrix of mul-
tiple features of the dominant points at the mth resolution,
wrm = [wth wt(m) t(m) t(m)] , and nl is the
number of palm-dorsa in the database DP denotes the domi-
nant points at the mth resolution of the jth thermal image of the
sth palm-dorsum, and ng) and W(m
ersonal and overall means of the dominant points DP(m)

(™) 6 be the normalization of wt(m)
is the weight vector of the sth palm-dorsum. Thus, |wtn
and wtn( ) _ = wi™ qgm) w(m)wém) (m) (™) ],

™ ) ) (y 2 o0 o

wy ,w; , wg ~, wd™, and wy,, are the weights of z, vy,
I, G, 0 and FPy, respectively. Each palm-dorsum has an
individual weight vector based on the properties of its multiple
features.

The integrated value IVDEm) of the multiple features of the
dominant points of the ith palm-dorsum at the mth resolution
can be expressed as follows:

) represent the intrap-
If we
then wtn(m)

=1
wl™

assume win;

(1)

normalized  weight vector
of the +4th palm-dorsum at the mth resolution,
and  DV;m(p, q) = (M. (p, 0)™ My (p, )™
MDP7""(p, ) MDPZ" (p,q) MDPO™"(p,q) Cf"(p,q)]

IVD{™ = DV{™ x win{™7T

where  win® is the

is the feature vector of the dominant points of the ith
palm-dorsum at the mth resolution.

B. Integration Function for MRA

A great deal of research has been conducted on MRA of im-
ages. Similar to multiple features application, MRA can produce
more information than was available in the original images. The
same question arises of how to integrate the multiresolution rep-
resentations obtained by MRA. Many published papers have in-
tegrated MRA with neural networks [29], [31] and yielded good
results. Here, we propose a novel approach, the PBF, to integrate
the multiresolution representations of the palm-dorsum thermal
images generated by MRA.

The PBF has been successfully applied to the analysis of stack
filter. Each stack filter corresponds to a PBF. There are many
familiar types of stack filters that have been developed. They in-
clude median filters, weighted median filters, order statistic fil-
ters, weighted order median filters, and so on. A great amount of
the literature has focused on their main application in image and
signal processing, such as edge detection [36]—[38] and noise
removal [39].

The main advantage of the PBF is that it is possible to design
the optimal filter for reducing a variety of noise distributions and
preserve the edge information or image detail. A PBF can be
designed with only a few positive training samples or even one
positive sample. Another crucial advantage is that the PBF can
be realized in parallel very large scale integration for real-time
application. There are two merits of applying the PBF to inte-
grate MRA. First, it can alleviate the disadvantage of the MRA
approach, which is that a relatively complex decision rule must
be synthesized [29]. Second, we can avoid the shortcoming of
relying on neural networks to integrate MRA that needs abun-
dant positive and negative training samples [6], [25], [31], [32].
In this paper, we adopt PBFs to combine the MRA based on
its need for few positive training samples, noise removal, and
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Fig. 10. Threshold decomposition and stacking properties of stack filters. The multilevel stack filter Sy, is specified by the PBF f (w1, @2,73) = 21202+ 2103+
22 23. The input multilevel signal X is thresholded into binary signals. The binary filter operation defined by the PBF is performed on all binary thresholded signals.
The result of multilevel stack filtering can be obtained by summing up all of the binary filter outputs. The stacking property of thresholded binary signals is preserved

after the binary filtering of a PBF.

the capability of preserving image details. The template sam-
ples can be regarded as the original signals or images. Positive
training samples and positive testing samples can be treated as
noisy original signals which will closely approximate the orig-
inal signals if processed by the PBF. The PBF can reduce the dif-
ferences caused by noise and maintain the same major vein-pat-
tern structures between noisy images and the original images
captured from the same palm-dorsum. On the other hand, it may
also decrease the noise in different images but not be that signifi-
cant in dominant vein-pattern structures of different palm-dorsa.

The PBF possesses two well-known important properties.
One is the threshold decomposition property, and the other is
the stacking property. These two properties can be succinctly
and obviously demonstrated by the example [40] shown in
Fig. 10. The first is the threshold decomposition property. The
multilevel stack filter can be realized by operating a PBF on
thresholded binary images due to the threshold decomposition

property

1./ Tr; 2 k
Thk(fl?i) = {O7 ; < k (12)
M-1
S(X) =) S[TH(X)] (13)
k=1
where Th is the threshold function, X = {z1,z2,...,2,} is

a grayscale vector with length n, Thy(z;) is the element x;
of the X thresholded at threshold level k&, S is a filter with
the threshold decomposition property, Thi(X) is the thresh-
olded binary vector with threshold level k, and S[Thy(X)] is
the output of the filter S operating on a binary vector Th(X)

The second is the stacking property. The stacking property is
sufficient to ensure that stack filters have the threshold decom-
position property. The reason is that stack filters can be specified
by PBFs and operated as a combination of local min and max
operations [41] as follows:

S(P) > S(Q) whenever p > Q

where P = (Py, Py,... P,) and Q = (Q1,Q2, ... Q) are two
multilevel vectors.

The procedures for designing an optimal stack filter are de-
scribed as follows [40].

Step 1) Generate a Hasse diagram with 2" vertices, where n
is the window size of the stack filter.

Estimate the cost coefficient of each vertex ac-
cording to the statistical measurement between
the template samples and the training samples. A
fast algorithm for computing the cost function is
described in detail in [42]. Let b = (z1,...,2,) be
an input window vector, z is the desired output of
the filter for input vector b, M is the largest gray
level of the input signal, n is the window size, and
Tem(z) is the thresholded binary vector of z at
threshold level &,

Step 2)

a) Sort the n elements of input vector b
and the desired output z. The ordered
n + 1 elements are put into a vector
K[?’L + 1] = {k17]€27...,k‘n+1}, where
ki <k <o < kpya.

b) The cost coefficient can be computed by
C(Tem(2), Tem (b)) = km — km—1, for
m = 1 ton + 1, where the initial conditions
are ko = 0 and C(0,0) = M — k.

c) As the window slips through the entire signal,
the cost coefficient of an input vector b can be
defined by the cost (b) = C(0,b) — C(0,b),
where C(0, b) is estimated by the number of
occurrences of an input vector b which ap-
pears in the observed signal when the desired
output of its vector is 0. Likewise, C(1,b) is
estimated by the number of occurrences of an
input vector b which appears in the observed
signal when the desired output of its vector
is 1.
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Step 3) An efficient algorithm to find the optimal onset
under the mean absolute error (MAE) criterion has
been developed by Lee and Fan [40]. The mean
absolute error (MAE) is defined as the mean abso-
lute difference between the desired signal Z and the
output of a stack filter with the observed signal X
serving as the input

MAE(Sp) = ElIZ - Sp (X)), (14)
where Sy, is a stack filter, fb is the PBF that defines the Boolean
algebra of the stack filter.

In this way, the optimal onset can be found and the corre-
sponding PBF can be easily determined. The applying of PBFs
in combining the MRA has a special property that does not need
negative training samples to train (design) the PBF for each
person. Thus, the number of necessary training samples can be
reduced and the training time can thereby be decreased.

In order to implement PBF to filter three different di-
mensional sub-FPIs (subFPI3, subFPI; and subFPI5) of a
palm-dorsum thermal image, we reshape each two-dimensional
sub-FPI to a one-dimensional row and join them together in
one concatenate row vector. The row vector represents each
palm-dorsum thermal image which can be seen as a signal
vector and filtered by the corresponding trained PBF. Then,
compute the MAE between the output of PBF and the desired
signal vector that represents the template thermal image. The
MAE can be utilized as a criterion to judge whether the test
sample is accepted or rejected.

VII. SELECTING THE TRAINED THRESHOLD

As we know, image segmentation is a very important task in
image processing. The threshold significantly affects the perfor-
mance of image segmentation. Abundant research has been con-
ducted on the method of threshold selection for image segmen-
tation over the past decade. However, no one work elaborately
considers a threshold selection method for verifications, even
when the threshold significantly affects the verification results.

It does not matter if the outputs of the verification algorithm
are similarities or distinctions between objects. Threshold se-
lection requires a preset value to help discriminate the verifying
object from the database. Hence, the threshold will influence
the verification rate significantly. The selection of an optimal
threshold to achieve a high verification rate is a very important
but difficult task. In this paper, we propose a novel method to
determine a near-to-optimal threshold to achieve a near-to-op-
timal verification rate.

The well-known statistical pair, the false rejection rate (FRR)
and the false acceptance rate (FAR), is usually adopted to eval-
uate the verification performance. In our method, we also adopt
them to determine the threshold. In the verification experiment,
an FAR and an FRR based on positive and negative training sam-
ples are computed. The distinction or similarity threshold is set
to be R. Shown in Fig. 11(a) are the FAR and FRR with var-
ious thresholds 2. By observing Fig. 11(a), it is easy to find that
the experimental results at the cross-over point of the FAR and
FRR curves indicate the minimum verification error. We then
select a threshold according to the minimum error in Fig. 11(a)
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Fig. 11. (a) Selecting a trained threshold. Minimum error = 3.75% with
threshold = 0.58 (near-to-optimal threshold). (b) Experimental results.
Minimum error = 2.3% with threshold of 0.59; FRR is 1.5% and FAR is 3.5%
with a near-to-optimal threshold of 0.58.

to verify the testing samples. The threshold is named near-to-op-
timal threshold which is selected as follows:

ERR(R) = max{FAR(R), FRR(R)} (15)
ERRyyn = min{ERR(R)} (16)
Rno = {R|ERR(R) = ERRmin} (17)

where FAR(R) and FRR(R) are the error functions of FAR
and FRR with the threshold R, respectively. ERR ,;;, is the min-
imum error rate at the crossover point. R, is the threshold at
the crossover point that is the near-to-optimal threshold which
generates the minimum error rate based on the training samples.

A near-to-optimal threshold is selected based on the FAR and
FRR curves. It is not guaranteed that a minimum error rate can
be achieved for the testing samples. However, a near-to-min-
imum error rate can be achieved. In addition, the threshold
selected by the proposed method is more logical and reasonable
than that selected by the trial-and-error or intuition methods.
It can effectively reduce the difficulties in selecting an optimal
threshold and easily obtain a compromising near-to-optimal
threshold.

VIII. EXPERIMENTAL RESULTS

In this section, experimental results are illustrated to demon-
strate the validity and efficiency of our proposed method in ver-
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ifying the thermal images of palm-dorsa vein patterns. For each
palm-dorsum in database, we use five images as template sam-
ples, five images as training samples to design PBF, five images
as training samples to select a near-to-optimal threshold, and the
other 15 images as testing samples to verify the performance of
the proposed approach. Each thermal image in the database is
transformed into an FPI according to the following procedures:
defining a square ROI, extracting FPVPs from ROIs, and se-
lecting multiple features from each FPVP. Each FPI is then de-
composed into three scales, subFPI3, subFPI,, and subFPI;,
by multiple MRFs. Their sizes are 32 x 32, 16 x 16, and 8 x 8§,
respectively. The multiple features of dominant points in these
three subFPIs are integrated with weights to obtain the inte-
grated values.

We then serialize subFPI3, subFPI,, and subFPI5 into three
row vectors and link the three row vectors to form one row
vector. The row vector represents each palm-dorsum thermal
image for verification purpose and is called the dominant point
row (DPR). Thirty DPRs of each palm-dorsum are categorized
into four groups. Likewisely, five DPRs are used for template
samples, five DPRs for PBF training samples, five DPRs for ver-
ification threshold selecting training samples, and the other 15
DPRs for testing samples.

In order to reduce the effects of noises and disturbances, the
five template DPRs are averaged to form a template of each
palm-dorsum. Then, we apply the five training DPRs to design
a PBF for each person. The designed PBF slides through each
verification threshold selecting a training DPR to generate an
output and the MAEs are computed between the five outputs
and the template. Similarly, a PBF is applied to slide through the
negative verification threshold selecting training DPRs and com-
pute the MAEs. These MAEs are used to select a near-to-optimal
verification threshold and are assembled to form a set called
MAEy 7. The FRR and FAR curves are constructed based on the
MAEy 1 with various threshold R as shown in Fig. 11(a). Then,
select the near-to-optimal threshold based on (15)—(17) to verify
the testing DPRs. Here, the selected near-to-optimal threshold is
0.58. In the same way, the testing DPRs are processed by PBE.
The MAEs between the testing DPRs and the templates can also
be computed. In order to distinguish them from MAEy 1, these
MAEs are called MAEgrs. According to MAE gt s, the FRR
and FAR curves are reconstructed as shown in Fig. 11(b). The
threshold selection method is applied again based on (15)—(17)
to determine the optimal threshold and the minimum error rate.
They are 0.59 and 2.3%, respectively. By observing the FRR and
FAR curves in Fig. 11(a), we can find that the near-to-optimal
threshold is 0.58 and the corresponding error rate is 3.75%. By
comparing the minimum error rate 2.3% and the error rate 3.75%
caused by the near-to-optimal threshold, the difference is very
small and is acceptable. The result demonstrates the validity of
the proposed method in selecting the near-to-optimal threshold.

Failure verifications do occur in some palm-dorsum thermal
images. They can be categorized into two main groups by care-
fully analyzing the failures.

1) A few palm-dorsum thermal images possess the rare
constitution with the gray value of the vein patterns being
lower than the surrounding skin as shown in Fig. 12(a).

(b)

Fig. 12.  Thermal images that result in verification failure: (a) the gray value
of the vein patterns is lower than the surrounding skin and (b) the thermal
palm-dorsum image has unobvious vein patterns.

This phenomenon will generate the extracted feature
points which do not indicate the vein patterns but skins
with high gray values. If the skins with high gray values
are stable in fixed regions, (i.e., the extracted feature
points are stable), the palm-dorsa will be correctly
verified. Otherwise, verifications may fail.

2) Most of the palm-dorsum thermal images that result
in failure verifications have unobvious vein patterns
as shown in Fig. 12(b). These may be due to thick
subcutaneous fat of the palm-dorsa. The gray values of
these images are nearly homogeneous and lack a stable
fixed region with high contrasting gray values. Similar to
group 1), it is not easy to extract the stable feature points
of vein patterns. The extracted feature points will mostly
be located at the position with high gray values and will
be unstable. If feature points do not appear in the closely
same position in the samples of the same palm-dorsum,
it will also result in the failure verification.

It is difficult to distinguish the palm-dorsa in groups 1) and
2) as mentioned above with our approach. This problem can be
alleviated by utilizing other methods to extract FPVPs, associ-
ating with other biometric features, combining other biometric
verification methods, or capturing the thermal images with an IR
camera that yields a more sensitive or wider spectrum response.
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IX. CONCLUSION

The central problem in biometric verification is to find an ef-
ficient and effective approach which can characterize biometric
features and measure the degree of similarity or distinction be-
tween two persons. In this paper, we propose a novel personal
verification method based on the vein patterns of palm-dorsa.
Unlike general biometric verification methods that need some
preset parameters, our approach can set the parameters auto-
matically. This paper demonstrates the advantages of our pro-
posed approach by devising a multiple-features scheme, MRA
with multiple MRFs, an inter-to-intra personal variation ratio,
and a PBF integrating function for vein-pattern verification. In
addition, the selection of a near-to-optimal threshold further
improves the verification rate. Based on a limited database, a
near-to-perfect verification rate is obtained.

There is still some work that requires further investigation
to reduce the effects caused by the ambient temperature, the
thickness of the overlapping skin, the degree of venous engorge-
ment, the condition of the vein walls, and the nearness of the
vein to the surface. Any variation in the surrounding tempera-
ture may lead to unstable distribution patterns of gray value in
thermal images. This problem is very difficult to resolve by re-
lying only on the vein-pattern features in palm-dorsum thermal
images. One possible solution would be to combine vein pat-
terns with other biometric features for verification. The other
effects as mentioned above may cause the vein patterns to be
unobvious. Their influences can be decreased by capturing the
thermal images of palm-dorsa with an IR camera which pos-
sesses higher sensitivity or wider spectrum response. Moreover,
the combining of vein patterns with other biometric features for
verification would also provide effective solutions.

In addition, most biometric features of an individual will vary
with age. The aging period is long and inevitable, and this fact
cannot be avoided or neglected over a long time which might
increase the error rate. To maintain long-term verification accu-
racy, this problem must be solved or alleviated. Since aging will
occur in the future, the verification approach should be capable
of predicting biometric feature variations so that the influence
of aging can be reduced to the minimum. The Kalman predictor
[43] is known to possess such prediction capabilities. One pos-
sible solution is to apply the Kalman predictor to predict the
variations caused by aging and to modify the templates in the
database.

REFERENCES

[1] A.K.Jain, R. Bolle, and S. Pankanti, Biometrics Personal Identification
in Networked Society. Boston, MA: Kluwer, 1999.

[2] Y. Yoshitomi, T. Miyaura, S. Tomita, and S. Kimura, “Face identification
thermal image processing,” in Proc. 6th IEEE Int. Workshop Robot and
Human Communication, RO-MAN’ 97 SENDALI, pp. 374-379.

[3] A.J.Rice, “A quality approach to biometric imaging,” Proc. Image Pro-
cessing for Biometric Measurement IEE Collog., pp. 4/1-4/5, Apr. 1994.

[4] J. M. Cross and C. L. Smith, “Thermographic imaging of the subcuta-
neous vascular network of the back of the hand for biometric identifi-
cation,” in Proc. IEEE 29th Annu. Int. Carnahan Conf. Security Tech-
nology, 1995, pp. 20-35.

[5] B. Miller, “Vital sign of identify,” IEEE Spectrum, vol. 31, pp. 22-30,
Feb. 1994.

(6]

(71
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

C. C. Han, H. L. Cheng, C. L. Lin, and K. C. Fan, “Personal authen-
tication using palmprint features,” Patt. Recognit., vol. 36, no. 2, pp.
371-381, 2003.

J. You, W. Li, and D. Zhang, “Hierarchical palmprint identification via
multiple feature extraction,” Patt. Recognit., vol. 35, pp. 847-859, 2002.
H.J. Lin, H. H. Guo, F. W. Yang, and C. L. Chen, “Handprint identifica-
tion using fuzzy inference,” in Proc. 13th IPPR Conf. Computer Vision
Graphics and Image Processing, 2000, pp. 164-168.

C. C. Han, P. C. Chang, and C. C. Hsu, “Personal identification using
hand geometry and palm-print,” in Proc. 4th Asian Conf. Computer Vi-
sion (ACCV), 2000, pp. 747-752.

A. K. Jain and N. Duta, “Deformable matching of hand shapes for veri-
fication,” in Proc. ICIP, 1999, pp. 857-861.

D. P. Zhang and W. Shu, “Two novel characteristics in palmprint
verification: datum point invariance and line feature matching,” Patt.
Recognit., vol. 32, pp. 691-702, 1999.

D. G. Joshi, Y. V. Rao, S. Kar, V. Kumar, and R. Kumar, “Computer-vi-
sion-based approach to personal identification using finger crease pat-
terns,” Patt. Recognit., vol. 31, pp. 15-22, 1998.

S.K.Im, H. M. Park, S. W. Kim, C. K. Chung, and H. S. Choi, “Improved
vein pattern extracting algorithm and its implementation,” in Int. Conf.
Consumer Electronics Dig. Tech. Paper, 2000, pp. 2-3.

S. K. Im, H. M. Park, Y. W. Kim, S. C. Han, S. W. Kim, and C. H. Hang,
“An biometric identification system by extracting hand vein patterns,”
J. Korean Phys. Soc., vol. 38, pp. 268-272, Mar. 2001.

A.J. Mehnert, J. M. Cross, and C. L. Smith, “Thermalgraphic Imaging:
Segmentation of the Subcutaneous Vascular Network of the Back of the
Hand (Research Report),” Edith Cowan University, Australian Institute
of Security and Applied Technology, Perth, Western Australia, 1993.
H. Kuno and S. Kougaku, /EICE Trans., Japanese, 1994, pp. 22-22.

E. F. Godik and Y. V. Guljaev, “Functional imaging of the human body,”
IEEE Trans. Eng. Med. Biol., vol. 10, pp. 21-29, Apr. 1991.

W. L. Wolfe and G. J. Zissis, The Infrared Handbook. Washington,
DC: ONR, 1978.

D. C. Harris, Infrared Window and Dome Materials.
SPIE, 1992.

A. A. Newman, Ed., Photographic Techniques in Scientific Re-
search. London, UK.: Academic, 1976, vol. 2.

C. L. Lin, K. C. Fan, and F. D. Chou, “A novel approach to palmprint
verification utilizing finger-webs as datum points,” Image Vis. Comput.,
submitted for publication.

M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and
Machine Vision, 2nd ed. New York: PWS, 1999.

F. Kimura and M. Shridhar, “Handwritten numeral recognition based on
multiple algorithms,” Patt. Recognit., vol. 24, pp. 976-983, 1991.

S. N. Shridhar, “Recognition of handwritten and machine printed text of
postal address interpretation,” Patt. Recognit. Lett., vol. 14, pp. 291-302,
1993.

J. Cao, M. Ahmadi, and M. Shridhar, “Recognition of handwritten nu-
merals with multiple feature and multistrage classifier,” Patt. Recognit.,
vol. 28, pp. 153-160, 1995.

S. Beucher, “The watershed transformation applied to image segmenta-
tion,” in Proc. 10th Pfefferkorn Conf. on Signal and Image Processing
in Microscopy and Microanalysis, Cambridge, U.K., Sept. 16-19, 1991,
pp. 299-314.

J. koenderink, “The structure of images,” in Biological Cyber-
netics. New York: Springer-Verlag, 1984.

Y. Shinagawa and T. L. Kunil, “Unconstrained automatic images
matching using multiresolutional critical-point filter,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 20, pp. 994-1010, Sept. 1998.

Y. Qi and B. R. Hunt, “A multiresolution approach to computer verifi-
cation of handwritten signatures,” IEEE Trans. Image Processing, vol.
4, pp. 870-874, June 1995.

J. You and P. Bhattacharya, “A wavelet- based coarse-to-fine image
matching scheme in a parallel virtual machine environment,” IEEE
Trans. Image Processing, vol. 9, pp. 1547-1559, June 2000.

K. Huang and H. Yan, “Off-line signature verification based on
geometric feature extraction and neural network classification,” Patt.
Recognit., vol. 30, pp. 7-17, 1997.

G. Y. Chen, T. D. Bui, and A. Krzyzak, “Contour-based handwritten
numeral recognition using multiwavelets and neural networks,” Patt.
Recognit., vol. 36, pp. 1597-1604, 2003.

Bellingham, WA:



LIN AND FAN: BIOMETRIC VERIFICATION USING THERMAL IMAGES OF PALM-DORSA VEIN PATTERNS

[33]
[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

K. Huang and H. Yan, “Signature using multiple neural classifiers,” Patt.
Recognit., vol. 30, pp. 1-7, 1997.

M. A. Ismail and S. Gad, “Off-line arabic signature recognition and ver-
ification,” Patt. Recognit., vol. 33, pp. 1727-1740, 2000.

K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd
ed. New York: Academic, 1972.

P. S. Wu and M. Li, “Pyramid edge detection based on stack filter,” Patt.
Recognit. Lett., vol. 18, pp. 239-248, 1997.

J. Yoo, E. J. Coyle, and C. A. Bouman, ‘“Dual stack filters and the mod-
ified difference of estimates approach to edge detection,” IEEE Trans.
Image Processing, vol. 6, pp. 1634-1645, Dec. 1997.

J. Yoo, C. A. Bouman, E. J. Delp, and E. J. Coyle, “The nonlinear pre-
filtering and difference of estimates approaches to edge detection: Ap-
plication of stack filters,” CVGIP: Graph. Models Image Process., vol.
55, Mar. 1993.

P. T. Yu and R. C. Chen, “Fuzzy stack filters- their definitions, funda-
mental properties and application in images processing,” IEEE Trans.
Image Processing, vol. 5, pp. 838-854, Dec. 1996.

W. L. Lee and K. C. Fan, “Design of optimal stack filter and under MAE
criterion,” IEEE Trans. Signal Processing, vol. 47, pp. 3345-3355, Dec.
1999.

Y. Nakagawa and A. Rosenfeld, “A note on the use of local min and
max operations in digital picture processing,” IEEE Trans. Syst., Man
Cybern., vol. SMC-8, pp. 632-635, Aug. 1978.

C. C. Han, K. C. Fan, and Z. M. Chen, “Finding of optimal stack filter
by graphic searching method,” IEEE Trans. Signal Processing, vol. 45,
pp. 1857-1862, July 1996.

S. M. Bozic, Digital and Kalman Filtering. New York: Edward
Arnold, 1979.

213

Chih-Lung Lin was born in Tainan, Taiwan, on
January 15, 1965. He received the B.S. degree
in automatic control engineering from Feng-Chia
University, Taichung, Taiwan, in 1987, the M.S.
degree in electronics engineering from Chung Cheng
Institute of Technology, Taoyuan, Taiwan, in 1989.
From 1989 to 1998, he was an Assistant Re-
searcher in the Chung-Sun Institute of Science
and Technology (CSIST), Lung-Tan, Taiwan. In
1998, he joined the Institute of Computer Science
and Information Engineering, National Central

University. His current research interests include pattern recognition and image

analysis.

-
L

Kuo-Chin Fan (S’88-M’88) was born in Hsinchu,
Taiwan, on June 21, 1959. He received the B.S.
degree in electrical engineering from National
Tsing-Hua University, Hsinchu, Taiwan, in 1981.
He received the M.S. and Ph.D. degrees from the
University of Florida, in 1985 and 1989, respectively.

In 1983, he joined the Electronic Research
and Service Organization (ERSO), Taiwan, as a
Computer Engineer. From 1984 to 1989, he was a
Research Assistant with the Center for Information
Research, University of Florida. In 1989, he joined

the Institute of Computer Science and Information Engineering, National
Central University, Chung-Li, Taiwan, where he became a Professor in 1994.
From 1994 to 1997, he was chairman of the department. Currently, he is the
Director of the Computer Center. His current research interests include image
analysis, optical character recognition, and document analysis.

Prof. Fan is a member of SPIE.





