
Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

COMPUTER SCIENCE |SHORT COMMUNICATION

Disk scheduling using a customized discrete firefly
algorithm
Amandeep Singh1*,†, Sidharth Thapar1,†, Abhishek Bhatia1,†, Saurabh Singh1,† and Rinkaj Goyal1,†

Abstract: This study empirically investigates the usage of a customized discrete firefly
algorithm (DFA) for ordering the disk requests to minimize the total access time. The
procedure simulates the movement of each firefly within a population towards oth-
ers using a variation of edge-based mutation. The algorithm was applied to random-
ized standard disk sequences with varying length of input disk requests. Owing to the
greater impact of seek time in the determination of access time for a disk having sizable
number of tracks, this has been taken as the primary performance factor in the sched-
uling of tasks. The analysis of the results obtained establishes the relative advantage of
using the firefly optimization method over the traditional disk scheduling algorithms.

Subjects: Automation; Evolutionary Computing; Simulation & Modeling; Computer
Engineering; Computer Science (General); Operating Systems; Systems & Computer
Engineering; Systems Architecture

Keywords: disk scheduling; discrete firefly algorithm; seek time

1. Introduction
The file system must be efficiently accessible, particularly with the hard drives since processor speed
and disk capacity exhibit manifold increment in a year in comparison to the disk speed (Ruemmler &
Wilkes, 1994). The diminished growth in the disk speed technology is considerably related to the difficulty
in the advancement of mechanical components. This contrast in the processor speed and disc capacity,
and is unlikely to change in the near future (Ökdem & Karaboga, 2006; Rahmani, Arshad, & Moghaddam,
2009). Therefore, development of advanced disk scheduling algorithms is of primary importance.

The disk scheduler processes and schedule disk requests by estimating the seek time and the
possible rotational delay of a request (Jacobson & Wilkes, 1991; Seltzer, Chen, & Ousterhout, 1990).
Since, disk scheduler knows request processing time, it (greedily) picks the request asking for the

*Corresponding author: Amandeep
Singh, USICT, GGS Indraprastha
University, Sector 16C, Dwarka 110078
New Delhi, India
E-mail: ads71993@gmail.com

Reviewing editor:
Jenhui Chen, Chang Gung University,
Taiwan

Additional information is available at
the end of the article

ABOUT THE AUTHORS
Amandeep Singh, Sidharth Thapar, Abhishek
Bhatia, and Saurabh Singh are pursuing a Bachelor
of Technology degree from University School of
Information and Communication Technology,
GGS Indraprastha University, Delhi (INDIA). They
are the active members of the students’ interest
group on Bio-inspired computation facilitated
by Rinkaj Goyal, who is working as an assistant
professor. Major activities of this interest group
includes agent-based simulation development,
multi-agent System, and Machine learning.

PUBLIC INTEREST STATEMENT
Computer deals with multiple processes requesting
for disk access. An efficient handling of these
aggregated requests would result in an improved
system performance. The operating system uses
disk scheduling algorithms to decide which request
to fulfil first. In this study, we apply a variant of
firefly algorithm for ordering the disk requests
to minimize the total seek time. The procedure
adopted here simulates the movement process of
each firefly within a population, and is similar to
other adaptive learning and artificial intelligence
techniques.

Received: 01 November 2014
Accepted: 20 January 2015
Published: 11 March 2015

© 2015 The Author(s). This open access article is distributed under a Creative Commons Attribution
(CC-BY) 4.0 license.

Page 1 of 12

Amandeep Singh

http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2015.1011929&domain=pdf&date_stamp=2015-03-11
mailto:ads71993@gmail.com
http://creativecommons.org/licenses/by/4.0/

Page 2 of 12

Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

minimum time. Further, disk has non-uniform access time and this has direct dependency upon seek
time (Section 2); therefore, reordering of the disk requests may considerably reduce the access time
latency. An efficient exploration of search space will aid in the significant reduction in average
access time. Moreover, it is extremely imperative to maintain a steadiness between the starvation of
disk requests and fairness in the allocation of scheduler. It is desirable to obtain such a balance for
improvement in performance of the disk scheduler. The disk scheduling can be formulated as an
instance of a combinatorial optimization problem as follows.

Given a set of n real-time disk tasks T = T1, T2,…, Tn, where each task, Ti is a quadruple (ri, di, si,
sizei) . Each disk request is defined by its ready time(ri), deadline time(di), sector number(si), and
data size(sizei). Ready time is the initial start time of a particular disk. Deadline time is the latest time
of the completion of a disk task. To meet the timing requirements, the start time of a task should not
be earlier than its ready time. Additionally, its finish time should not be later than the related dead-
line time (Chen, Yang, & Lee, 1992; Huang, Lu, Chou, & Shib, 2005; Ruemmler & Wilkes, 1994).

Therefore, a feasible permutation schedule for the given set of tasks, Tz = Tz(1)Tz(2)…Tz(n), will be
min

∀zfz(n), where fz(n) is defined as the finish time of the newest task in the schedule, and z(i) is the
index function which is taken, as a permutation of {1, 2, 3, ...n} (Huang, Lu, Chou, & Shib, 2005).

Hence, disk scheduling is a combinatorial optimization problem, in which an optimal solution is
sought over a discrete search space.

Seek-cost function is a measure of how fast a hard drive can move read/write heads to the
desired location (Abbott & Garcia-Molina, 1990). A linear seek-cost disk scheduling problem is an
NP-complete problem since this is polynomial time reducible to well-known NP-complete problem
viz partition problem(PP) (Huang, Lu, Chou, & Shib, 2005; Huang, Lu, Chou, & Shih, 2005; Ruemmler &
Wilkes, 1994). Different techniques like approximation, randomization, restriction, parametrization,
heuristic, and metaheuristic have been reported in the literature to approach NP-Complete problems
(Blum & Roli, 2003; Yagiura & Ibaraki, 2001).

The firefly algorithm (FA) is a metaheuristic approach inspired by the flashing behavior of fireflies.
FA and its variants have been applied to solve optimization and classification problems like feature
selection and fault detection (Banati & Bajaj, 2011; Falcon, Almeida, & Nayak, 2011), antenna design
(Basu & Mahanti, 2011), structural design (Gandomi, Yang, & Alavi, 2011), semantic web composition
(Jati & Suyanto, 2011), clustering (Senthilnath, Omkar, & Mani, 2011), and dynamic problems
(Abshouri, Meybodi, & Bakhtiary, 2011). Firefly-based algorithms have been effectively applied for
scheduling, task graphs, and job shop scheduling problems, and reported to perform better than
other popular metaheuristics approaches (Gandomi et al., 2011). Other variants of FA include binary
firefly algorithm and evolutionary discrete FA (Abshouri et al., 2011; Palit, Sinha, Molla, Khanra &
Kule, 2011). The performance of FA-based approaches can further be improved by using preferential
directions in the firefly movements.

In this study, we use the variation of the recently formulated metaheuristic technique known as new
discrete firefly algorithm (NDFA) first proposed by Yang, Cui, Xiao, Gandomi, and Karamanoglu (2013).

Different scheduling policies have been proposed to manage the queue of disk requests effi-
ciently by taking different disk parameters into consideration. The seek time is usually the primary
parameter considered in the implementation of the scheduling algorithms. For large disk requests,
rotational time is often omitted in most of the proposed algorithms because, it is lower in compari-
son to seek time. Apart from parameters indicated above, the other relevant parameters are
request deadline, request priority, and the request type (Andrews, Bender, & Zhang, 1996).

C
og

en
t E

ng
in

ee
ri

ng
 2

01
5.

2.

Page 3 of 12

Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

In the FA-based method to schedule disk requests, firefly parameters have been adjusted to result
in an improved performance over traditional strategies. Experimental results are promising, and
clearly indicate the superiority of the proposed approach.

This study progresses as follows: Section 2 provides the modelling methodology used in this study.
This section provides the brief explanation of the real-time disk scheduling problem along with an
induction of firefly algorithm (FA) and its variants. Section 3 illustrates the proposed approach and
our experimental results are presented in Section 4 along with the conclusion that is stated in the
Section 5.

2. Modelling methodology
A disk comprises a number of cylinders along with disk head. Each cylinder further contains a collec-
tion of tracks, where each track has the same distances from the center of the disk. Further, every
track has sectors with each sector having 32 bytes.

2.1. Problem statement
Given a set of n real-time disk requests r = r1, r2, r3.... rn−1, rn , the goal is to find a schedule with mini-
mal access time for the given set of requests, where n is the size of the queue which depends on the
type of application (Yeh, Kuo, Lei, & Yen, 1998). Assuming that the given disk scheduling sequence
has to serve two sequential tasks rj and ri. A seek-time cost is incurred when we serve the disk
request ri; that is when the disk-head travels from previous disk task cylinder(rj)to the requested disk
cylinder(ri) (Abbott & Garcia-Molina, 1990). In addition, a rotational latency, that is the amount of
delay in obtaining information from a disk due to the rotation of the disk, is also added to reach the
desired sector within ri. Finally, the transfer time is the time required to transfer requested data from
disk to a buffer (Ruemmler & Wilkes, 1994).

Equation 1 gives the Accessn(access time) for a given disk request (Abbott & Garcia-Molina, 1990).

where, n is the track length of a given disk request.

In this study, the transfer time and rotational latency parameters are taken as a single parameter
i.e. disk constant. Nonetheless, Seekn is a nonlinear equation that depends on the seek factor and
the associated track number (Equation 2) (Abbott & Garcia-Molina, 1990).

For disks that have a sizeable number of tracks, Seekn has a greater effect on the equation
term and “Disk constant” can be ignored (Equation 2). Therefore, the track number becomes a
significant parameter in these scheduling algorithms. Determining these parameters has been
subject of intense research for some time now. For example, in Fujitsu M2361A hard disk
(FUJITSU, 1984), the seek time with movement distance D

(
j, i) = (ri - rj) is calculated as follows

(Equation 3)

2.2. Firefly algorithm
The FA is a metaheuristic-based algorithm mimicking the flashing behavior of fireflies. The purpose
of a firefly’s flash is a signalling mechanism for attracting other fireflies. The execution of FA
proceeds with the following two idealized rules (Yang, 2010):

(1)Accessn = Seekn + Rotational Latency + TransferTime

(2)Accessn = SeekFactor ×
√

n + DiskConstant

(3)Seektime(Dj, i) =

�

4.6ms + 0.87ms
√

(Dj, i) ifDj, i ≤ 239

18ms + 0.028ms(Dj, i − 239) ifDj, i < 239

C
og

en
t E

ng
in

ee
ri

ng
 2

01
5.

2.

Page 4 of 12

Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

(a) All fireflies are attracted to other fireflies irrespective of their sex, and the measure of the
attractiveness of a firefly is in direct proportion to its brightness. The less bright firefly will move to-
ward the brighter one. The attractiveness of a firefly decreases with increasing distance. If a firefly
can not find the brighter one nearby than it makes a random movement.

(b) The landscape of an objective function determines the brightness (light intensity) of a firefly.

For a maximization problem, the brightness can simply be proportional to the objective function.
Although, other forms of brightness can also be formulated similar to the way, the fitness functions
are devised while applying other nature-inspired techniques like genetic algorithms or bacterial for-
aging algorithm (Gazi & Passino, 2004; Yang, 2010).

Each firefly represents one solution for the disk scheduling problem, which is a permutation repre-
sentation. Here, light intensity is a value that represents the brightness of a firefly. This value
depends on the total seek time of a schedule belonging to a firefly. Since the purpose is to find a
schedule with the minimum seek time, a firefly that has lesser seek time will have a greater light
intensity (brighter).

2.3. Functional parameters of a firefly
Succeeding sections elaborates different functional parameters utilized in devising the proposed
algorithm.

2.3.1. Light intensity and attractiveness
The execution of firefly algorithm depends on the disparity in light intensity and the conceptualiza-
tion of attractiveness;

Light intensity represents the brightness of a firefly and decreases with distance from its source.
Furthermore, due to absorption of light by air, attractiveness also varies with the degree of absorp-
tion (Equation 4).

where Io is the initial light intensity and � is the absorption coefficient (Arora & Singh, 2013).

The high light intensity represents a more optimum order of requests in the request queue. The
attractiveness of a firefly is bounded to its brightness associated with the ciphered fitness function.
The original FA defines the attractiveness function �r for any flat decreasing function as follows
(Equation 5) (Arora & Singh, 2013):

where �(r) is the attractiveness of a firefly at a distance r, which is the distance between two fireflies.
�0 is the brightness of a brighter firefly, and � is a fixed light absorption coefficient. For any two fire-
flies, firefly i and another brighter firefly j, initially we calculate the distance (r) between firefly i and
firefly j by using Equation 6. We then calculate the attractiveness of firefly j observed by firefly i at
distance r using Equation 5. If the attractiveness of firefly j is greater than the brightness (light
intensity) of firefly i , then firefly i will move toward firefly j, Otherwise, firefly i will move randomly.

2.3.2. Distance
In continuous optimization problems, the distance between two fireflies is calculated using Euclidean
distance. For disk scheduling, the distance between firefly i and firefly j can be defined as the number
of different edges between them. In Table 1, three edges 120-15, 500-79, and 60-11 in firefly j do not
exist in firefly i . Hence, the number of different edges between firefly i and firefly j is 3. Then, the
distance between two fireflies is calculated using following equation (Equation 6) (Yang et al., 2013).

(4)I = Io exp
−�r2

(5)�(r) = �o exp
−�r2

C
og

en
t E

ng
in

ee
ri

ng
 2

01
5.

2.

Page 5 of 12

Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

Where A is the total number of different edges between two fireflies, r is the distance between any
two fireflies and n is the number of disk requests. This equation scales r in the interval [0, 10] and
used for the attractiveness calculation.

2.3.3. Light absorption coefficient
In essence, the light absorption coefficient � characterizes the variation of the attractiveness value
of a firefly. Its value is crucial in determining the speed of convergence and the behavior of FA.
Theoretically, � ∈ [0,∞), however, in practice, � depends on the properties of the problem. If �→0,
the attractiveness will be constant and �(r) = �0. In this case, the attractiveness of a firefly will not
decrease when viewed by another. �→∞, signifies close to zero value of attractiveness of a firefly,
when viewed by another firefly. The coefficient � determines how much light intensity changes the
attractiveness of a firefly over distances.

2.3.4. Movement
For each firefly, find the brightest or the most attractive firefly. If there is a brighter firefly, then the
less bright firefly will move toward the brighter one and if there is no brighter one, it will move ran-
domly. We use a movement scheme which follows the edge-based movement. This scheme guaran-
tees that after one firefly moves toward a brighter one, the distance between them will decrease
(Yang et al., 2013).

2.3.5. Fitness function
In disk scheduling problem, the optimal solution is the best order of disk requests in the request
queue. Seek time is used as the fitness function in this study (Equation 3).

3. Proposed solution
Firefly was originally designed to solve continuous optimization problems (Yang, 2009). However,
the FA can also be discretized to solve the permutation problems. The discrete firefly algorithm (DFA)
has been successfully implemented to solve flow shop scheduling problems amongst others. The
DFA outperforms other widely employed metaheuristic algorithms such as ant colony algorithm
(Sayadi, Ramezanian, & Ghaffari-Nasab, 2010). Variation of DFA considered in this study includes:

(a) Evolutionary discrete firefly algorithm (EDFA): recently, EDFA has been developed for solving
TSP (Jati & Suyanto, 2011). However, in EDFA, firefly has no specific direction to move. Therefore,
evolutionary strategies like inversion mutation are adopted to determine the next movement. Each
firefly moves for m times using inversion mutation. The initial index of the chromosome is chosen
randomly in the beginning. Each firefly will have m new solutions. Therefore, after p moves, p ∗ m
new solutions will be generated resulting into p ∗ m + 1 total solutions, out of which p best fireflies
are chosen as the new population. Total number of solutions are constant after each generation.

(b) New discrete firefly algorithm (NDFA): the inversion mutation scheme which is used in EDFA
does not always guarantee the decrease in the distance between the 2 fireflies. Therefore, a new
DFA algorithm is introduced by Yang et al. (2013), which uses edge-based movement when a firefly
is to move towards another brighter firefly.

Figure 1 elucidates the edge-based movement mechanism used in NDFA. Two adjacent nodes x
and y collectively form an edge(x − y) or (y − x). In the edge-based movement between firefly i
and brightest firefly j, a unique (which does not exist in firefly i) edge(x − y) in firefly j is selected at

(6)r = (A∕n) ∗ 10

Table 1. Distance between two fireflies i and j
Firefly i 140 13 120 79 60 15 500 11 90 10 16 300 2
Firefly 140 13 120 15 500 79 60 11 90 10 16 300 2

C
og

en
t E

ng
in

ee
ri

ng
 2

01
5.

2.

Page 6 of 12

Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

random. After determining the positions of nodes x and y in the firefly i , segment around each node
is created comprising of the node itself. For each node (x and y), segments are extended towards
left and right to include those edges to the segment that are the part of firefly j. This extension of
the segments continues until no common edge can be found between firefly i and firefly j.
Subsequently, these two segments are merged such that nodes x and y appear adjacent to each
other in firefly i also. Thereby, referring to the addition of an edgex − y to the firefly i . Henceforth, a
segment built starting from node n is referred as Sn. There are four ways to accomplish this merger
of segments resulting into four new solutions (fireflies)

(1) � Inserting Sx before Sy
(2) � Inserting Sx after Sy
(3) � Inserting Sy before Sx

(4) � Inserting Sy after Sx inversion of some these segments might be required to ensure the presence

of edge(x − y) in firefly i.

This new scheme follows an inclusion of a new edge which exists in the brighter firefly and is not
a part of this firefly. This decrease in the number of edges that are unique to the brighter firefly guar-
antees the decrease in the distance between the two fireflies. Each firefly will have 2 cases:

Case 1  If it finds a brighter firefly, it uses new edge based mutation.
Case 2  If no brighter firefly is found, firefly will move randomly (inverse mutation).

When edge-based movement is used, four new solutions are found after the mutation. One of the
four solutions is chosen at random and added to the population. After p fireflies move using this
scheme, p best fireflies are chosen according to the objective function. A random movement of fire-
fly generates a new solution using inversion mutation in m different positions, on a chromosome.

In this paper, we adopt NDFA, which employs the new edge-based movement as illustrated through
the following pseudocode (Algorithm 1). Initially, each firefly generates an initial solution randomly.
For each firefly, the brightest or most attractive firefly is identified. Similar to NDFA, less bright firefly

Figure 1. Illustration of edge-
based movement scheme.

C
og

en
t E

ng
in

ee
ri

ng
 2

01
5.

2.

Page 7 of 12

Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

movement towards the brighter one will yield four new solutions. In the case of edge-based move-
ment, instead of taking randomly one of the four solutions generated (as the case with NDFA), we
have taken the best among the four mutations and the original firefly that replaces the original
firefly in the population. For the next iteration, the set of better fireflies will be determined on the
basis of the defined objective function viz seek time. This condition will continue until the maximum
iteration is reached. In metaheuristic algorithms, the evaluation of the objective function is the most
expensive computation. Owing to the two nested for loops involving population sizes i.e. p (one for
loop is implicit in the calculation of most attractive firefly) and an outer loop for the iteration t, the
complexity of the algorithm is O(p2t). Since, p is small in comparison to the number of iterations (t),
the complexity of the algorithm is linear in terms of t. Furthermore, we observe an early convergence
(Section 4.3) in the execution of the algorithm, which leads to a linear complexity comparable to
other algorithms considered in this study (Yang et al., 2013).

4. Simulation experiment and results
In this section, we confer the experimental results obtained by applying the proposed approach.
A comparison of the results obtained with previous popular techniques establishes the suitability of
proposed approach. For all implementations, we use a personal Computer with 2.10 GHZ of CPU and
4GB of RAM in the java environment. Equation 3 provides the specifications of the simulation built to
model the disk requests with a single data (Table 2) (FUJITSU, 1984; Seltzer et al., 1990).

Figure 2 demonstrates the execution steps of proposed algorithm. The values of following param-
eters need to be determined to apply the proposed algorithm;

(a)  Queue size: Maximum number of disk requests that the queue can accommodate.

(b)  The maximum track number of the disk.

(c)  Values of the control parameters

Algorithm 1: The new Edge based DFA Algorithm (Yang et al., 2013)

C
og

en
t E

ng
in

ee
ri

ng
 2

01
5.

2.

Page 8 of 12

Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

4.1. Performance for different instances disk sequences at given queue size
The performance of traditional scheduling algorithms depends on the number and type of disk I/O
requests. For example, in the case of heavy load on the disk, SCAN, or C-SCAN algorithms are pre-
ferred. Since, in these algorithms, head movement switches at the end of the disk. Otherwise, SSTF
or LOOK are the commonly applied traditional scheduling algorithms. But, these techniques are not

Table 2. Disk parameters pertaining to the disk model of Fujitsu M2361A
Cylinders per disk 842

Data transfer rate (MB/sec) 2.458

Seek time function (ms)
�

4.6 + 0.87×
√

(Dj, i) ifDj, i ≤ 239

18 + (Dj, i − 239)×0.028 ifDj, i < 239

Rotational speed (RPM) 3,600 + 2%

Figure 2. Flow chart of the
working scheme.

C
og

en
t E

ng
in

ee
ri

ng
 2

01
5.

2.

Page 9 of 12

Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

adaptive in nature and only use track information to optimize seek time. On the other hand, Bio-
inspired algorithm efficiently explore the search space in different scenarios and provide at least
equally good solution, if not better.

We simulated the traditional disk scheduling algorithms, namely LOOK, CSCAN, FCFS, SCAN, SSTF
(Teorey & Pinkerton, 1972), Silberschatz, Galvin, & Gagne, 2013) and compared their performance
with the proposed approach. The execution of algorithms took different random input disk requests
of queue size of 15.

Figure 3 illustrates the relative performance of different algorithms by plotting a graph between
different instances of randomly generated sequences of disk requests with the queue size, and the
value of total seek time in milliseconds.

We observed that FCFS show much higher values of total disk seek time in comparison to the other
traditional disk scheduling algorithms (LOOK, CSCAN, SCAN, and SSTF). Whereas SSTF and CSCAN
showed consistently low total seek time in contrast to the other known scheduling algorithms.

The proposed firefly algorithm prominently resulted in the lowest seek time in comparison to all
other algorithms over all the randomly generated disk sequences of queue size of 15 (Figure 3).

4.2. Variation in the total seek time with increasing queue size
The performance of different algorithms was tested with 10 randomly generated disk requests
against the queue size of 10, 15, 20, 25, and 30, respectively. To include more possibilities, we have
plotted the values by averaging over 10 instances. Each task has been assigned an equal priority.
The comparison of the proposed algorithm with existing algorithms (Figure 4) makes it clear that the
algorithm results in the lowest total seek time, but deteriorates in its performance in contrast to
others with increasing queue size. The seek time of the proposed algorithm increases with an
increase in the queue size, but the increment is almost linear.

4.3. Average Fitness of the Individuals from each successive generation
The overall fitness of individuals from each successive generation till the algorithm terminates has
been displayed to observe the working of the applied algorithm. That indicates the extent to which
a generation has learned from the previous one. The improvement in the subsequent generation is
clearly evident, while not getting trapped in local optimums. The graph shows (Figure 5) total seek
time plotted for the number of generations and the population evolved for a significant time over
500 generations. It shows a slow trend downward, with the biggest jump occurring in the first 50
generations. After the 70 generations, individuals maintained the stumbling behavior but prone
towards the target. We observe a steep falling slope for low numbers of generations followed by a

Figure 3. Comparison of total
seek time for the scheduling
algorithms at a queue size of
15.

C
og

en
t E

ng
in

ee
ri

ng
 2

01
5.

2.

Page 10 of 12

Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

leveling off. Thereby, suggesting little or no improvement beyond 100 generations. We observe that
after 100 generations, execution of the algorithm results in sufficiently stagnant fitness value and
stabilizes.

4.4. Variation of population size
The Figure 6 shows the total seek time plotted by varying the population size, i.e. the number of
fireflies, carried out for various values of queue size of a firefly. On observing, we see that the initial
fall in the seek time becomes steeper at higher queue size i.e. the absolute of slope increases with
increasing queue size. It is evident from Figure 6 that for a given population size, an increase in the
fitness value may not be deserving the added computation cost beyond a certain point. The results
affirm the belief that decreasing population size causes premature convergence that slows the
optimization speed down.

Figure 5. The variation of total
seek time (fitness) with the
proceeding generations.

Figure 4. Performance for
different instances disk
sequences at given queue size.

C
og

en
t E

ng
in

ee
ri

ng
 2

01
5.

2.

Page 11 of 12

Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

5. Conclusion and future work
This study recommends an approach based on the customized firefly optimization algorithm to
address the disk scheduling problem. The total seek time is the measurement of the performance of
algorithms here, with the criterion of a single parameter track number. Rotational latency is neglected
because of its lower value in comparison to the seek time. The comparison of the performances of the
proposed and traditional approaches verifies the superiority of the proposed approach.

Proposed customized firefly algorithm results in an efficient disk scheduling problem with lesser
number of disk requests. However, with the increasing number of disk requests, the performance of
FA is not optimal enough. Future work of this study may include the comparison of these algorithms
for parameters like respective throughput and missed ratios amongst others.

Acknowledgements
Corresponding author would like to take this opportunity to
acknowledge Prof C.S. Rai, Professor, USICT and Mr. Amrit
Pal Singh. Assistant Professor, GTBIT, GGSIPU, New-Delhi
to provide detailed insight of the functioning of firefly
algorithm.

Funding
The authors received no direct funding for this research.

Author details
Amandeep Singh1

E-mail: ads71993@gmail.com
Sidharth Thapar1

E-mail: sidharthapar@gmail.com
ORCID ID: http://orcid.org/0000-0002-3948-3156
Abhishek Bhatia1

E-mail: abhigenie92@gmail.com
Saurabh Singh1

E-mail: saurabhsingh.911@gmail.com
Rinkaj Goyal1

E-mail: rinkajgoyal@gmail.com
ORCID ID: http://orcid.org/0000-0002-4380-4012
1 �USICT, GGS Indraprastha University, Sector 16C, Dwarka

110078 New Delhi, India
† �All authors contributed equally in this paper.

Citation information
Cite this article as: Disk scheduling using a customized
discrete firefly algorithm, Amandeep Singh, Sidharth Thapar,
Abhishek Bhatia, Saurabh Singh & Rinkaj Goyal,
Cogent Engineering (2015), 2: 1011929.

References
Abbott, R. K., & Garcia-Molina, H. (1990). Scheduling I/O

requests with deadlines: A performance evaluation. In
Proceedings, 11th real-time systems symposium, 1990
(pp. 113–124). Lake Buena Vista, FL: IEEE.

Abshouri, A. A., Meybodi, M. R., & Bakhtiary, A. (2011). New
firefly algorithm based on multi swarm & learning
automata in dynamic environments. IEEE Proceedings,
13, 989–993.

Andrews, M., Bender, M. A., & Zhang, L. (1996). New algorithms
for the disk scheduling problem. In Proceedings of
37th conference on foundations of computer science.
Burlington, VT: IEEE Computer Society Press. doi:10.1109/
sfcs.1996.548514

Arora, S., & Singh, S. (2013). The firefly optimization algorithm:
Convergence analysis and parameter selection.
International Journal of Computer Applications, 69, 48–52.

Banati, H., & Bajaj, M. (2011). Firefly based feature selection
approach. International Journal of Computer Science
Issues, 8, 473–480.

Basu, B., & Mahanti, G. K. (2011). Firefly and artificial bees
colony algorithm for synthesis of scanned and broadside

Figure 6. Total seek time vs.
firefly population for different
lengths.

C
og

en
t E

ng
in

ee
ri

ng
 2

01
5.

2.

mailto:ads71993@gmail.com
mailto:sidharthapar@gmail.com
http://orcid.org/0000-0002-3948-3156
mailto:abhigenie92@gmail.com
mailto:saurabhsingh.911@gmail.com
mailto:rinkajgoyal@gmail.com
http://orcid.org/0000-0002-4380-4012
http://dx.doi.org/10.1109/sfcs.1996.548514
http://dx.doi.org/10.1109/sfcs.1996.548514

Page 12 of 12

Singh et al., Cogent Engineering (2015), 2: 1011929
http://dx.doi.org/10.1080/23311916.2015.1011929

© 2015 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

linear array antenna. Progress in Electromagnetics
Research B, 2, 169–190.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial
optimization. Canadian Society for Unconventional
Resources, 35, 268–308. doi:10.1145/937503.937505

Chen, T.-S., Yang, W.-P., & Lee, R. C. T. (1992). Amortized analysis
of some disk scheduling algorithms: SSTF, SCAN, and
N-Step SCAN. BIT Numerical Mathematics, 32, 546–558.

Falcon, R., Almeida, M., & Nayak, A. (2011). Fault identification
with binary adaptive fireflies in parallel and distributed
systems. In 2011 IEEE Congress of Evolutionary
Computation (CEC). New Orleans, LA: IEEE. doi:10.1109/
cec.2011.5949774

FUJITSU (1984). M236l a mini-disk drive customer engineering
manual. Retrieved from http://chiclassiccomp.org/docs/
content/computing/Fujitsu/B03P-4825-0002A02A_
M2361A_CE_Manual_Jan87.pdf

Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2011). Mixed variable
structural optimization using firefly Algorithm. Computers
& Structures, 89, 2325–2336.
doi:10.1016/j.compstruc.2011.08.002

Gazi, V. & Passino, K. M. (2004). Stability analysis of social
foraging swarms. IEEE Transactions on Systems Man
and Cybernetics, Part B (Cybernetics), 34, 539–557.
doi:10.1109/tsmcb.2003.817077

Huang, P. C., Lu, W. C., Chou, C. N., & Shib, W. K. (2005). The NP
hardness and the algorithm for real time disk scheduling
in a multimedia system. In Proceedings, 11th IEEE
International conference on embedded and real-time
computing systems and applications, 2005 (260–265).
Hong Kong: IEEE.

Huang, P. C., Lu, W. C., Chou, C. N., & Shih, W. K. (2005). The NP-
hardness and the algorithm for real-time disk-scheduling
in a multimedia system. In 11th IEEE International
conference on embedded and real-time computing
systems and applications (RTCSA’05). Hong Kong: IEEE.
doi:10.1109/rtcsa.2005.98

Jacobson, D. M., & Wilkes, J. (1991). Disk scheduling algorithms
based on rotational position. Palo Alto, CA: Citeseer.

Jati, G. K., & Suyanto, S. (2011). Evolutionary discrete
firefly algorithm for travelling salesman problem.
In A. Bouchachia (Ed.), Adaptive and Intelligent
Systems (pp. 393–403). Klagenfurt: Springer.
doi:10.1007/978-3-642-23857-4_38.

Ökdem, S., & Karaboga, D. (2006). Optimal disk scheduling based
on ant colony optimization algorithm. Erciyes University
Journal Institute of Science and Technology, 22, 11–19.

Palit, S., Sinha, S. N., Molla, M. A., Khanra, A., & Kule, M. (2011).
A cryptanalytic attack on the knapsack cryptosystem
using binary firefly algorithm. In 2011 2nd International
conference on computer and communication
technology (ICCCT-2011). Allahabad: IEEE. doi:10.1109/
iccct.2011.6075143

Rahmani, H., Arshad, S., & Moghaddam, M. E. (2009). A disk
scheduling algorithm based on ant colony optimization. In
ISCA PDCCS (pp. 37–42). Louisville, KY.

Ruemmler, C., & Wilkes, J. (1994). An introduction to disk drive
modeling. Computer, 27, 17–28. doi:10.1109/2.268881

Sayadi, M. K., Ramezanian, R., & Ghaffari-Nasab, N. (2010).
A discrete firefly meta-heuristic with local search for
makespan minimization in permutation flow shop
scheduling problems. International Journal of Industrial
Engineering Computations, 1(1), 1–10.
doi:10.5267/j.ijiec.2010.01.001

Seltzer, M., Chen, P., & Ousterhout, J. (1990). Disk
scheduling revisited. In Proceedings of the winter
1990 USENIX technical conference (pp. 313–323).
Washington, DC.

Senthilnath, J., Omkar, S. N., & Mani, V. (2011). Clustering
using firefly algorithm: Performance study. Swarm and
Evolutionary Computation, 1, 164–171.
doi:10.1016/j.swevo.2011.06.003

Silberschatz, A., Galvin, P. B., & Gagne, G. (2013). Operating
system concepts (Vol. 8). New York, NY: Wiley.

Teorey, T. J., & Pinkerton, T. B. (1972). A comparative analysis
of disk scheduling policies. Communications of the ACM,
15, 177–184.

Yagiura, M., & Ibaraki, T. (2001). On metaheuristic algorithms
for combinatorial optimization problems. System and
Computers in Japan, 32, 33–55. doi:10.1002/1520-
684X(200103)32:3<33::AID-SCJ4>3.0.CO;2-P

Yang, X.-S. (2009). Firefly algorithms for multimodal
optimization. In O. Watanabe & T. Zeugmann (Eds.),
Stochastic algorithms: Foundations and applications (pp.
169–178). Sapporo: Springer.

Yang, X.-S. (2010). Firefly algorithm, stochastic test functions
and design optimisation. International Journal of Bio-
inspired Computation, 2, 78–84.

Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A. H., & Karamanoglu, M.
(2013). Swarm intelligence and bio-inspired computation:
Theory and applications. Amsterdam: Newnes.

Yeh, T.-H., Kuo, C.-M., Lei, C.-L., & Yen, H.-C. (1998). Competitive
analysis of on-line disk scheduling. Theory of Computing
Systems, 31, 491–506.

C
og

en
t E

ng
in

ee
ri

ng
 2

01
5.

2.

http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1109/cec.2011.5949774
http://dx.doi.org/10.1109/cec.2011.5949774
http://chiclassiccomp.org/docs/content/computing/Fujitsu/B03P-4825-0002A02A_M2361A_CE_Manual_Jan87.pdf
http://chiclassiccomp.org/docs/content/computing/Fujitsu/B03P-4825-0002A02A_M2361A_CE_Manual_Jan87.pdf
http://chiclassiccomp.org/docs/content/computing/Fujitsu/B03P-4825-0002A02A_M2361A_CE_Manual_Jan87.pdf
http://dx.doi.org/10.1016/j.compstruc.2011.08.002
http://dx.doi.org/10.1109/tsmcb.2003.817077
http://dx.doi.org/10.1109/rtcsa.2005.98
http://dx.doi.org/10.1007/978-3-642-23857-4_38
http://dx.doi.org/10.1109/iccct.2011.6075143
http://dx.doi.org/10.1109/iccct.2011.6075143
http://dx.doi.org/10.1109/2.268881
http://dx.doi.org/10.5267/j.ijiec.2010.01.001
http://dx.doi.org/10.1016/j.swevo.2011.06.003
http://dx.doi.org/10.1002/1520-684X(200103)32:3<33::AID-SCJ4>3.0.CO;2-P
http://dx.doi.org/10.1002/1520-684X(200103)32:3<33::AID-SCJ4>3.0.CO;2-P

	 Disk scheduling using a customized discrete firefly algorithm
	1. Introduction
	2. Modelling methodology
	2.1. Problem statement
	2.2. Firefly algorithm
	2.3. Functional parameters of a firefly
	2.3.1. Light intensity and attractiveness
	2.3.2. Distance
	2.3.3. Light absorption coefficient
	2.3.4. Movement
	2.3.5. Fitness function

	3. Proposed solution
	4. Simulation experiment and results
	4.1. Performance for different instances disk sequences at given queue size
	4.2. Variation in the total seek time with increasing queue size
	4.3. Average Fitness of the Individuals from each successive generation
	4.4. Variation of population size

	5. Conclusion and future work

