
Restating the Case for Weighted-IPC Metrics to
Evaluate Multiprogram Workload Performance

Stijn Eyerman Lieven Eeckhout
Ghent University, Belgium

Abstract—Weighted speedup is nowadays the most commonly used multiprogram workload performance metric. Weighted
speedup is a weighted-IPC metric, i.e., the multiprogram IPC of each program is first weighted with its isolated IPC. Recently,
Michaud questions the validity of weighted-IPC metrics by arguing that they are inconsistent and that weighted speedup favors
unfairness [4]. Instead, he advocates using the arithmetic or harmonic mean of the raw IPC values of the programs in the
multiprogram workload. We show that weighted-IPC metrics are not inconsistent, and that weighted speedup is fair in giving equal
importance to each program. We argue that, in contrast to raw-IPC metrics, weighted-IPC metrics have a system-level meaning,
and that raw-IPC metrics are affected by the inherent behavior of the programs. We also show that the choice of a metric may
adversely affect the conclusions from an experiment. We suggest to use two weighted-IPC metrics—system throughput (STP)
and average normalized turnaround time (ANTT)—for evaluating multiprogram workload performance, and to avoid raw-IPC
metrics.

F

1 INTRODUCTION

M ETRICS for evaluating the performance of multipro-
gram workloads on multicore or multithreaded pro-

cessors have been subject of a long and still lasting debate.
Early studies used the sum of the IPCs of each program
[6], but Snavely and Tullsen [5] argued that this metric
favors high-IPC programs and proposed weighted speedup
instead. Later, Luo et al. [3] proposed the harmonic mean
of the speedups instead of the sum or the arithmetic mean.
Because the harmonic mean tends to be lower when there
is much variance, it incorporates a notion of fairness. Both
metrics are weighted-IPC metrics, i.e., the IPC of each
program in the multiprogram experiment is first divided
by the IPC of that program when run in isolation.

Since then, there seems to have risen some agreement
on the use of weighted-IPC metrics. Today, about 75% of
the papers that evaluate multiprogram performance use
weighted speedup (sample from the HPCA, ASPLOS, ISCA
and MICRO conferences in 2012). About 20% also evaluate
the harmonic mean of speedups. 20% still use the sum of
IPCs, but always in combination with the weighted speedup
metric.

Recently, Michaud [4] questions the consistency and va-
lidity of weighted-IPC metrics. He argues that speedup
metrics (including weighted speedup and harmonic mean of
speedups) are inconsistent and should therefore not be used.
Instead, he advocates the use of raw IPC values, instead
of weighted IPC values, and he proposes to aggregate
the raw IPCs using either the arithmetic or the harmonic
mean. He claims that these metrics are a stronger indicator
of throughput increase than the weighted metrics. In this
paper, we challenge this claim, and restate the case for the
weighted-IPC metrics.

The next section gives an overview of the commonly used
multiprogram workload performance metrics. Sections 3
and 4 challenge Michaud’s claims that the weighted-IPC
metrics lack consistency and favor unfairness. Section 5

. Manuscript submitted: 01-Mar-2013. Manuscript accepted: 31-
Mar-2013. Final manuscript received: 09-Apr-2013.

discusses the intuition of weighted-IPC metrics compared
to raw-IPC metrics. Section 6 shows results from real ex-
periments and concludes that the choice of the performance
metric does matter in practical situations. Finally, we con-
clude in Section 7.

2 MULTIPROGRAM PERFORMANCE METRICS

There are two categories of multiprogram workload perfor-
mance metrics: the raw-IPC metrics, which use the raw IPCs
of the benchmarks in the multiprogram experiment, versus
weighted-IPC metrics, which divide the multiprogram IPCs
by the isolated IPCs.

Let IPCMP
i be the IPC of program i in the multiprogram

experiment. The raw-IPC metrics are defined as

perf = f(IPCMP
i), (1)

where f can be the sum, arithmetic mean, the harmonic
mean or the geometric mean.

Weighted-IPC metrics on the other hand first weight the
IPC of a program with its isolated IPC, i.e., its IPC when
run alone on the system or its single-program IPC, IPCSP

i :

perf = f(
IPCMP

i

IPCSP
i

). (2)

The function f can again be the sum, arithmetic mean, the
harmonic mean or the geometric mean (although the latter
is not common). Weighted speedup [5] uses the sum; Luo
et al. [3] propose to use the harmonic mean.

In our own prior work [2], we argued that weighted
speedup can be interpreted as a measure for system
throughput (STP), i.e., the number of jobs finished per unit
of time. The harmonic mean of weighted IPCs is the recipro-
cal of the average normalized turnaround time (ANTT), i.e.,
the average slowdown of each program in the multiprogram
workload versus isolated execution. We also make the case
that IPCSP

i should be the IPC over the same instructions
as executed in the multiprogram experiment. For example,
if a program only executes half of its instructions in the
multiprogram experiment, the isolated IPC is the IPC of the
first half of the instructions in isolated execution.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 13, NO. , J - 20142 ULY DECEMBER 93

15 5 -605 6 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
6

D ate of publication 201.
Digital Object Identifier 10.1109/LL-CA.201 .9

date of current version 2014..;

3 31 Dec
3

05 May
9

TABLE 1
Multiprogram speedup metrics (from [4]).

single machine X machine Y
program running AB running AB

benchmark A IPC = 1 IPC = 0.5 IPC = 1
benchmark B IPC = 2 IPC = 1 IPC = 0.5
weighted speedup 1 1.25
H-mean of speedups 0.5 0.4
STP 1 1.25
ANTT 2 2.5
A-mean of IPCs 0.75 0.75
H-mean of IPCs 0.66 0.66

3 WEIGHTED-IPC METRICS ARE CONSISTENT

Michaud’s first objection against weighted-IPC metrics is
the lack of consistency [4]. He defines a consistent metric
as a metric for which the result remains the same when the
IPCs of the various benchmarks are permuted in the metric’s
formula. This is a justifiable definition and intuitively makes
sense: all programs should be treated equally, and none
should be (dis)favored. However, all of the metrics defined
in the previous section comply with that definition, since
summation and multiplication are commutative.

Table 1 shows Michaud’s example to support his claim.
Machine X runs both benchmarks at half their original
speed, while machine Y runs one benchmark at its original
speed, and one at a quarter of its speed. Michaud points to
the fact that weighted speedup and the harmonic mean of
speedups lead to different conclusions: weighted speedup
suggests that machine Y performs better than machine X,
while the harmonic mean indicates the opposite conclusion.
The raw-IPC metrics, on the other hand, indicate that both
machines perform equally well.

However, as discussed in [2], STP (weighted speedup)
and ANTT (reciprocal of hmean of speedups) both measure
a different aspect of multiprogram performance. Machine X
executes each benchmark at half its original speed, so its
total throughput is equal to a single-threaded machine that
executes the benchmarks sequentially. Machine Y executes
one program at its original speed, and one at a quarter, so its
total throughput is 1.25 times higher than a single-threaded
machine. This is reflected in the STP numbers. However, for
machine X, each of the programs has a two-fold slowdown,
while for machine Y, one has no slowdown and one executes
four times slower. The average slowdown for X is 2, and 2.5
for Y, which are the ANTT numbers.

We can therefore conclude that machine Y has a higher
throughput but also a larger average turnaround time than
machine X. There is no inconsistency. There is also no
objective reason to conclude that both machines perform
equally well, as the raw-IPC metrics suggest. Machines X
and Y behave differently, which is reflected in the STP and
ANTT metric (Y has a higher throughput at the cost of a
higher average turnaround time compared to X).

4 WEIGHTED-IPC METRICS TREAT PROGRAMS
EQUALLY FAIR

Michaud’s second objection against the weighted speedup
metric is that it favors unfairness. A configuration can
show an increase in weighted speedup (or STP), while
fairness is decreased. This is not in contradiction with the
system-level meaning of weighted speedup as explained in

[2]. Weighted speedup or STP quantifies the system-level
throughput of the processor, which is the average number
of jobs finished per unit of time. This is irrespective of
how fair the throughput is divided among the programs.
As shown in Table 1, throughput can be increased at the
expense of fairness: machine Y favors benchmark A at the
expense of benchmark B, so it is less fair, but it achieves a
higher throughput.

This might seem surprising, because weighted speedup
was introduced in [5] as a metric that is more fair compared
to the sum of raw IPCs, which had been used prior to [5].
In fact, weighted speedup treats the programs in a more
fair way than the sum of raw IPCs: a low-IPC program has
the same weight as a high-IPC program, and no program is
(dis)favored because of its inherent behavior. For example,
assume a program with an isolated IPC of 0.2. A reduction
of 0.1 in IPC will result in a slowdown of a factor of 2, as
observed by the user. On the other hand, a program with
an isolated IPC of 2 will experience a slowdown of only 5%
if its IPC is reduced by 0.1. Raw-IPC metrics consider both
slowdowns equally important, while weighted-IPC metrics
capture the user and system perceived performance relative
to isolated execution.

So, weighted speedup is more fair than raw-IPC metrics
in the way the programs are treated, but it does not capture
the variation in the amount of performance degradation
between the programs. To quantify that kind of fairness,
ANTT can be used or a specific fairness metric [2].

5 WEIGHTED-IPC METRICS ARE MORE INTUITIVE

In the previous section, we already touched upon the fact
that weighted-IPC metrics are more intuitive than raw-IPC
metrics in the sense that they capture the user’s and sys-
tem’s perception of performance. In a multiprogram context
(multiple single-threaded programs), individual programs
will almost always have the same or lower performance
compared to isolated execution. There is usually no positive
interference, where a program speeds up the execution of
another program; there is only negative interference in the
shared resources. On the other hand, there is an increase in
system throughput, because multiple programs run concur-
rently. To evaluate multiprogram workload performance, it
is therefore important to evaluate both components: indi-
vidual program performance degradation and total system
throughput increase, which is exactly what ANTT and STP
measure.

Put differently, the programs in a multiprogram workload
have an inherent workload behavior, which is determined
by how the program is constructed (instruction mix, de-
pendencies, memory access behavior, branch behavior, etc.).
The effect of the inherent behavior on the IPC can be
measured by an isolated run. A low-IPC program will
remain low-IPC in a multiprogram context, while a high-
IPC program is more likely to remain relatively high-IPC, if
the system is somewhat fair. As described in the previous
section, it is not fair to give equal weight to an absolute
IPC reduction for low- and high-IPC programs. Calculating
relative performance reductions is more intuitive and has a
system-level meaning.

In order to further illustrate the intuition behind
weighted-IPC metrics versus raw-IPC metrics, we elaborate
some artificial examples. These contain numbers that are

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 13, NO. , J 2014 ULY-DECEMBER294

TABLE 2
Example 1. The multithreaded processor consistently halves

the performance for each of the programs.

single multi
program program

exp. 1 benchmark A IPC = 1 IPC = 0.5
benchmark B IPC = 2 IPC = 1

exp. 2 benchmark A’ IPC = 0.5 IPC = 0.25
benchmark B IPC = 2 IPC = 1

metric exp. 1 exp. 2
STP 1 1
ANTT 2 2
A-mean IPCs 0.75 0.625
H-mean IPCs 0.67 0.4
G-mean IPCs 0.71 0.5

TABLE 3
Example 2. Both multi-threaded processors halve the
performance of one program, the other one runs at full
speed. Machine X favors the high-IPC program, while

machine Y favors the low-IPC program.

single multi
program program

machine benchmark A IPC = 1 IPC = 0.5
X benchmark B IPC = 2 IPC = 2
machine benchmark A IPC = 1 IPC = 1
Y benchmark B IPC = 2 IPC = 1

metric machine X machine Y
STP 1.5 1.5
ANTT 1.5 1.5
A-mean IPCs 1.25 1
H-mean IPCs 0.8 1
G-mean IPCs 1 1

made up, in order to illustrate certain cases. Section 6
contains results from real simulation experiments.

Assume we have a two-threaded processor that con-
sistently halves the performance of each program (e.g., a
poorly designed SMT processor). Table 2 shows two exper-
iments on this processor. The difference between the exper-
iments is one benchmark (A in the first experiment, A’ in
the second; benchmark B is the same in both experiments).

STP and ANTT are consistent for both experiments:
STP=1 means that the processor has the same throughput
as a single-threaded processor, and ANTT=2 means that
each program takes twice as long to execute compared to
isolated execution. This is what can be intuitively expected
for this processor. The raw-IPC metrics on the other hand
are not consistent: the performance numbers are lower
for the second experiment compared to the first. The raw
IPC numbers depend on the inherent characteristics of the
considered benchmarks (i.e., their single-program IPC). We
can conclude that STP and ANTT quantify system per-
formance, independent of the benchmark selection, while
raw-IPC metrics are affected by the inherent characteristics
of the individual benchmarks, which leads to less general
conclusions.

In our next example (see Table 3), we compare two
different machines X and Y using the same benchmarks.
Both machines halve the performance of one program,

while the other program runs at full speed. For machine X,
the high-IPC program (benchmark B) has no performance
degradation, while machine Y favors the low-IPC program
(benchmark A).

The STP and ANTT metrics are again consistent: the
throughput is 1.5 times higher than the single-threaded
machine, and turnaround time is increased by a factor of
1.5. The raw-IPC metrics are inconsistent: the arithmetic
mean favors the machine that is best for high-IPC programs,
while the harmonic mean picks the machine that favors
low-IPC programs. The geometric mean provides the correct
conclusion that both processors perform equally well in this
case, but it has no physical meaning.

6 THE CHOICE OF MULTIPROGRAM METRICS MAT-
TERS FOR REAL EXPERIMENTS

The examples in the previous sections all consist of numbers
that were made up in order to illustrate the (un)intuitiveness
of the metrics under discussion. In most cases, these num-
bers are fairly extreme, to better clarify the case. One may
ask the question whether the choice of metric makes a
difference in real design studies and experiments. Real
numbers tend to be less extreme, and in many cases the
difference between two design alternatives is so clear that
every metric that makes some sense provides the same
qualitative conclusion (although the quantitative numbers
may differ).

To evaluate the importance of metric choice, we set up
the following study. We looked up the results from an
experiment that compares multiple fetch policies for SMT
processors executing multiprogram workloads (details are
in [1]). We selected two fetch policy comparisons, one
where the difference in performance is large (more than
10% difference in STP and ANTT; ICOUNT versus MLP-
aware FLUSH in this case), and one where the difference
in performance is less clear (less than 5% difference in STP
and ANTT; MLP-aware FLUSH versus DCRA in this case).
We picked the numbers for 30 four-program combinations
running on a four-way SMT processor.

Tables 4 and 5 show the number of workloads (out
of the 30 four-program combinations) for which different
metrics result in contradictory conclusions. We say that two
metrics result in an contradictory conclusion if one metric
suggests an improvement in performance while the other
one suggests a performance degradation when comparing
the two fetch policies for the same workload. For example,
in Table 4, the fourth number in the first row of num-
bers indicates that for 11 of the workloads, the conclusion
(performance improvement or degradation) for H-mean of
IPCs is opposite to that of STP. The average percentage
of difference over all workloads is also reported for every
metric.

For the pair of fetch policies where the difference in
performance is clear (Table 4), STP and ANTT are in agree-
ment for every workload (no contradictory conclusions).
Although a disagreement in STP and ANTT is not a prob-
lem, as explained before, the second configuration has both
higher throughput (better STP) and lower turnaround times
(lower ANTT) in this experiment. The raw-IPC metrics
agree relatively well with that conclusion, except for the
harmonic mean of IPCs. Approximately one third of the
workloads (9 to 11 out of 30) has a different conclusion

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 13, NO. , J - 20142 ULY DECEMBER 95

TABLE 4
Number of contradictory conclusions for every pair of

metrics, and average percentage of difference, for two fetch
policies that have a clear performance difference. The total

number of workloads is 30.

STP ANTT A-mean H-mean G-mean
of IPCs of IPCs of IPCs

STP 0 0 1 11 0
ANTT 0 0 1 10 0
A-mean 1 1 0 11 1
H-mean 11 10 11 0 9
G-mean 1 0 1 9 0
avg 16% -12% 22% 3% 13%

TABLE 5
Number of contradictory conclusions for every pair of

metrics, and average percentage of difference, for two fetch
policies that have a small performance difference. The total

number of workloads is 30.

STP ANTT A-mean H-mean G-mean
of IPCs of IPCs of IPCs

STP 0 11 1 13 5
ANTT 11 0 9 7 2
A-mean 1 9 0 12 5
H-mean 13 7 12 0 4
G-mean 5 2 5 4 0
avg 0.9% 2.7% 0.8% -5.5% -1.7%

for this metric compared to the other metrics. In these
cases, the harmonic mean of IPCs indicates a performance
degradation, while the other metrics show an improvement.
This is the case when one of the IPCs is low in the first
configuration, and slightly lower in the second one, while
the IPCs of the other jobs are higher and increase. The small
decrease in a low number has a much higher penalty in
the harmonic mean than the gains due to higher increases
in high numbers. Since the IPC for this job is already low
in isolated execution, STP and ANTT account for that. We
can conclude that in case of a clear performance difference,
all metrics provide the same conclusion, except for the
harmonic mean of IPCs. However, the latter metric is the
one that Michaud advocates in his paper.

Table 5 shows the results for the case where the perfor-
mance difference is small between the two fetch policies.
The STP and ANTT metrics are now contradictory for one
third of the workloads. As discussed before, this is not a
problem: the averages show that throughput is increased,
but there is also an increase in turnaround time. Or in
other words, the one fetch policy (DCRA in this case)
yields higher system throughput compared to the other
fetch policy (MLP-aware FLUSH in this case) at the cost of
increased average job turnaround time. The arithmetic mean
of IPCs seems to correlate better to STP, while the geometric
mean has a better correlation with ANTT. However, none of
these metrics provide the same conclusion as the weighted-
IPC metrics for all of the workloads. The harmonic mean
again shows the largest disagreement with the other metrics.

Note that this particular study does not show that one
or another metric makes more sense. Due to the absence of
a golden reference metric, we can only say that different
metrics can lead to different conclusions. The previous
sections were meant to show that STP and ANTT make

more sense, are more intuitive and have a system-level
meaning, in contrast to raw-IPC metrics. This section shows
that using raw-IPC metrics can lead to different conclusions
versus using weighted-IPC metrics, and therefore, raw-IPC
metrics may result in incorrect conclusions.

7 CONCLUSION

In this paper, we restated the case for using weighted-IPC
metrics for multiprogram workloads, and we showed that
raw-IPC metrics, as proposed by Michaud [4], can lead
to wrong conclusions. The main insight is that raw-IPC
metrics are affected by the inherent behavior of programs
in the workload, and that they do not capture user and
system perceived performance. Weighted-IPC metrics on
the other hand, weight multi-program performance of a
program against its isolated performance, which leads to
insightful metrics with a system-level meaning.

We argue that the weighted-IPC metrics do not suffer
from inconsistency, in contrast to what Michaud claims.
In fact, the examples in Section 5 show that the raw-IPC
metrics are less consistent from the viewpoint of system-
level performance. Fairness is also not a concern, because a
pure throughput metric as STP is not supposed to account
for fairness. Fairness can be calculated separataly, but is also
incorporated in the ANTT metric.

We also show that the choice of the performance metric
does affect conclusions in real experiments, especially when
the performance difference between the design alternatives
is small. Picking the wrong metrics can therefore lead to
incorrect conclusions.

We conclude that for multiprogram workload evaluations,
at least STP and ANTT should be reported, possibly com-
plemented with a fairness metric. Raw-IPC metrics should
be avoided at all times.

ACKNOWLEDGEMENTS

Stijn Eyerman is supported through a postdoctoral fel-
lowship by the Research Foundation – Flanders (FWO).
Additional support is provided by the European Research
Council under the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) / ERC Grant agreement
no. 259295.

REFERENCES

[1] S. Eyerman and L. Eeckhout, “A memory-level parallelism
aware fetch policy for SMT processors,” in Proceedings of the
International Symposium on High-Performance Computer Architec-
ture (HPCA), Feb. 2007, pp. 240–249.

[2] ——, “System-level performance metrics for multi-program
workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53, May/June
2008.

[3] K. Luo, J. Gummaraju, and M. Franklin, “Balancing throughput
and fairness in SMT processors,” in Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), Nov. 2001, pp. 164–171.

[4] P. Michaud, “Demystifying multicore throughput metrics,”
Computer Architecture Letters (In Preprint), 2012.

[5] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for
simultaneous multithreading processor,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Nov. 2000, pp. 234–
244.

[6] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous mul-
tithreading: Maximizing on-chip parallelism,” in Proceedings of
the 22nd Annual International Symposium on Computer Architecture
(ISCA), Jun. 1995, pp. 392–403.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 13, NO. , J 2014 ULY-DECEMBER296

