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Abstract - Finding frequent patterns plays an essential role 
in mining associations, correlations, and many other 
interesting relationships among variables in transactional 
databases. The performance of a frequent pattern mining 
algorithm depends on many factors. One important factor is 
the characteristics of databases being analyzed. In this 
paper we propose FEM (FP-growth & Eclat Mining), a new 
algorithm that utilizes both FP-tree (frequent-pattern tree) 
and TID-list (transaction ID list) data structures to discover 
frequent patterns. FEM can adapt its behavior to the dataset 
properties to efficiently mine short and long patterns from 
both sparse and dense datasets. We also suggest a 
combination of several optimization techniques for 
effectively implementing FEM to speed up the mining 
process. The experimental results show that a significant 
improvement in performance is achieved. 

Keywords: knowledge mining, data mining, frequent 
pattern mining, association rule mining, frequent itemset. 

 

1 Introduction 
 Frequent pattern mining is one of the fundamental 
problems in data mining. It plays an important role in 
finding many types of relationships among data such as 
associations [1], correlations [4], causality [5], sequential 
patterns [6], episodes [7] and partial periodicity [8]. 
Moreover, it helps in data indexing, classification, 
clustering, and other data mining tasks as well [9].  

 The frequent pattern mining problem aims to search 
for groups of itemsets, subsequences, or substructures that 
co-occur frequently in a dataset.  In a typical transactional 
database, the number of distinct single items and their 
combinations are usually very large. For a small minimum 
support threshold, the number of itemsets generated can be 
extremely large. Hence, it is a great challenge to design 
algorithms for mining frequent patterns that scale with 
memory size and run in reasonable time [22]. Among 
numerous proposed methods, Apriori, FP-growth and Eclat 
are most popular and widely used.  

 The Apriori algorithm [1] utilizes the property, that a 
k-itemset is frequent only if all of its sub-itemsets are 
frequent, to reduce the search space of frequent itemsets. It 
is built on a recurrence relation where to find frequent k-
itemsets, Apriori uses frequent (k-1)-itemsets found in the 
previous step. Many variants of Apriori have been proposed 

to improve the mining efficiency, e.g. direct hashing and 
pruning (DHP) [10], sampling technique [23], dynamic 
itemset counting (DIC) [24]. FP-growth [3] works in a 
divide-and-conquer fashion. It compresses the database into 
a FP-tree, constructs its conditional FP-trees and recursively 
mines on these trees to find the frequent itemsets. Some 
extensions of FP-growth include an array technique to 
reduce the FP-tree traversal time [13], the usage of FP-array 
data structure [16], H-mine [17] and nonordfp [18]. While 
Apriori and FP-growth explore the horizontal data format, 
Eclat [2] uses the vertical TID-lists of frequent (k-1)-
itemsets to find the frequent k-itemsets by intersecting these 
TID-lists and computing their resulting supports. Mafia 
[11], AIM [14], mining using diffsets [21] are similar 
approaches in using the vertical data format. However, all 
these methods have advantages and disadvantages that make 
one suitable for specific databases and computing platforms. 
Hence, hybrid method is another approach to exploit the 
benefits of many mining methods. 

 In this paper we propose FEM (FP-growth & Eclat 
Mining), a new algorithm for frequent pattern mining that 
combines the techniques used in the FP-growth and Eclat 
algorithms. Our approach uses FP-tree to store the compact 
database in memory and recursively mine the frequent 
patterns from this data structure similar to the FP-growth 
approach. In addition, FEM will automatically switch from 
mining FP-trees using FP-growth to mining TID-lists using 
Eclat depending on the structure of the currently processed 
data. In order to enable the mining task using Eclat method, 
during the pattern growth process, the conditional pattern 
base [3] of a frequent item will be transformed into TID-
lists [2] if its size is small enough for better mining on the 
vertical data structure. FEM can adapt its behavior to the 
database characteristics for efficiently mining both short and 
long patterns from sparse and dense datasets. We also 
suggest a combination of several optimization techniques 
for implementing FEM to speed up the frequent pattern 
mining process. Our experimental results show that a 
significant improvement of performance is achieved using 
our proposed approach. 

 This paper is organized as follows. Section 2 provides 
the essential background knowledge. Our FEM algorithm is 
described in section 3. Section 4 presents optimization 
techniques for FEM. Experiments and performance study 
are presented in section 5. The final section summarizes our 
study and points out some future research directions.  



2 Background 

2.1 Frequent pattern mining problem 

 The frequent pattern mining problem can be stated as 
follows: Let I = {i1, i2, . . . , in} be the set of all distinct items 
in transactional database D. The support of an itemset α (a 
set of items) is the number of transactions containing α in D. 
A k-itemset α, which consists of k items from I, is frequent if 
α’s support is no fewer than , where  is a user-specified 
minimum support threshold. Given a database D and 
minimum support threshold , the problem statement is to 
find the complete set of frequent itemsets in D. 

 For example, given the dataset in table I and minimum 
support threshold =3, the frequent 1-itemsets include a, b, 
c, d and e while f and g are infrequent because f and g occur 
only 2 times.  Similarly, ab, ac, ad, ae, bc, bd are frequent 
2-itemsets and abc is the only frequent 3-itemset found. 

 
2.2 The FP-growth algorithm and FP-tree structure 

  FP-growth is a well-known algorithm proposed by 
Han et al. [3] for frequent pattern mining. It utilizes the FP-
tree (frequent pattern tree) to efficiently discover the 
frequent patterns. FP-tree is an extended prefix-tree 
structure that uses the horizontal database format and stores 
compressed information about patterns. It consists of one 
root node, a set of item prefix subtrees as the children of the 
root, and a frequent-item header table. Each node of the FP-
tree includes an item name, a link to the next node in the 
linked list of its appropriate frequent item and a count 
indicating the number of transactions that contains all items 
in the path from the root node to the current node. The 
header table stores the frequent items in frequency 
descending order. Each entry of this table includes item 
name, item support and a link to the head node in the linked 
list of its frequent item. The FP-tree is organized so that if 
two transactions share a common prefix, the shared part can 
be merged as long as the count properly reflects the 
occurrence of each itemset in the transactions.  

 FP-growth requires only two scans on the dataset. In 
the first scan, the frequency items are found to generate the 
header table. The dataset is re-scanned to achieve and sort 
the frequent items in each transaction as illustrated in the 
third column in Table 1. These items are inserted into FP-
tree in frequency descending order. If the appropriate node 

of an item exists, its count is increased by one. Otherwise, a 
new node is inserted to the FP-tree. Figure 1 illustrates the 
FP-tree constructed from the dataset in Table 1.  

 
Fig. 1  FP-tree constructed from the dataset in Table I 

 The next step is to mine the FP-tree by constructing 
the conditional pattern base and then constructing the 
conditional FP-tree of each frequent item as described by an 
example in Section 3.2, and performing mining recursively 
on such a tree [3]. The frequent items of a resulting 
conditional FP-tree are combined with the suffix-pattern to 
generate the new frequent patterns. 

2.3 The Eclat algorithm and TID-list structure 

 Eclat is another efficient algorithm for frequent pattern 
mining developed by Zaki et al. [2]. This algorithm utilizes 
the TID-list data structure (transaction ID list), a vertical 
format of database, for the mining task.  A TID-list of an 
item or itemset is a list that stores the IDs of transactions 
containing that item or itemset. Eclat, similar to FP-growth, 
applies the depth-first approach to search for frequent 
patterns and needs only two database scans. It first scans the 
database to find all frequent items. In the second database 
scan, it generates the TID-lists of the frequent items. This 
algorithm organizes frequent k-itemsets into disjoint 
equivalence classes by common (k-1)-prefixes. The 
candidate (k+1)-itemsets can be generated by joining pairs 
of frequent k-itemsets from the same classes. The main 
advantage of using TID-list is that the support of a candidate 
itemset can be computed simply by intersecting the TID-
lists of the two component subsets. A simple check on the 
resulting TID-list tells whether the new itemset is frequent 
or not. Figure 2 demonstrates the TID-lists and the Eclat 
mining process for the dataset in the Table I. 

 

Fig. 2  Mining TID-lists using Eclat 

b
1 
2 
5 
6 
8 
9

a
1 
3 
4 
5 
6 
8 
9

e
3 
4 
9

d 
1 
2 
3 
4 
8 

c 
2 
3 
5 
6 
9 

ab
1 
5 
6 
8 
9

ac
3 
5 
6 
9

ad
1 
3 
4 
8

ae
3 
4 
9 

bc 
2 
5 
6 
9 

bd 
1 
2 
8 

be 
9 

ce
3 
9

cd 
2 
3 

de
3 
4 

abc
5 
6 
9

abd
1 
8 

acd
3 

bcd abe
9 

ace
3 
9 

ade 
3 
4 

a:7 

b:5 
b:1

c:1

d:1
c:1 

d:1
d:1 

e:1e:1 e:1

d:2 

c:3

Header table
a:7 
b:6 
c:5 
d:5 
e:3 

root 

TABLE I 
A DATASET WITH MINIMUM SUPPORT THRESHOLD = 3 

TID Items Sorted frequent items 
1 b,d,a a,b,d 
2 c,b,d b,c,d 
3 c,d,a,e a,c,d,e 
4 d,a,e a,d,e 
5 c,b,a a,b,c 
6 c,b,a a,b,c 
7 f,g  
8 b,d,a a,b,d 
9 c,b,a,e,f,g a,b,c,e 



3 The FEM algorithm 

3.1 Overview of the FEM algorithm 

 In the FP-growth algorithm, the frequent patterns are 
discovered from the conditional FP-trees which are 
recursively constructed from the original FP-tree. The shape 
of FP-trees is usually wide for sparse datasets and more 
compact for the dense ones. In either case, the size of newly 
generated trees is much smaller than their original one. We 
found that this size will reduce to a level where mining with 
an alternative data structure performs better. Additionally, 
the conditional pattern base of a given item can be easily 
converted into TID-lists which are more cache-friendly than 
the trees with linked lists and pointers are. We therefore 
propose FEM, an algorithm combining mining techniques of 
FP-growth and Eclat, to discover frequent patterns. FEM 
flexibly uses both FP-tree and TID-list for its mining task. 
In the pattern growth process, it switches between FP-
growth strategy and Eclat strategy depending on whether 
FP-tree or TID-list provides better performance. FEM 
consists of the following three main tasks: 

 FP-tree construction: Database is scanned for the first 
time to find the frequent items and create the header table. A 
second database scan is conducted to get and sort frequent 
items of each transaction in the support-descending order 
and then build the FP-tree.  

 FP-tree mining: This task uses the mining solution of 
FP-growth. It constructs the conditional FP-trees and 
recursively mines these trees to find the frequent itemsets. 
However, before a conditional FP-tree is constructed, FEM 
will check the size of its conditional pattern base. If it is 
considerably small, FEM will transform it into TID-lists and 
switch to mining task using Eclat approach, described next. 
We represent the TID-lists in bit vector form for its 
efficiency in computation and memory consumption. 

 TID-list mining: In this task, we obtain the TID-lists 
using our bit-vector representation and continue searching 
for the frequent patterns recursively by logical ANDing 
these bit vectors. The new patterns are constructed by 
concatenating the suffix pattern of previous steps with the 
newly generated frequent patterns. This mining task is 
inspired by Eclat strategy in using vertical format of 
database. 

3.2 Transforming a conditional pattern base 
into TID-lists 

 A conditional pattern base is a "sub-database" which 
consists of the sets of frequent items co-occurring with the 
suffix pattern [3]. Each frequent item of a FP-tree has an 
equivalent conditional pattern base derived from that FP-
tree. For example, the conditional pattern base of item d in 
the FP-tree (Fig. 1) has four sets {a:2, b:2}, {a:1, c:1}, 
{a:1}, {b:1, c:1} (Fig. 3-a). This conditional pattern base 
can be used to construct the conditional FP-tree (Fig. 3-b). 
In the FEM algorithm, we consider these sets as transactions 

(Fig. 3-c) and transform them into TID-lists for mining 
using Eclat approach. The transformation is executed by 
assigning each set with an ID and grouping IDs into lists. In 
our example, three TID-lists (Fig. 3-d) can be generated 
including {1, 2, 3} of item a, {1, 4} of item b and {2, 3} of 
item c. To save memory and benefit bitwise operation 
efficiency, we represent TID-lists in bit-vector form. The 
advantage of this approach was shown in [11]. Figure 3-e 
illustrates the TID bit vectors transformed from the 
conditional pattern base of item d. In other side, each set in 
the conditional pattern base has a frequency value indicating 
the number of its occurrence. We combine all the frequency 
values into a weight vector which will be used to compute 
the support of the TID-list. The weight vector in the given 
example is {2, 1, 1, 1} (Fig. 3-f). 

 

 
Fig. 3  TID-List and Bit vectors transformed from 

conditional pattern base of item d 

 During the FP-tree mining stage, thousands or even 
millions of conditional pattern bases are processed. 
However, only those whose size is considerably small are 
transformed into TID bit vectors. We use the number of 
nodes in the linked list of item  in the original FP-tree to 
decide whether to switch from FP-tree mining to TID-list 
mining. This criteria is used because a small number of 
nodes in the linked list of  usually indicates a small size of 
’s conditional pattern base. If this number of nodes is less 
than or equal to a threshold K, FEM will use Eclat strategy. 
The value of K depends on the properties of the dataset. In 
this study, we chose a value of 128 for K. Using this value, 
the maximum size of a TID bit vector is 16 bytes which is 
usually smaller than or equal to the size of just one node of 
FP-tree. The memory size of all TID bit vectors is therefore 
not greater than the number of items in the frequent pattern 
base multiplied by 16. This data structure requires much less 
memory space than an equivalent conditional FP-tree does. 
Furthermore, the bitwise operations on TID bit vectors will 
perform faster than creating and manipulating FP-trees. In 
the given example, the number of node in the linked list of 
item d is 4 (Fig. 3-b) which is less than 128, so its 
conditional pattern base will be transformed into TID-lists 
as described above. Finding an optimal value of K for each 
specific database will be a subject of our future work.
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3.3 The FEM algorithm 

 The FEM algorithm consists of three components: 

a. FEM-mining: the mining process first constructs the 
FP-tree from the original database and it then calls FP-
tree-mining as represented below. 

FEM-mining algorithm 
Input: Transactional database D and min. support  
Output: Complete set of frequent patterns  
1: Scan D once to find all frequent items 
2: Scan D a second time to construct the FP-tree T 
3: Call FP-tree-mining(T,,) 

 

b. FP-tree-mining: this component is equivalent to the 
FP-tree mining task described in Section 3.1. Lines 7-
12 in the following algorithm show the switching 
between the two mining tasks. The value of K in our 
current experiments is 128. 

FP-tree-mining algorithm 
Input: Conditional FP-Tree T, suffix, min. support  
Output: Set of frequent patterns  
1: If FP-tree T contains a single path P 
2: Then For each combination x of the nodes in P 
3:                 Output  = x  suffix 
4: Else For each item  in the header table of FP-tree T 
5:   {  Output  =   suffix   
6:       Construct 's conditional pattern base C 
7:        If item  has more than K nodes in its linked list 
8:       Then {  Construct 's conditional FP-tree T’  
9:                    Call FP-tree-mining (T’,, )   } 
10:   Else { Transform C into TID bit vectors V 
11:                                            and weight vector w 
12:                 Call TID-list-mining (V,w,,)  }     } 

 

c. TID-list-mining: this component is equivalent to the 
TID-list mining task described in Section 3.1which the 
TID-lists are represented in the bit-vector form. This 
algorithm is called by FP-tree-mining and recursively 
mines until no new frequent pattern is found. 

TID-list-mining algorithm 
Input: Bit vectors V, weight vector w,  
          suffix, min. support  
Output: Set of frequent patterns  
1: Sort V in descending other of its item support 
2: For each vector vi in V 
3: {    Output  = item of vi  suffix 
4:       For each vector vk in V, k < i 
5:       {    uk  = vi AND vk 

6:             supk = support of uk based on w 
7:                If supk     Then add uk into  U   }  
8:        If all uk in U are identical to vi 
9:        Then For each combination x of the items in U  
10:                         Output ’ = x   
11:      Else If U is not empty 
12:      Then Call TID-list-mining (U,w,,)    } 

4 Optimization techniques for 
implementing FEM 

 The performance of a frequent pattern mining 
algorithm depends on many factors: data structure, database 
properties, CPU speed, I/O speed, memory size, minimum 
support threshold, etc.  Table III shows the two 
implementations of the FP-growth algorithm (i.e. FP-
growth_B and FP-growth_GZ. As the Table shows these 
two implementations result in varying performance on 
different datasets due to using different optimization 
approaches.  We have incorporated a set of optimization 
techniques for implementing FEM that has effectively 
improved the runtime performance of our algorithm for 
variety of datasets. Following are the details:   

 FP-tree construction: In the second database scan, we 
pre-load the filtered transactions into a lexicographically 
sorted list as suggested in [12]; one copy of similar 
transactions is kept with its count. The transaction list size 
can be changed to fit the available memory. We organize 
this list in a binary tree and maintain its order while the list 
grows in size. This technique reduces the traversal and 
construction time of FP-tree. It also keeps the nodes most 
visited together to be allocated closely in the memory. Thus, 
it speeds up the mining stage as well. 

 Mining task using FP-growth: We exploit the 
technique proposed by [13]. An array-based implementation 
of prefix-tree-structure is used to improve the efficiency of 
the FP-tree-mining by reducing the need of traversal on FP-
trees when constructing the conditional FP-tree.  

 Memory management: A chunk of memory is 
allocated for each FP-tree when FEM creates a new one and 
is discarded after all frequent itemsets from this FP-tree are 
generated. The chunk size is variable. This technique 
reduces overhead of allocating and freeing nodes [13]. 

 Output processing: We preprocess the most frequent 
output values and store them in indexed tables as proposed 
in [15]. In addition, the similar part of two frequent itemsets 
outputted consecutively is processed only once. Hence, this 
technique improves considerably computation time on 
output reporting, especially when output size is huge.  

 I/O optimization: Data are read into a buffer before 
being processed into transactions. Similarly, the outputs are 
buffered and only written when the buffer is full. This 
technique reduces much I/O overhead. 

5 Experiments and Performance study 

5.1 Experiments 

 The experiments were performed on the Altus 2701 
machine with dual AMD Opteron 2427, 2.2GHz, 32GB 
memory, running Linux OS. We used g++ for compilation. 
Five datasets used in our tests Connect, Mushroom, 
Accident, Retail and Webdocs are publicly available at the 
Frequent Itemset Mining Implementations Repository [19] 
and are reported in the Table II.  



 
 FEM was implemented using the optimization 
techniques in Section 4. For comparison, we benchmarked 
FEM and three state-of-the-art frequent pattern mining 
implementations: FP-growth_B by Borgelt [12], FP-
growth_GZ by Grahne & Zhu [13] and AIM2 by Fiat & 
Shporer [14], [15] (i.e. an Eclat based approach) which are 
available at [19], [20]. The runtime with the considerably 
low supports for all datasets is reported in the Table III. The 
detailed performance comparison on Connect, Accident and 
Webdocs datasets with various supports are presented in 
Fig. 4 and Fig. 5 and Fig. 6. Table IV presents the runtime 
distribution between FP-tree-mining and TID-list-mining of 
FEM in both absolute runtime and percentage runtime.  

 
Fig. 4  Runtime on the connect dataset 

   
Fig. 5  Runtime on the accident dataset 

 
Fig. 6  Runtime on the webdocs dataset 

5.2 Performance study 

5.2.1 Performance comparison 

 All the four implementations tested on the same 
machine behaved differently on the dense and sparse 
datasets (Table III). FP-growth_B and AIM2 performed 
better than FP-growth_GZ on the dense datasets Connect 
and Mushroom. For the sparse datasets, AIM2 ran faster 
than both FP-growth_B and FP-growth_GZ on the Webdocs 
but slower on the Retail. For the Accident dataset, AIM2 did 
not perform as well as either the FP-growth_B or FP-
growth_GZ. FEM performed quite well in every case. The 
performance of FEM reported in Table III and Fig. 4, 5, 6 
shows that FEM outperforms the other algorithms on all test 
databases. Hence, FEM works better than both FP-growth 
and Eclat on variety of datasets. 

 

5.2.2 The runtime distribution between two mining tasks  

 The runtime distribution between FP-tree-mining and 
TID-list-mining in Table IV and Fig. 7 shows that FEM 
distributes the mining workload dynamically depending on 
the dataset characteristics.  

 

 
Fig. 7  Time distribution between FP-tree-mining & TID-list-mining 

 For the dense datasets Connect and Mushroom, TID-
list-mining was responsible for over 99% of the mining 
time. The shape of FP-tree of dense datasets is usually 
compact, so most of the conditional pattern bases satisfy the 
condition to switch from FP-tree-mining to TID-list-mining. 
In contrast, for the very large and sparse dataset Webdocs, 
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TABLE IV 
 TIME DISTRIBUTION BETWEEN FP-TREE-MINING & TID-LIST-MINING OF FEM 

Datasets Minimum
support

Total 
time  

(seconds)

Mining 
time  

(seconds) 

FP-tree- 
mining  

(seconds & %)

TID-list- 
mining  

(seconds & %)
Connect 30000 25.55 25.24 0.02 

0.07% 
25.22 

99.93% 
Mushroom 50 21.64 21.60 0.10 

0.5% 
21.50 
99.5% 

Accidents 25000 18.61 15.72 7.72 
49% 

8.00 
51% 

Retail 5 1.62 0.84 0.39 
47% 

0.45 
53% 

Webdocs 150000 156.65 112.51 112.25 
99.7% 

0.26 
0.3% 

TABLE III 
RUNTIME (SECONDS) FOR FIVE DATASETS WITH SELECTED MIN SUPPORTS 

Datasets 
Minimum 
support 

FEM FP-Growth_B FP-Growth_GZ AIM2

Connect 30000 25.55 59.05 342.03 31.78 
Mushroom 50 21.64 56.31 306.61 28.47 
Accidents 25000 18.61 25.36 63.41 137.48

Retail 5 1.62 4.88 9.84 51.07 
Webdocs 150000 156.65 341.56 267.09 186.49

TABLE II 
DATASETS AND THEIR PROPERTIES 

Datasets Type Transactions Items 
Average 
length 

Size 

Connect Dense 67557 129 43 8.82 MB
Mushroom Dense 8124 119 23 557 KB
Accidents Moderate 340183 468 33.8 33.8 MB

Retail Sparse 88126 16470 10.3 3.79 MB
Webdocs Sparse 1623346 52676657 177.23 1.37 GB



FP-tree-mining was responsible for 99.7% of the mining 
time because the large number of big FP-trees were 
generated and processed. For Accidents and Retail datasets, 
mining time was distributed equally for the two mining 
tasks which were 49% vs. 51% on Accidents and 47% vs. 
53% on Retail. The percentage time was computed using the 
runtime of mining stage and the runtime of each mining 
task. It must be noted that the runtime distribution does not 
indicate the amount of work. In fact, TID-list-mining using 
faster bitwise operations and better memory layout will 
process larger amount of data than FP-Tree-mining does in 
the same amount of time. In addition, the runtime 
distribution will change when the minimum support varies.  

6 Conclusion and future work 
 In this paper, we presented FEM, a new frequent 
pattern mining algorithm that combines the mining 
techniques of two famous algorithms FP-growth and Eclat. 
The performance merit of FEM is achieved by adapting the 
mining process to match the characteristics of the datasets. 
The combination of the optimization techniques for 
implementing FEM contributes to the improvement of 
performance as well. In future work, we plan to improve 
FEM further by integrating several other optimization 
techniques. We will investigate how to find the optimal 
value of K for specific databases based on their 
characteristics. In addition, we will study parallel 
approaches for implementing FEM on parallel and 
distributed systems as memory limitation is the largest 
barrier to deploy any sequential frequent pattern mining 
algorithm on large scale databases. 
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