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Disk scheduling using a customized discrete firefly 
algorithm
Amandeep Singh1*,†, Sidharth Thapar1,†, Abhishek Bhatia1,†, Saurabh Singh1,† and Rinkaj Goyal1,†

Abstract: This study empirically investigates the usage of a customized discrete firefly 
algorithm (DFA) for ordering the disk requests to minimize the total access time. The 
procedure simulates the movement of each firefly within a population towards oth-
ers using a variation of edge-based mutation. The algorithm was applied to random-
ized standard disk sequences with varying length of input disk requests. Owing to the 
greater impact of seek time in the determination of access time for a disk having sizable 
number of tracks, this has been taken as the primary performance factor in the sched-
uling of tasks. The analysis of the results obtained establishes the relative advantage of 
using the firefly optimization method over the traditional disk scheduling algorithms.
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1. Introduction
The file system must be efficiently accessible, particularly with the hard drives since processor speed  
and disk capacity exhibit manifold increment in a year in comparison to the disk speed (Ruemmler & 
Wilkes, 1994). The diminished growth in the disk speed technology is considerably related to the difficulty 
in the advancement of mechanical components. This contrast in the processor speed and disc capacity, 
and is unlikely to change in the near future (Ökdem & Karaboga, 2006; Rahmani, Arshad, & Moghaddam, 
2009). Therefore, development of advanced disk scheduling algorithms is of primary importance.

The disk scheduler processes and schedule disk requests by estimating the seek time and the  
possible rotational delay of a request (Jacobson & Wilkes, 1991; Seltzer, Chen, & Ousterhout, 1990). 
Since, disk scheduler knows request processing time, it (greedily) picks the request asking for the 
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minimum time. Further, disk has non-uniform access time and this has direct dependency upon seek 
time (Section 2); therefore, reordering of the disk requests may considerably reduce the access time 
latency. An efficient exploration of search space will aid in the significant reduction in average  
access time. Moreover, it is extremely imperative to maintain a steadiness between the starvation of 
disk requests and fairness in the allocation of scheduler. It is desirable to obtain such a balance for 
improvement in performance of the disk scheduler. The disk scheduling can be formulated as an 
instance of a combinatorial optimization problem as follows.

Given a set of n real-time disk tasks T = T1, T2,…, Tn, where each task, Ti is a quadruple (ri, di, si, 
sizei) . Each disk request is defined by its ready time(ri), deadline time(di), sector number(si), and 
data size(sizei). Ready time is the initial start time of a particular disk. Deadline time is the latest time 
of the completion of a disk task. To meet the timing requirements, the start time of a task should not 
be earlier than its ready time. Additionally, its finish time should not be later than the related dead-
line time (Chen, Yang, & Lee, 1992; Huang, Lu, Chou, & Shib, 2005; Ruemmler & Wilkes, 1994).

Therefore, a feasible permutation schedule for the given set of tasks, Tz = Tz(1)Tz(2)…Tz(n), will be 
min

∀zfz(n), where fz(n) is defined as the finish time of the newest task in the schedule, and z(i) is the 
index function which is taken, as a permutation of {1, 2, 3, ...n} (Huang, Lu, Chou, & Shib, 2005).

Hence, disk scheduling is a combinatorial optimization problem, in which an optimal solution is 
sought over a discrete search space.

Seek-cost function is a measure of how fast a hard drive can move read/write heads to the  
desired location (Abbott & Garcia-Molina, 1990). A linear seek-cost disk scheduling problem is an  
NP-complete problem since this is polynomial time reducible to well-known NP-complete problem 
viz partition problem(PP) (Huang, Lu, Chou, & Shib, 2005; Huang, Lu, Chou, & Shih, 2005; Ruemmler & 
Wilkes, 1994). Different techniques like approximation, randomization, restriction, parametrization, 
heuristic, and metaheuristic have been reported in the literature to approach NP-Complete problems 
(Blum & Roli, 2003; Yagiura & Ibaraki, 2001).

The firefly algorithm (FA) is a metaheuristic approach inspired by the flashing behavior of fireflies. 
FA and its variants have been applied to solve optimization and classification problems like feature 
selection and fault detection (Banati & Bajaj, 2011; Falcon, Almeida, & Nayak, 2011), antenna design 
(Basu & Mahanti, 2011), structural design (Gandomi, Yang, & Alavi, 2011), semantic web composition 
(Jati & Suyanto, 2011), clustering (Senthilnath, Omkar, & Mani, 2011), and dynamic problems 
(Abshouri, Meybodi, & Bakhtiary, 2011). Firefly-based algorithms have been effectively applied for 
scheduling, task graphs, and job shop scheduling problems, and reported to perform better than 
other popular metaheuristics approaches (Gandomi et al., 2011). Other variants of FA include binary 
firefly algorithm and evolutionary discrete FA (Abshouri et al., 2011; Palit, Sinha, Molla, Khanra & 
Kule, 2011). The performance of FA-based approaches can further be improved by using preferential 
directions in the firefly movements.

In this study, we use the variation of the recently formulated metaheuristic technique known as new 
discrete firefly algorithm (NDFA) first proposed by Yang, Cui, Xiao, Gandomi, and Karamanoglu (2013).

Different scheduling policies have been proposed to manage the queue of disk requests effi-
ciently by taking different disk parameters into consideration. The seek time is usually the primary 
parameter considered in the implementation of the scheduling algorithms. For large disk requests, 
rotational time is often omitted in most of the proposed algorithms because, it is lower in compari-
son to seek time. Apart from parameters indicated above, the other relevant parameters are  
request deadline, request priority, and the request type (Andrews, Bender, & Zhang, 1996).
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In the FA-based method to schedule disk requests, firefly parameters have been adjusted to result 
in an improved performance over traditional strategies. Experimental results are promising, and 
clearly indicate the superiority of the proposed approach.

This study progresses as follows: Section 2 provides the modelling methodology used in this study. 
This section provides the brief explanation of the real-time disk scheduling problem along with an 
induction of firefly algorithm (FA) and its variants. Section 3 illustrates the proposed approach and 
our experimental results are presented in Section 4 along with the conclusion that is stated in the 
Section 5.

2. Modelling methodology
A disk comprises a number of cylinders along with disk head. Each cylinder further contains a collec-
tion of tracks, where each track has the same distances from the center of the disk. Further, every 
track has sectors with each sector having 32 bytes.

2.1. Problem statement
Given a set of n real-time disk requests r = r1, r2, r3.... rn−1, rn , the goal is to find a schedule with mini-
mal access time for the given set of requests, where n is the size of the queue which depends on the 
type of application (Yeh, Kuo, Lei, & Yen, 1998). Assuming that the given disk scheduling sequence 
has to serve two sequential tasks rj and ri. A seek-time cost is incurred when we serve the disk  
request ri; that is when the disk-head travels from previous disk task cylinder(rj)to the requested disk 
cylinder(ri) (Abbott & Garcia-Molina, 1990). In addition, a rotational latency, that is the amount of 
delay in obtaining information from a disk due to the rotation of the disk, is also added to reach the 
desired sector within ri. Finally, the transfer time is the time required to transfer requested data from 
disk to a buffer (Ruemmler & Wilkes, 1994).

Equation 1 gives the Accessn(access time) for a given disk request (Abbott & Garcia-Molina, 1990).

where, n is the track length of a given disk request.

In this study, the transfer time and rotational latency parameters are taken as a single parameter 
i.e. disk constant. Nonetheless, Seekn is a nonlinear equation that depends on the seek factor and 
the associated track number (Equation 2) (Abbott & Garcia-Molina, 1990).

For disks that have a sizeable number of tracks, Seekn has a greater effect on the equation  
term and “Disk constant” can be ignored (Equation 2). Therefore, the track number becomes a 
significant parameter in these scheduling algorithms. Determining these parameters has been 
subject of intense research for some time now. For example, in Fujitsu M2361A hard disk  
(FUJITSU, 1984), the seek time with movement distance D

(
j, i) = (ri - rj) is calculated as follows 

(Equation 3)

2.2. Firefly algorithm
The FA is a metaheuristic-based algorithm mimicking the flashing behavior of fireflies. The purpose 
of a firefly’s flash is a signalling mechanism for attracting other fireflies. The execution of FA  
proceeds with the following two idealized rules (Yang, 2010):

(1)Accessn = Seekn + Rotational Latency + TransferTime

(2)Accessn = SeekFactor ×
√

n + DiskConstant

(3)Seektime(Dj, i) =

�

4.6ms + 0.87ms
√

(Dj, i) ifDj, i ≤ 239

18ms + 0.028ms(Dj, i − 239) ifDj, i < 239
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(a) All fireflies are attracted to other fireflies irrespective of their sex, and the measure of the  
attractiveness of a firefly is in direct proportion to its brightness. The less bright firefly will move to-
ward the brighter one. The attractiveness of a firefly decreases with increasing distance. If a firefly 
can not find the brighter one nearby than it makes a random movement.

(b) The landscape of an objective function determines the brightness ( light intensity) of a firefly.

For a maximization problem, the brightness can simply be proportional to the objective function. 
Although, other forms of brightness can also be formulated similar to the way, the fitness functions 
are devised while applying other nature-inspired techniques like genetic algorithms or bacterial for-
aging algorithm (Gazi & Passino, 2004; Yang, 2010).

Each firefly represents one solution for the disk scheduling problem, which is a permutation repre-
sentation. Here, light intensity is a value that represents the brightness of a firefly. This value  
depends on the total seek time of a schedule belonging to a firefly. Since the purpose is to find a 
schedule with the minimum seek time, a firefly that has lesser seek time will have a greater light 
intensity (brighter).

2.3. Functional parameters of a firefly
Succeeding sections elaborates different functional parameters utilized in devising the proposed 
algorithm.

2.3.1. Light intensity and attractiveness
The execution of firefly algorithm depends on the disparity in light intensity and the conceptualiza-
tion of attractiveness;

Light intensity represents the brightness of a firefly and decreases with distance from its source. 
Furthermore, due to absorption of light by air, attractiveness also varies with the degree of absorp-
tion (Equation 4).

where Io is the initial light intensity and � is the absorption coefficient (Arora & Singh, 2013).

The high light intensity represents a more optimum order of requests in the request queue. The 
attractiveness of a firefly is bounded to its brightness associated with the ciphered fitness function. 
The original FA defines the attractiveness function �r for any flat decreasing function as follows 
(Equation 5) (Arora & Singh, 2013):

where �(r) is the attractiveness of a firefly at a distance r, which is the distance between two fireflies. 
�0 is the brightness of a brighter firefly, and � is a fixed light absorption coefficient. For any two fire-
flies, firefly i  and another brighter firefly j, initially we calculate the distance (r) between firefly i  and 
firefly j by using Equation 6. We then calculate the attractiveness of firefly j observed by firefly i  at 
distance r using Equation 5. If the attractiveness of firefly j is greater than the brightness (light  
intensity) of firefly i , then firefly i  will move toward firefly j, Otherwise, firefly i  will move randomly.

2.3.2. Distance
In continuous optimization problems, the distance between two fireflies is calculated using Euclidean 
distance. For disk scheduling, the distance between firefly i  and firefly j can be defined as the number 
of different edges between them. In Table 1, three edges 120-15, 500-79, and 60-11 in firefly j do not 
exist in firefly i . Hence, the number of different edges between firefly i  and firefly j is 3. Then, the 
distance between two fireflies is calculated using following equation (Equation 6) (Yang et al., 2013).

(4)I = Io exp
−�r2

(5)�(r) = �o exp
−�r2
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Where A is the total number of different edges between two fireflies, r is the distance between any 
two fireflies and n is the number of disk requests. This equation scales r in the interval [0, 10] and 
used for the attractiveness calculation.

2.3.3. Light absorption coefficient
In essence, the light absorption coefficient � characterizes the variation of the attractiveness value 
of a firefly. Its value is crucial in determining the speed of convergence and the behavior of FA. 
Theoretically, � ∈ [0,∞), however, in practice, � depends on the properties of the problem. If �→0, 
the attractiveness will be constant and �(r) = �0. In this case, the attractiveness of a firefly will not 
decrease when viewed by another. �→∞, signifies close to zero value of attractiveness of a firefly, 
when viewed by another firefly. The coefficient � determines how much light intensity changes the 
attractiveness of a firefly over distances.

2.3.4. Movement
For each firefly, find the brightest or the most attractive firefly. If there is a brighter firefly, then the 
less bright firefly will move toward the brighter one and if there is no brighter one, it will move ran-
domly. We use a movement scheme which follows the edge-based movement. This scheme guaran-
tees that after one firefly moves toward a brighter one, the distance between them will decrease 
(Yang et al., 2013).

2.3.5. Fitness function
In disk scheduling problem, the optimal solution is the best order of disk requests in the request 
queue. Seek time is used as the fitness function in this study (Equation 3).

3. Proposed solution
Firefly was originally designed to solve continuous optimization problems (Yang, 2009). However, 
the FA can also be discretized to solve the permutation problems. The discrete firefly algorithm (DFA) 
has been successfully implemented to solve flow shop scheduling problems amongst others. The 
DFA outperforms other widely employed metaheuristic algorithms such as ant colony algorithm 
(Sayadi, Ramezanian, & Ghaffari-Nasab, 2010). Variation of DFA considered in this study includes:

(a) Evolutionary discrete firefly algorithm (EDFA): recently, EDFA has been developed for solving 
TSP (Jati & Suyanto, 2011). However, in EDFA, firefly has no specific direction to move. Therefore, 
evolutionary strategies like inversion mutation are adopted to determine the next movement. Each 
firefly moves for m times using inversion mutation. The initial index of the chromosome is chosen 
randomly in the beginning. Each firefly will have m new solutions. Therefore, after p moves, p ∗ m 
new solutions will be generated resulting into p ∗ m + 1 total solutions, out of which p best fireflies 
are chosen as the new population. Total number of solutions are constant after each generation.

(b) New discrete firefly algorithm (NDFA): the inversion mutation scheme which is used in EDFA 
does not always guarantee the decrease in the distance between the 2 fireflies. Therefore, a new 
DFA algorithm is introduced by Yang et al. (2013), which uses edge-based movement when a firefly 
is to move towards another brighter firefly.

Figure 1 elucidates the edge-based movement mechanism used in NDFA. Two adjacent nodes x 
and y collectively form an edge(x − y) or (y − x). In the edge-based movement between firefly i  
and brightest firefly j, a unique (which does not exist in firefly i) edge(x − y) in firefly j is selected at 

(6)r = (A∕n) ∗ 10

Table 1. Distance between two fireflies i and j
Firefly i 140 13 120 79 60 15 500 11 90 10 16 300 2
Firefly 140 13 120 15 500 79 60 11 90 10 16 300 2
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random. After determining the positions of nodes x and y in the firefly i , segment around each node 
is created comprising of the node itself. For each node (x and y), segments are extended towards 
left and right to include those edges to the segment that are the part of firefly j. This extension of 
the segments continues until no common edge can be found between firefly i  and firefly j. 
Subsequently, these two segments are merged such that nodes x and y appear adjacent to each 
other in firefly i  also. Thereby, referring to the addition of an edgex − y to the firefly i . Henceforth, a 
segment built starting from node n is referred as Sn. There are four ways to accomplish this merger 
of segments resulting into four new solutions (fireflies)

(1)  Inserting Sx before Sy
(2)  Inserting Sx after Sy
(3)  Inserting Sy before Sx

(4)  Inserting Sy after Sx inversion of some these segments might be required to ensure the presence 

of edge(x − y) in firefly i.

This new scheme follows an inclusion of a new edge which exists in the brighter firefly and is not 
a part of this firefly. This decrease in the number of edges that are unique to the brighter firefly guar-
antees the decrease in the distance between the two fireflies. Each firefly will have 2 cases:

Case 1 If it finds a brighter firefly, it uses new edge based mutation.
Case 2 If no brighter firefly is found, firefly will move randomly (inverse mutation). 

When edge-based movement is used, four new solutions are found after the mutation. One of the 
four solutions is chosen at random and added to the population. After p fireflies move using this 
scheme, p best fireflies are chosen according to the objective function. A random movement of fire-
fly generates a new solution using inversion mutation in m different positions, on a chromosome.

In this paper, we adopt NDFA, which employs the new edge-based movement as illustrated through 
the following pseudocode (Algorithm 1). Initially, each firefly generates an initial solution randomly. 
For each firefly, the brightest or most attractive firefly is identified. Similar to NDFA, less bright firefly 

Figure 1. Illustration of edge-
based movement scheme.
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movement towards the brighter one will yield four new solutions. In the case of edge-based move-
ment, instead of taking randomly one of the four solutions generated (as the case with NDFA), we 
have taken the best among the four mutations and the original firefly that replaces the original 
firefly in the population. For the next iteration, the set of better fireflies will be determined on the 
basis of the defined objective function viz seek time. This condition will continue until the maximum 
iteration is reached. In metaheuristic algorithms, the evaluation of the objective function is the most 
expensive computation. Owing to the two nested for loops involving population sizes i.e. p (one for 
loop is implicit in the calculation of most attractive firefly ) and an outer loop for the iteration t, the 
complexity of the algorithm is O(p2t). Since, p is small in comparison to the number of iterations (t), 
the complexity of the algorithm is linear in terms of t. Furthermore, we observe an early convergence 
(Section 4.3) in the execution of the algorithm, which leads to a linear complexity comparable to 
other algorithms considered in this study (Yang et al., 2013).

4. Simulation experiment and results
In this section, we confer the experimental results obtained by applying the proposed approach.  
A comparison of the results obtained with previous popular techniques establishes the suitability of 
proposed approach. For all implementations, we use a personal Computer with 2.10 GHZ of CPU and 
4GB of RAM in the java environment. Equation 3 provides the specifications of the simulation built to 
model the disk requests with a single data (Table 2) (FUJITSU, 1984; Seltzer et al., 1990).

Figure 2 demonstrates the execution steps of proposed algorithm. The values of following param-
eters need to be determined to apply the proposed algorithm;

(a) Queue size: Maximum number of disk requests that the queue can accommodate.

(b) The maximum track number of the disk.

(c) Values of the control parameters

Algorithm 1: The new Edge based DFA Algorithm (Yang et al., 2013)
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4.1. Performance for different instances disk sequences at given queue size
The performance of traditional scheduling algorithms depends on the number and type of disk I/O 
requests. For example, in the case of heavy load on the disk, SCAN, or C-SCAN algorithms are pre-
ferred. Since, in these algorithms, head movement switches at the end of the disk. Otherwise, SSTF 
or LOOK are the commonly applied traditional scheduling algorithms. But, these techniques are not 

Table 2. Disk parameters pertaining to the disk model of Fujitsu M2361A
Cylinders per disk 842

Data transfer rate (MB/sec) 2.458

Seek time function (ms)
�

4.6 + 0.87×
√

(Dj, i) ifDj, i ≤ 239

18 + (Dj, i − 239)×0.028 ifDj, i < 239

Rotational speed (RPM) 3,600 + 2%

Figure 2. Flow chart of the 
working scheme.
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adaptive in nature and only use track information to optimize seek time. On the other hand, Bio-
inspired algorithm efficiently explore the search space in different scenarios and provide at least 
equally good solution, if not better.

We simulated the traditional disk scheduling algorithms, namely LOOK, CSCAN, FCFS, SCAN, SSTF 
(Teorey & Pinkerton, 1972), Silberschatz, Galvin, & Gagne, 2013) and compared their performance 
with the proposed approach. The execution of algorithms took different random input disk requests 
of queue size of 15.

Figure 3 illustrates the relative performance of different algorithms by plotting a graph between 
different instances of randomly generated sequences of disk requests with the queue size, and the 
value of total seek time in milliseconds.

We observed that FCFS show much higher values of total disk seek time in comparison to the other 
traditional disk scheduling algorithms (LOOK, CSCAN, SCAN, and SSTF). Whereas SSTF and CSCAN 
showed consistently low total seek time in contrast to the other known scheduling algorithms.

The proposed firefly algorithm prominently resulted in the lowest seek time in comparison to all 
other algorithms over all the randomly generated disk sequences of queue size of 15 (Figure 3).

4.2. Variation in the total seek time with increasing queue size
The performance of different algorithms was tested with 10 randomly generated disk requests 
against the queue size of 10, 15, 20, 25, and 30, respectively. To include more possibilities, we have 
plotted the values by averaging over 10 instances. Each task has been assigned an equal priority. 
The comparison of the proposed algorithm with existing algorithms (Figure 4) makes it clear that the 
algorithm results in the lowest total seek time, but deteriorates in its performance in contrast to 
others with increasing queue size. The seek time of the proposed algorithm increases with an  
increase in the queue size, but the increment is almost linear.

4.3. Average Fitness of the Individuals from each successive generation
The overall fitness of individuals from each successive generation till the algorithm terminates has 
been displayed to observe the working of the applied algorithm. That indicates the extent to which 
a generation has learned from the previous one. The improvement in the subsequent generation is 
clearly evident, while not getting trapped in local optimums. The graph shows (Figure 5) total seek 
time plotted for the number of generations and the population evolved for a significant time over 
500 generations. It shows a slow trend downward, with the biggest jump occurring in the first 50 
generations. After the 70 generations, individuals maintained the stumbling behavior but prone  
towards the target. We observe a steep falling slope for low numbers of generations followed by a 

Figure 3. Comparison of total 
seek time for the scheduling 
algorithms at a queue size of 
15.
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leveling off. Thereby, suggesting little or no improvement beyond 100 generations. We observe that 
after 100 generations, execution of the algorithm results in sufficiently stagnant fitness value and 
stabilizes.

4.4. Variation of population size
The Figure 6 shows the total seek time plotted by varying the population size, i.e. the number of 
fireflies, carried out for various values of queue size of a firefly. On observing, we see that the initial 
fall in the seek time becomes steeper at higher queue size i.e. the absolute of slope increases with 
increasing queue size. It is evident from Figure 6 that for a given population size, an increase in the 
fitness value may not be deserving the added computation cost beyond a certain point. The results 
affirm the belief that decreasing population size causes premature convergence that slows the  
optimization speed down.

Figure 5. The variation of total 
seek time (fitness) with the 
proceeding generations.

Figure 4. Performance for 
different instances disk 
sequences at given queue size.
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5. Conclusion and future work
This study recommends an approach based on the customized firefly optimization algorithm to  
address the disk scheduling problem. The total seek time is the measurement of the performance of 
algorithms here, with the criterion of a single parameter track number. Rotational latency is neglected 
because of its lower value in comparison to the seek time. The comparison of the performances of the 
proposed and traditional approaches verifies the superiority of the proposed approach.

Proposed customized firefly algorithm results in an efficient disk scheduling problem with lesser 
number of disk requests. However, with the increasing number of disk requests, the performance of 
FA is not optimal enough. Future work of this study may include the comparison of these algorithms 
for parameters like respective throughput and missed ratios amongst others.
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