
A Fast Algorithm Combining FP-Tree and TID-List for
Frequent Pattern Mining

Lan Vu, Gita Alaghband, Senior Member, IEEE

Department of Computer Science and Engineering, University of Colorado Denver, Denver, CO, USA
{lan.vu, gita.alaghband}@ucdenver.edu

Abstract - Finding frequent patterns plays an essential role
in mining associations, correlations, and many other
interesting relationships among variables in transactional
databases. The performance of a frequent pattern mining
algorithm depends on many factors. One important factor is
the characteristics of databases being analyzed. In this
paper we propose FEM (FP-growth & Eclat Mining), a new
algorithm that utilizes both FP-tree (frequent-pattern tree)
and TID-list (transaction ID list) data structures to discover
frequent patterns. FEM can adapt its behavior to the dataset
properties to efficiently mine short and long patterns from
both sparse and dense datasets. We also suggest a
combination of several optimization techniques for
effectively implementing FEM to speed up the mining
process. The experimental results show that a significant
improvement in performance is achieved.

Keywords: knowledge mining, data mining, frequent
pattern mining, association rule mining, frequent itemset.

1 Introduction
 Frequent pattern mining is one of the fundamental
problems in data mining. It plays an important role in
finding many types of relationships among data such as
associations [1], correlations [4], causality [5], sequential
patterns [6], episodes [7] and partial periodicity [8].
Moreover, it helps in data indexing, classification,
clustering, and other data mining tasks as well [9].

 The frequent pattern mining problem aims to search
for groups of itemsets, subsequences, or substructures that
co-occur frequently in a dataset. In a typical transactional
database, the number of distinct single items and their
combinations are usually very large. For a small minimum
support threshold, the number of itemsets generated can be
extremely large. Hence, it is a great challenge to design
algorithms for mining frequent patterns that scale with
memory size and run in reasonable time [22]. Among
numerous proposed methods, Apriori, FP-growth and Eclat
are most popular and widely used.

 The Apriori algorithm [1] utilizes the property, that a
k-itemset is frequent only if all of its sub-itemsets are
frequent, to reduce the search space of frequent itemsets. It
is built on a recurrence relation where to find frequent k-
itemsets, Apriori uses frequent (k-1)-itemsets found in the
previous step. Many variants of Apriori have been proposed

to improve the mining efficiency, e.g. direct hashing and
pruning (DHP) [10], sampling technique [23], dynamic
itemset counting (DIC) [24]. FP-growth [3] works in a
divide-and-conquer fashion. It compresses the database into
a FP-tree, constructs its conditional FP-trees and recursively
mines on these trees to find the frequent itemsets. Some
extensions of FP-growth include an array technique to
reduce the FP-tree traversal time [13], the usage of FP-array
data structure [16], H-mine [17] and nonordfp [18]. While
Apriori and FP-growth explore the horizontal data format,
Eclat [2] uses the vertical TID-lists of frequent (k-1)-
itemsets to find the frequent k-itemsets by intersecting these
TID-lists and computing their resulting supports. Mafia
[11], AIM [14], mining using diffsets [21] are similar
approaches in using the vertical data format. However, all
these methods have advantages and disadvantages that make
one suitable for specific databases and computing platforms.
Hence, hybrid method is another approach to exploit the
benefits of many mining methods.

 In this paper we propose FEM (FP-growth & Eclat
Mining), a new algorithm for frequent pattern mining that
combines the techniques used in the FP-growth and Eclat
algorithms. Our approach uses FP-tree to store the compact
database in memory and recursively mine the frequent
patterns from this data structure similar to the FP-growth
approach. In addition, FEM will automatically switch from
mining FP-trees using FP-growth to mining TID-lists using
Eclat depending on the structure of the currently processed
data. In order to enable the mining task using Eclat method,
during the pattern growth process, the conditional pattern
base [3] of a frequent item will be transformed into TID-
lists [2] if its size is small enough for better mining on the
vertical data structure. FEM can adapt its behavior to the
database characteristics for efficiently mining both short and
long patterns from sparse and dense datasets. We also
suggest a combination of several optimization techniques
for implementing FEM to speed up the frequent pattern
mining process. Our experimental results show that a
significant improvement of performance is achieved using
our proposed approach.

 This paper is organized as follows. Section 2 provides
the essential background knowledge. Our FEM algorithm is
described in section 3. Section 4 presents optimization
techniques for FEM. Experiments and performance study
are presented in section 5. The final section summarizes our
study and points out some future research directions.

2 Background

2.1 Frequent pattern mining problem

 The frequent pattern mining problem can be stated as
follows: Let I = {i1, i2, . . . , in} be the set of all distinct items
in transactional database D. The support of an itemset α (a
set of items) is the number of transactions containing α in D.
A k-itemset α, which consists of k items from I, is frequent if
α’s support is no fewer than , where  is a user-specified
minimum support threshold. Given a database D and
minimum support threshold , the problem statement is to
find the complete set of frequent itemsets in D.

 For example, given the dataset in table I and minimum
support threshold =3, the frequent 1-itemsets include a, b,
c, d and e while f and g are infrequent because f and g occur
only 2 times. Similarly, ab, ac, ad, ae, bc, bd are frequent
2-itemsets and abc is the only frequent 3-itemset found.

2.2 The FP-growth algorithm and FP-tree structure

 FP-growth is a well-known algorithm proposed by
Han et al. [3] for frequent pattern mining. It utilizes the FP-
tree (frequent pattern tree) to efficiently discover the
frequent patterns. FP-tree is an extended prefix-tree
structure that uses the horizontal database format and stores
compressed information about patterns. It consists of one
root node, a set of item prefix subtrees as the children of the
root, and a frequent-item header table. Each node of the FP-
tree includes an item name, a link to the next node in the
linked list of its appropriate frequent item and a count
indicating the number of transactions that contains all items
in the path from the root node to the current node. The
header table stores the frequent items in frequency
descending order. Each entry of this table includes item
name, item support and a link to the head node in the linked
list of its frequent item. The FP-tree is organized so that if
two transactions share a common prefix, the shared part can
be merged as long as the count properly reflects the
occurrence of each itemset in the transactions.

 FP-growth requires only two scans on the dataset. In
the first scan, the frequency items are found to generate the
header table. The dataset is re-scanned to achieve and sort
the frequent items in each transaction as illustrated in the
third column in Table 1. These items are inserted into FP-
tree in frequency descending order. If the appropriate node

of an item exists, its count is increased by one. Otherwise, a
new node is inserted to the FP-tree. Figure 1 illustrates the
FP-tree constructed from the dataset in Table 1.

Fig. 1 FP-tree constructed from the dataset in Table I

 The next step is to mine the FP-tree by constructing
the conditional pattern base and then constructing the
conditional FP-tree of each frequent item as described by an
example in Section 3.2, and performing mining recursively
on such a tree [3]. The frequent items of a resulting
conditional FP-tree are combined with the suffix-pattern to
generate the new frequent patterns.

2.3 The Eclat algorithm and TID-list structure

 Eclat is another efficient algorithm for frequent pattern
mining developed by Zaki et al. [2]. This algorithm utilizes
the TID-list data structure (transaction ID list), a vertical
format of database, for the mining task. A TID-list of an
item or itemset is a list that stores the IDs of transactions
containing that item or itemset. Eclat, similar to FP-growth,
applies the depth-first approach to search for frequent
patterns and needs only two database scans. It first scans the
database to find all frequent items. In the second database
scan, it generates the TID-lists of the frequent items. This
algorithm organizes frequent k-itemsets into disjoint
equivalence classes by common (k-1)-prefixes. The
candidate (k+1)-itemsets can be generated by joining pairs
of frequent k-itemsets from the same classes. The main
advantage of using TID-list is that the support of a candidate
itemset can be computed simply by intersecting the TID-
lists of the two component subsets. A simple check on the
resulting TID-list tells whether the new itemset is frequent
or not. Figure 2 demonstrates the TID-lists and the Eclat
mining process for the dataset in the Table I.

Fig. 2 Mining TID-lists using Eclat

b
1
2
5
6
8
9

a
1
3
4
5
6
8
9

e
3
4
9

d
1
2
3
4
8

c
2
3
5
6
9

ab
1
5
6
8
9

ac
3
5
6
9

ad
1
3
4
8

ae
3
4
9

bc
2
5
6
9

bd
1
2
8

be
9

ce
3
9

cd
2
3

de
3
4

abc
5
6
9

abd
1
8

acd
3

bcd abe
9

ace
3
9

ade
3
4

a:7

b:5
b:1

c:1

d:1
c:1

d:1
d:1

e:1e:1 e:1

d:2

c:3

Header table
a:7
b:6
c:5
d:5
e:3

root

TABLE I
A DATASET WITH MINIMUM SUPPORT THRESHOLD = 3

TID Items Sorted frequent items
1 b,d,a a,b,d
2 c,b,d b,c,d
3 c,d,a,e a,c,d,e
4 d,a,e a,d,e
5 c,b,a a,b,c
6 c,b,a a,b,c
7 f,g
8 b,d,a a,b,d
9 c,b,a,e,f,g a,b,c,e

3 The FEM algorithm

3.1 Overview of the FEM algorithm

 In the FP-growth algorithm, the frequent patterns are
discovered from the conditional FP-trees which are
recursively constructed from the original FP-tree. The shape
of FP-trees is usually wide for sparse datasets and more
compact for the dense ones. In either case, the size of newly
generated trees is much smaller than their original one. We
found that this size will reduce to a level where mining with
an alternative data structure performs better. Additionally,
the conditional pattern base of a given item can be easily
converted into TID-lists which are more cache-friendly than
the trees with linked lists and pointers are. We therefore
propose FEM, an algorithm combining mining techniques of
FP-growth and Eclat, to discover frequent patterns. FEM
flexibly uses both FP-tree and TID-list for its mining task.
In the pattern growth process, it switches between FP-
growth strategy and Eclat strategy depending on whether
FP-tree or TID-list provides better performance. FEM
consists of the following three main tasks:

 FP-tree construction: Database is scanned for the first
time to find the frequent items and create the header table. A
second database scan is conducted to get and sort frequent
items of each transaction in the support-descending order
and then build the FP-tree.

 FP-tree mining: This task uses the mining solution of
FP-growth. It constructs the conditional FP-trees and
recursively mines these trees to find the frequent itemsets.
However, before a conditional FP-tree is constructed, FEM
will check the size of its conditional pattern base. If it is
considerably small, FEM will transform it into TID-lists and
switch to mining task using Eclat approach, described next.
We represent the TID-lists in bit vector form for its
efficiency in computation and memory consumption.

 TID-list mining: In this task, we obtain the TID-lists
using our bit-vector representation and continue searching
for the frequent patterns recursively by logical ANDing
these bit vectors. The new patterns are constructed by
concatenating the suffix pattern of previous steps with the
newly generated frequent patterns. This mining task is
inspired by Eclat strategy in using vertical format of
database.

3.2 Transforming a conditional pattern base
into TID-lists

 A conditional pattern base is a "sub-database" which
consists of the sets of frequent items co-occurring with the
suffix pattern [3]. Each frequent item of a FP-tree has an
equivalent conditional pattern base derived from that FP-
tree. For example, the conditional pattern base of item d in
the FP-tree (Fig. 1) has four sets {a:2, b:2}, {a:1, c:1},
{a:1}, {b:1, c:1} (Fig. 3-a). This conditional pattern base
can be used to construct the conditional FP-tree (Fig. 3-b).
In the FEM algorithm, we consider these sets as transactions

(Fig. 3-c) and transform them into TID-lists for mining
using Eclat approach. The transformation is executed by
assigning each set with an ID and grouping IDs into lists. In
our example, three TID-lists (Fig. 3-d) can be generated
including {1, 2, 3} of item a, {1, 4} of item b and {2, 3} of
item c. To save memory and benefit bitwise operation
efficiency, we represent TID-lists in bit-vector form. The
advantage of this approach was shown in [11]. Figure 3-e
illustrates the TID bit vectors transformed from the
conditional pattern base of item d. In other side, each set in
the conditional pattern base has a frequency value indicating
the number of its occurrence. We combine all the frequency
values into a weight vector which will be used to compute
the support of the TID-list. The weight vector in the given
example is {2, 1, 1, 1} (Fig. 3-f).

Fig. 3 TID-List and Bit vectors transformed from

conditional pattern base of item d

 During the FP-tree mining stage, thousands or even
millions of conditional pattern bases are processed.
However, only those whose size is considerably small are
transformed into TID bit vectors. We use the number of
nodes in the linked list of item  in the original FP-tree to
decide whether to switch from FP-tree mining to TID-list
mining. This criteria is used because a small number of
nodes in the linked list of  usually indicates a small size of
’s conditional pattern base. If this number of nodes is less
than or equal to a threshold K, FEM will use Eclat strategy.
The value of K depends on the properties of the dataset. In
this study, we chose a value of 128 for K. Using this value,
the maximum size of a TID bit vector is 16 bytes which is
usually smaller than or equal to the size of just one node of
FP-tree. The memory size of all TID bit vectors is therefore
not greater than the number of items in the frequent pattern
base multiplied by 16. This data structure requires much less
memory space than an equivalent conditional FP-tree does.
Furthermore, the bitwise operations on TID bit vectors will
perform faster than creating and manipulating FP-trees. In
the given example, the number of node in the linked list of
item d is 4 (Fig. 3-b) which is less than 128, so its
conditional pattern base will be transformed into TID-lists
as described above. Finding an optimal value of K for each
specific database will be a subject of our future work.

b
1
4

a
1
2
3

c
2
4

b
1
0
0
1

a
1
1
1
0

c
0
1
0
1

w
2
1
1
1

 (d) TID-lists (e) TID bit vectors (f) Weight vector w

 (a) Conditional (b) Conditional FP-tree (c) Dataset equivalent
 pattern base of item d of item d to (a)

a:4

b:2
b:1

c:1
c:1

d:1 d:1

root

d:1
d:2

TID Items Weight
1
2
3
4

a,b
a,c
a

b,c

2
1
1
1

{a:2,b:2}
{a:1, c:1}
{a:1}
{b:1, c:1}

3.3 The FEM algorithm

 The FEM algorithm consists of three components:

a. FEM-mining: the mining process first constructs the
FP-tree from the original database and it then calls FP-
tree-mining as represented below.

FEM-mining algorithm
Input: Transactional database D and min. support 
Output: Complete set of frequent patterns
1: Scan D once to find all frequent items
2: Scan D a second time to construct the FP-tree T
3: Call FP-tree-mining(T,,)

b. FP-tree-mining: this component is equivalent to the
FP-tree mining task described in Section 3.1. Lines 7-
12 in the following algorithm show the switching
between the two mining tasks. The value of K in our
current experiments is 128.

FP-tree-mining algorithm
Input: Conditional FP-Tree T, suffix, min. support 
Output: Set of frequent patterns
1: If FP-tree T contains a single path P
2: Then For each combination x of the nodes in P
3: Output  = x  suffix
4: Else For each item  in the header table of FP-tree T
5: { Output  =   suffix
6: Construct 's conditional pattern base C
7: If item  has more than K nodes in its linked list
8: Then { Construct 's conditional FP-tree T’
9: Call FP-tree-mining (T’,, ) }
10: Else { Transform C into TID bit vectors V
11: and weight vector w
12: Call TID-list-mining (V,w,,) } }

c. TID-list-mining: this component is equivalent to the
TID-list mining task described in Section 3.1which the
TID-lists are represented in the bit-vector form. This
algorithm is called by FP-tree-mining and recursively
mines until no new frequent pattern is found.

TID-list-mining algorithm
Input: Bit vectors V, weight vector w,
 suffix, min. support 
Output: Set of frequent patterns
1: Sort V in descending other of its item support
2: For each vector vi in V
3: { Output  = item of vi  suffix
4: For each vector vk in V, k < i
5: { uk = vi AND vk

6: supk = support of uk based on w
7: If supk   Then add uk into U }
8: If all uk in U are identical to vi
9: Then For each combination x of the items in U
10: Output ’ = x  
11: Else If U is not empty
12: Then Call TID-list-mining (U,w,,) }

4 Optimization techniques for
implementing FEM

 The performance of a frequent pattern mining
algorithm depends on many factors: data structure, database
properties, CPU speed, I/O speed, memory size, minimum
support threshold, etc. Table III shows the two
implementations of the FP-growth algorithm (i.e. FP-
growth_B and FP-growth_GZ. As the Table shows these
two implementations result in varying performance on
different datasets due to using different optimization
approaches. We have incorporated a set of optimization
techniques for implementing FEM that has effectively
improved the runtime performance of our algorithm for
variety of datasets. Following are the details:

 FP-tree construction: In the second database scan, we
pre-load the filtered transactions into a lexicographically
sorted list as suggested in [12]; one copy of similar
transactions is kept with its count. The transaction list size
can be changed to fit the available memory. We organize
this list in a binary tree and maintain its order while the list
grows in size. This technique reduces the traversal and
construction time of FP-tree. It also keeps the nodes most
visited together to be allocated closely in the memory. Thus,
it speeds up the mining stage as well.

 Mining task using FP-growth: We exploit the
technique proposed by [13]. An array-based implementation
of prefix-tree-structure is used to improve the efficiency of
the FP-tree-mining by reducing the need of traversal on FP-
trees when constructing the conditional FP-tree.

 Memory management: A chunk of memory is
allocated for each FP-tree when FEM creates a new one and
is discarded after all frequent itemsets from this FP-tree are
generated. The chunk size is variable. This technique
reduces overhead of allocating and freeing nodes [13].

 Output processing: We preprocess the most frequent
output values and store them in indexed tables as proposed
in [15]. In addition, the similar part of two frequent itemsets
outputted consecutively is processed only once. Hence, this
technique improves considerably computation time on
output reporting, especially when output size is huge.

 I/O optimization: Data are read into a buffer before
being processed into transactions. Similarly, the outputs are
buffered and only written when the buffer is full. This
technique reduces much I/O overhead.

5 Experiments and Performance study

5.1 Experiments

 The experiments were performed on the Altus 2701
machine with dual AMD Opteron 2427, 2.2GHz, 32GB
memory, running Linux OS. We used g++ for compilation.
Five datasets used in our tests Connect, Mushroom,
Accident, Retail and Webdocs are publicly available at the
Frequent Itemset Mining Implementations Repository [19]
and are reported in the Table II.

 FEM was implemented using the optimization
techniques in Section 4. For comparison, we benchmarked
FEM and three state-of-the-art frequent pattern mining
implementations: FP-growth_B by Borgelt [12], FP-
growth_GZ by Grahne & Zhu [13] and AIM2 by Fiat &
Shporer [14], [15] (i.e. an Eclat based approach) which are
available at [19], [20]. The runtime with the considerably
low supports for all datasets is reported in the Table III. The
detailed performance comparison on Connect, Accident and
Webdocs datasets with various supports are presented in
Fig. 4 and Fig. 5 and Fig. 6. Table IV presents the runtime
distribution between FP-tree-mining and TID-list-mining of
FEM in both absolute runtime and percentage runtime.

Fig. 4 Runtime on the connect dataset

Fig. 5 Runtime on the accident dataset

Fig. 6 Runtime on the webdocs dataset

5.2 Performance study

5.2.1 Performance comparison

 All the four implementations tested on the same
machine behaved differently on the dense and sparse
datasets (Table III). FP-growth_B and AIM2 performed
better than FP-growth_GZ on the dense datasets Connect
and Mushroom. For the sparse datasets, AIM2 ran faster
than both FP-growth_B and FP-growth_GZ on the Webdocs
but slower on the Retail. For the Accident dataset, AIM2 did
not perform as well as either the FP-growth_B or FP-
growth_GZ. FEM performed quite well in every case. The
performance of FEM reported in Table III and Fig. 4, 5, 6
shows that FEM outperforms the other algorithms on all test
databases. Hence, FEM works better than both FP-growth
and Eclat on variety of datasets.

5.2.2 The runtime distribution between two mining tasks

 The runtime distribution between FP-tree-mining and
TID-list-mining in Table IV and Fig. 7 shows that FEM
distributes the mining workload dynamically depending on
the dataset characteristics.

Fig. 7 Time distribution between FP-tree-mining & TID-list-mining

 For the dense datasets Connect and Mushroom, TID-
list-mining was responsible for over 99% of the mining
time. The shape of FP-tree of dense datasets is usually
compact, so most of the conditional pattern bases satisfy the
condition to switch from FP-tree-mining to TID-list-mining.
In contrast, for the very large and sparse dataset Webdocs,

0

25

50

75

100

125

150

50000 45000 40000 35000 30000

To
ta
l
Ti
m
e
(s
ec
co
n
d
s)

Minimum support

Connect
FEM
FP‐growth_B
FP‐growth_GZ
AIM2

0

25

50

75

100

125

150

200000 150000 100000 50000 25000

To
ta
l
Ti
m
e
(s
ec
co
n
d
s)

Minimum support

Accidents
FEM
FP‐growth_B
FP‐growth_GZ
AIM2

0

100

200

300

400

350000 300000 250000 200000 150000

To
ta
l
Ti
m
e
(s
ec
co
n
d
s)

Minimum support

Webdocs
FEM
FP‐growth_B
FP‐growth_GZ
AIM2

TABLE IV
 TIME DISTRIBUTION BETWEEN FP-TREE-MINING & TID-LIST-MINING OF FEM

Datasets Minimum
support

Total
time

(seconds)

Mining
time

(seconds)

FP-tree-
mining

(seconds & %)

TID-list-
mining

(seconds & %)
Connect 30000 25.55 25.24 0.02

0.07%
25.22

99.93%
Mushroom 50 21.64 21.60 0.10

0.5%
21.50
99.5%

Accidents 25000 18.61 15.72 7.72
49%

8.00
51%

Retail 5 1.62 0.84 0.39
47%

0.45
53%

Webdocs 150000 156.65 112.51 112.25
99.7%

0.26
0.3%

TABLE III
RUNTIME (SECONDS) FOR FIVE DATASETS WITH SELECTED MIN SUPPORTS

Datasets
Minimum
support

FEM FP-Growth_B FP-Growth_GZ AIM2

Connect 30000 25.55 59.05 342.03 31.78
Mushroom 50 21.64 56.31 306.61 28.47
Accidents 25000 18.61 25.36 63.41 137.48

Retail 5 1.62 4.88 9.84 51.07
Webdocs 150000 156.65 341.56 267.09 186.49

TABLE II
DATASETS AND THEIR PROPERTIES

Datasets Type Transactions Items
Average
length

Size

Connect Dense 67557 129 43 8.82 MB
Mushroom Dense 8124 119 23 557 KB
Accidents Moderate 340183 468 33.8 33.8 MB

Retail Sparse 88126 16470 10.3 3.79 MB
Webdocs Sparse 1623346 52676657 177.23 1.37 GB

FP-tree-mining was responsible for 99.7% of the mining
time because the large number of big FP-trees were
generated and processed. For Accidents and Retail datasets,
mining time was distributed equally for the two mining
tasks which were 49% vs. 51% on Accidents and 47% vs.
53% on Retail. The percentage time was computed using the
runtime of mining stage and the runtime of each mining
task. It must be noted that the runtime distribution does not
indicate the amount of work. In fact, TID-list-mining using
faster bitwise operations and better memory layout will
process larger amount of data than FP-Tree-mining does in
the same amount of time. In addition, the runtime
distribution will change when the minimum support varies.

6 Conclusion and future work
 In this paper, we presented FEM, a new frequent
pattern mining algorithm that combines the mining
techniques of two famous algorithms FP-growth and Eclat.
The performance merit of FEM is achieved by adapting the
mining process to match the characteristics of the datasets.
The combination of the optimization techniques for
implementing FEM contributes to the improvement of
performance as well. In future work, we plan to improve
FEM further by integrating several other optimization
techniques. We will investigate how to find the optimal
value of K for specific databases based on their
characteristics. In addition, we will study parallel
approaches for implementing FEM on parallel and
distributed systems as memory limitation is the largest
barrier to deploy any sequential frequent pattern mining
algorithm on large scale databases.

7 References
[1] R. Agrawal, R. Srikant, “Fast algorithms for mining

association rules”, in Proc. of the Int. Conf. on Very
large databases, pp. 487-499, 1994.

[2] M. Zaki, S. Parthasarathy, M. Ogihara, W. Li, “New
algorithms for fast discovery of association rules”, in
Proc. of the 3rd Int. Conf. on Knowledge Discovery and
Data Mining, pp. 283-286, 1997.

[3] J. Han, J. Pei, Y. Yin, “Mining frequent patterns
without candidate generation”, in Proc. of the Int. Conf.
on Management of Data, 2000.

[4] S. Brin, R. Motwani, C. Silverstein, “Beyond market
basket: generalizing association rules to correlations”,
in Proc. of the Int. Conf. on Management of Data, 1997.

[5] C. Silverstein, S. Brin, R. Motwani, and J. Ullman,
“Scalable techniques for mining causal structures”. in
Proc. of the Int. Conf. on Very Large Data Bases, pp.
594–605, 1998.

[6] R. Agrawal and R. Srikant, “Mining sequential
patterns”, in Proc. of the Int. Conf. on Data
Engineering, pp. 3–14, 1995.

[7] H. Mannila, H. Toivonen, and A. I. Verkamo,
“Discovery of frequent episodes in event sequences”,

Data Mining and Knowledge Discovery, Vol. 1 Issue 3,
pp. 259-289, Sep. 1997.

[8] J. Han, G. Dong, Y. Yin, “Efficient mining of partial
periodic patterns in time series dataset”, in Proc. of the
Int. Conf. on Data Engineering, pp. 106-115, 1999.

[9] J. Han, H. Cheng, D. Xin, X. Yan, “Frequent pattern
mining: current status and future directions”, Journal
Data Mining and Knowledge Discovery, Vol. 15 Issue
1, pp. 55-86, August 2007.

[10] JS. Park, MS. Chen, P. Yu, "An effective hash-based
algorithm for mining association rules", in Proc. of the
Int. Conf. on Management of Data, pp. 175–186, 1995.

[11] D. Burdick, M. Calimlim, J. Gehrke, “MAFIA: a
maximal frequent itemset mining algorithm for
transactional databases”, in Proc. of the Int. Conf. on
Data Engineering, pp. 443–452, 2001.

[12] C. Borgelt, “An implementation of the FP-growth
algorithm”, in the 1st Int. Workshop on OSDM:
Frequent Pattern Mining Implementations, 2005.

[13] G. Grahne, J. Zhu, “Efficiently using prefix-trees in
mining frequent itemsets”, in Proc. of Workshop on
FIMI, pp 123–132, 2003

[14] A. Fiat, S. Shporer, “AIM: another itemset miner”, in
Proc. of Workshop on FIMI, 2003.

[15] S. Shporer, “AIM2: improved implementation of AIM”,
in Proc. of Workshop on FIMI, 2004.

[16] L. Liu, E. Li , Y. Zhang, Z. Tang, “Optimization of
frequent itemset mining on multiple-core processor”, in
Proc. of the 33rd Int. Conf. on VLDB, 2007.

[17] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, D. Yang,
“Hmine : Hyper-structure mining of frequent patterns in
Large Databases”, In Proc. IEEE of Int. Conf. On Data
Mining, pp. 441–448, 2001.

[18] B. Racz. “nonordfp: An FP-growth variation without
rebuilding the FP-tree”, in Proc. of ICDM Workshop on
FIMI, 2004.

[19] Frequent Itemset Mining Implementations Repository,
Workshop on FIMI, 2003-2004 Available:
http://fimi.ua.ac.be/

[20] Christian Borgelt, “Frequent Pattern Mining
Implementations”, Available: http://www.borgelt.net

[21] M. J. Zaki, K. Gouda, “Fast vertical mining using
diffsets”, Technical Report 01-1, RPI, 2001.

[22] L. Zhou, Z. Zhong, J. Chang, J. Li, J.Z. Huang, S. Feng,
“Balanced parallel FP-Growth with MapReduce”, in
Conference on Information Computing and
Telecommunications, IEEE, pp. 243 – 246, 2010.

[23] H. Toivonen, “Sampling large databases for association
rules”, in Proc. of the 1996 Int. Conf. on VLDB, pp.
134–145, 1996.

[24] S. Brin, R. Motwani, JD. Ullman, S. Tsur, “Dynamic
itemset counting and implication rules for market
basket analysis”, in Proc. of the 1997 Int. Conf. on
Management of Data, pp. 255–264, 1997.

