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a b s t r a c t

Since the success of cloud computing, more and more high performance computing parallel applications run

in the cloud. Carefully scheduling parallel jobs is essential for cloud providers to maintain their quality of

service. Existing parallel job scheduling mechanisms do not take the parallel workload consolidation into

account to improve the scheduling performance. In this paper, after introducing a prioritized two-tier virtual

machines architecture for parallel workload consolidation, we propose a consolidation-based parallel job

scheduling algorithm. The algorithm employs tentative run and workload consolidation under such a two-

tier virtual machines architecture to enhance the popular FCFS algorithm. Extensive experiments on well-

known traces show that our algorithm significantly outperforms FCFS, and it can even produce comparable

performance to the runtime-estimation-based EASY algorithm, though it does not require users to provide

runtime estimation of the job. Moreover, our algorithm allows inaccurate CPU usage estimation and only

requires trivial modification on FCFS. It is effective and robust for scheduling parallel workload in the cloud.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

Recently, it is common for high performance computing (HPC) par-

llel applications to run in the cloud mainly due to the easy-to-use and

ost-effective run way provided by the cloud computing paradigm. In

ddition, infrastructure as a service (IaaS) providers (such as Amazon

C2) now provide HPC instances1 to cater for HPC parallel applica-

ions. For a cloud provider, carefully scheduling parallel jobs submit-

ed by users is essential to guarantee its quality of service (QoS) (Bui

t al., 2010; Zhu et al., 2011).

First-come first-serve (FCFS) (Schwiegelshohn and Yahyapour,

998) and Extensible Argonne Scheduling sYstem (EASY) (Lindsay

t al., 2013; Mu’alem and Feitelson, 2001) are the two most

idely used parallel job scheduling methods, they are both easy-

o-implement and fair (Etsion and Tsafrir, 2005). Users continuously

ubmit their jobs into the waiting queue of the resource allocator,

CFS/EASY (or other scheduling algorithms) assign them into physical

rocessors for run, as shown in Fig. 1(a). EASY relies on job’s process

umber and the estimation of job’s runtime, however the runtime of

job running in a cloud cannot be well estimated because:

1. Ubiquitous random factors within a parallel job make the range of

its runtime extremely wide.
∗ Corresponding author. Tel.: +86 8 4573 389 8021.

E-mail address: nudt200203012007@163.com (X. Liu).
1 Amazon aws. http://aws.amazon.com/ .

ttp://dx.doi.org/10.1016/j.jss.2015.03.007

164-1212/© 2015 Elsevier Inc. All rights reserved.
2. The capacity of the computing resource is hidden and thus un-

known to users, hence, the runtime estimation is beyond the users.

For EASY, over-estimation may lead to a long wait time and possi-

ly to excessive CPU quota loss, while under-estimation may lead to

risk that the job will be killed before its termination (Mu’alem and

eitelson, 2001). FCFS only needs job’s process number and does not

equire job’s runtime information to make scheduling decisions, but

t suffers from severe processor fragmentation problem. If currently

ree processors cannot meet the requirements of the head job, these

ree processors therefore remain idle. Moreover, both FCFS and EASY

o not consider the idle CPU cycles caused by parallel jobs themselves.

arallel jobs often involve computing, communication and synchro-

ization phases. A process in a parallel job may frequently wait for

he data from other processes, during waiting, the CPU utilization is

ow.

In this paper, we design an algorithm named aggressive

onsolidation-based first-come first-serve (ACFCFS) which intends to

chieve the following goals:

1. Preserve the FCFS order of jobs when processors are available.

2. Do not need job’s runtime estimation.

3. Do not need the support of job migration, which migrates part of

(or all) the processes of a job from their original processors to new

ones, either through a static way or a dynamic way.

4. Can effectively use the idle CPU cycles caused by the parallel jobs

themselves.

5. Produce comparable performance to EASY.

http://dx.doi.org/10.1016/j.jss.2015.03.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.03.007&domain=pdf
mailto:nudt200203012007@163.com
http://aws.amazon.com/
http://dx.doi.org/10.1016/j.jss.2015.03.007
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Fig. 1. Comparison of our parallel job scheduling algorithm and traditional ones.
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ACFCFS can be characterized in twofold:

1. It employs tentative run rather than job migration to alleviate

the pain of processor fragmentation. Tentative run is a try to find

chances to make use of the idle CPU cycles, it is a type of run which

should be killed later once it violates the scheduling rules.

2. It uses parallel workload consolidation to make use of the idle

CPU cycles caused by parallel jobs themselves. Parallel workload

consolidation combines parallel workloads of different servers on

a set of target servers to improve the utilization of computing re-

sources. We proposed a prioritized two-tier processor partition

method to organize virtual machines (VMs) in Liu et al. (2013)

for parallel workload consolidation in this paper. The two-tier

VMs have different CPU priorities, the one with high CPU prior-

ity is named foreground VM and the one with low CPU priority

is named background VM. A foreground VM and a background

VM are pinned to one physical processor. In this prioritized two-

tier VMs architecture, through experiments on collocating VMs

running different parallel jobs, we found that there is little perfor-

mance degradation (less than 4%) of jobs running in foreground

VMs and meanwhile jobs running in background VMs can effec-

tively make use of the remaining compute capacity left from the

foreground VMs.

Based on the tentative run technique and the parallel workload

consolidation method supported by the prioritized two-tier VMs ar-

chitecture, our parallel job scheduling system is depicted by Fig. 1(b).

ACFCFS needs users to specify job’s process number and CPU utiliza-

tion estimation of job’s processe(s), the scheduling of ACFCFS happens

in the two tier VMs. More specifically, FCFS and SMallest-Job-First

(SMJF) work together to schedule jobs onto the foreground tier VMs,

and SMJF is employed to let job of lower parallelism (with less parallel

processes) run first in the background tier. Jobs scheduled by SMJF are

for tentative runs while jobs scheduled by FCFS are for formal runs.

Our evaluation results show that ACFCFS significantly outper-

forms FCFS and produces comparable performance to the runtime-

estimation-based EASY algorithm on well-known parallel workloads.

In addition, our algorithm allows inaccurate CPU usage estimation

and requires trivial modification on FCFS. It is effective and robust for

scheduling parallel workload in the cloud.

The remainder of this paper is organized as follows: Section 2 re-

views the related work. Section 3 presents our consolidation-based
lgorithms in the two-tier VMs architecture. Section 4 gives the eval-

ation results and Section 5 concludes this paper.

. Related work

.1. Traditional parallel job scheduling methods

FCFS, EASY and gang are three widely discussed parallel job

cheduling algorithms in the literature (Etsion and Tsafrir, 2005). FCFS

Schwiegelshohn and Yahyapour, 1998) is the most basic method, it

oes not require job’s runtime information to make scheduling deci-

ions, but it suffers from severe processor fragmentation. EASY (Lifka,

995) was developed for IBM SP1 which allows short/small jobs to use

dle processors when the job arrives earlier than them but does not

ave enough number of processors to run. EASY makes reservation

or the head job in the FCFS queue to protect the fare of scheduling.

ang scheduling (Feitelson and Jettee, 1997; Wiseman and Feitelson,

003) allows resource sharing among multiple parallel jobs. The com-

uting capacity of a processor is divided into time slices for sharing

mong the processes of jobs. The gang scheduling algorithm man-

ges to make all the processes of a job progress together so that one

rocess will not be in sleeping state when another process needs to

ommunicate with it. Gang scheduling has not been widely used due

o its limitations in practice (Etsion and Tsafrir, 2005). Moreover, FCFS,

EASY and gang all fail to address the utilization degradation problem

caused by the parallelization of parallel jobs.

2.2. Parallel job scheduling with tentative run

Thebe et al. propose a typical case which extends base scheduler

(such as FCFS) by trial timed-test run (Thebe et al., 2009). In the ex-

tended scheduler, all jobs should experience a timed run before being

committed for normal run. Test run can identify failing jobs more

quickly which will die prematurely either because of bugs or because

their execution environment changes. It is very effective for work-

loads which contain many such kind of jobs or many really short

jobs. But the trial timed test run needs to specify how long the test

run is, and in addition it brings limited performance improvement

and even produces performance degradation (for example, –181%

in a case). Similar work on the combination of test run and exist-

ing scheduler has been discussed by Perkovic and Keleher (2000),
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Table 1

Statistic on real traces.

Center name Percentage of jobs with varying size in short jobs

=1(%) =2(%) (2, 4](%) (4, 8](%) (8, 16](%) (16, 32](%) (32, 64](%) (64, 128](%) >128(%)

LANL 0.0 0.0 0.0 0.0 0.0 63.6 14.0 13.4 9.0

CTC 36.7 7.5 13.4 14.6 13.5 8.8 4.2 0.9 0.4

KTH 30.1 14.5 19.3 16.0 11.9 4.7 2.6 0.9 0.0

SDSC 27.6 15.6 14.4 15.4 13.2 8.5 4.7 0.6 0.0
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nell et al. (2002), Lawson and Smirni (2002) and Lawson et al. (2002).

nlike to these works, tentative run in this paper is the run that may

e killed during its execution, not for a certain time.

.3. Parallel job scheduling in virtualized environments

In cloud computing, a common way of using idle CPU cycles is to do

t through server consolidation. At this stage, most of the existing ef-

orts (Sonmez et al., 2009; Speitkamp and Bichler, 2010) consider the

cheduling for sequential applications (such as web service) or tasks.

ome other efforts focus on parallel jobs in the cloud but are from the

iewpoint of space-sharing scheduling scheme nor do not take con-

olidation into account (Moschakis and Karatza, 2012; Nicod et al.,

011; Sodan, 2009). Moschakis and Karatza (2012) study the perfor-

ance of a distributed cloud computing model, based on the EC2

rchitecture that implements a gang scheduling scheme. Our method

iffers from their work in: (1) our work focuses on the space-sharing

cheduling scheme rather than the time-sharing scheme; (2) our work

s from the provider’s viewpoint but theirs is from the tenant’s point

f view. Sodan (2009) and Nicod et al. (2011) discuss a method of

eshaping jobs with the aid of virtual machine technologies. Unlike

ur consolidation-based scheduling, their work is job molding based

cheduling. Our previous work in Liu et al. (2013) takes consolidation

nto account for scheduling, but it needs the help of job migration

hich is not applicable in some cases.

. Scheduling algorithms

In this section, we describe our tentative run and consolidation

ased parallel job scheduling algorithms. We first introduce our par-

llel workload consolidation method devised in Liu et al. (2013), then

basic algorithm and a refined algorithm are discussed. The refined

ne is an improvement of the basic one.

.1. A two-tier VMs architecture for priority-based parallel

orkload consolidation

Hardware virtualization technology provides an easy-to-use way

or parallel workloads consolidation in cloud computing. For paral-

el workloads, in order to improve the CPU utilization of their host

rocessors, we here partition each processor into two-tier2 VMs by

inning two virtual CPUs (VCPUs) on the processor and then allocat-

ng these two VCPUs to the two VMs. For a parallel job, its execution

ime running in either tier VMs is stretched if there exists no CPU

riority control on the VMs, because of the context switch between

he two tiers. Reducing the number of context switches can straight-

orwardly improve the utilization of host processors, thus we assign

he VMs on one tier with high CPU priority (say, assigning a weight

f 10,000 through the CrediteScheduler3 of Xen (Barham et al., 2003))

nd assign the VMs on the other tier with low CPU priority (by assign-

ng a weight of 1). The tier with high CPU priority is called foreground

fg) tier and the one with low CPU priority is called background (bg)
2 The method can extend to “k-tier (k > 2)” VMs, this paper only takes “two” as an

xample.
3 Creditscheduler. http://wiki.xen.org/xenwiki/CreditScheduler.

t

ier. In this setting, the number of context switches can be reduced

ignificantly because the background VM only uses CPU cycles when

ts corresponding foreground VM is idle. Under this prioritized two-

ier VMs architecture, experiments in our small cluster conclude that

Liu et al., 2013):

1. The average performance loss of jobs running in the foreground

tier is between 0.5% and 4% compared to those running in the

processors exclusively (one-tier VM), we simply model the loss as

a uniform distribution.

2. When a foreground VM runs a job with higher CPU utilization

than 96%, collocating a VM to run in the background tier does

not benefit the job running in it due to that context switch incurs

overhead and the background VM has little chance to run.

3. When a foreground VM runs a job with low CPU utilization, the job

running in the collocated background VM can get significant por-

tion of physical resources to run. For a single-process background

job, the utilization of the idle CPU cycles is between 80% and 100%

and roughly follows uniform distribution. For a multi-processes

background job, the value is between 20% and 80%, and can be

modelled by a normal distribution with μ = 0.43 and σ = 0.14.

Based on the observation upon this two-tier VMs architecture, we

iscuss our scheduling algorithms in the following sections.

.2. Basic algorithm

.2.1. Algorithm description

Our basic algorithm under the two-tier VMs architecture is named

onservative consolidation-based first-come first-serve (CCFCFS). We

all CCFCFS “conservative” to distinguish it from the “aggressive” ver-

ion described later (in Section 3.3). In CCFCFS, scheduling happens

n two tiers and the concept is:

1. Use FCFS to schedule runnable jobs onto the foreground VMs and

use SMallest Job First (SMJF) to deploy all possible jobs onto the

background VMs for tentative runs.

2. To preserve the properties of FCFS, the foreground scheduling con-

siders both jobs in the waiting queue (a FCFS queue) and jobs run-

ning in the background tier when making scheduling decisions.

3. When the foreground scheduling picks up a job that is running in

the background VMs to run, there are two situations:

(a) if the collocated foreground VMs’ corresponding background

VMs are all idle: change the priorities of these background

VMs to high while changing the priorities of the corresponding

foreground VMs to low.

(b) otherwise: kill the job in the background VMs and restart it

from the beginning on the newly allocated foreground VMs.

In order to make use of the capacity of the background VMs, we use

MJF to schedule jobs to background VMs. This increases the chance

hat a job finishes in the background VMs because of:

1. Small jobs are very likely to be short jobs. This is primary due

to long jobs are often executed in high parallelism to reduce the

execution time. Table 1 gives the percentage of jobs with varying

http://wiki.xen.org/xenwiki/CreditScheduler
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Fig. 2. Example of the observation that small jobs are very likely to be short jobs.
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Algorithm 1. CCFCFS – job arrival/fg job departure procedure.
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T

size in short jobs4 in four famous supercomputer centers. The four

centers are Los Alamos National Lab (LANL), Cornell Theory Center

(CTC), Swedish Royal Institute of Technology (KTH) and San Diego

Supercomputer Center (SDSC) respectively. Statistics in Table 1

validate this phenomena.

2. Running small jobs in background VMs can use the computing

resource more effectively. Fig. 2 illustrates an example of this sit-

uation. In Fig. 2, we assume that the CPU usage of processes in J1

is 70% and the CPU usages of processes in J2 and J3 are both 100%.

3. It is easier to switch small jobs from the background tier to the

foreground tier, because they are more likely to qualify the criteria

“the collocated foreground VMs’ corresponding background VMs

are all idle”.

In addition, CCFCFS only dispatches a job to run in a background

VM if the utilization of corresponding foreground VM is lower than a

threshold (96% according to Section 3.1). The foreground VM utiliza-

tion can be obtained from the profile of foreground jobs, or from the

runtime monitoring system in a datacenter.

The algorithm of CCFCFS consists of two sub-algorithms which

handle job arrival and job departure events. When a job arrives or a

job finishes in the foreground VMs, Algorithm 1 is invoked to schedule

runnable jobs to both the foreground tier and the background tier.

When a job finishes in the background VMs, Algorithm 2 is invoked

to schedule runnable jobs to the background tier.

3.2.2. Example

Fig. 3 (b) illustrates an instance of CCFCFS and the corresponding

example of FCFS is given in Fig. 3(a). Let there be five processors (P1–

5) and seven jobs (J1–7) initially. Each job is denoted by (n, t), where

n is the number of processors required and t is the execution time.

e here assume that a job with lower index arrives earlier than a

ob with bigger index. Each processor has two tier VMs denoted as fg

nd bg in Fig. 3. For illustration convenience here, we assume that the

rocess in a single-process job incurs a CPU usage of 100% and each

rocess within a multi-processes job involves a CPU usage less than

he utilization threshold (96% according to Section 3.1).

At time 0, J1 is placed onto the foreground VMs of P4–5 according

o FCFS; J3–5 is deployed onto the background VMs of P1–5 according

o SMJF. We use a simple process to collocate a background VM with a

oreground VM, as shown in the JobDispatch function in Algorithm 2.

his process matches the background VM (that is likely to incur high

rocessor utilization) to the foreground VM (that is likely to incur low

rocessor utilization).

At time 5 (we assume J5 advances 3 time units during time 0–5

ere), J1 and J5 depart from the system. J2 is scheduled by FCFS onto

he foreground VMs of P2–5, and J7 is scheduled by SMJF onto the

ackground VMs of P4–5.

At time 10, J2 and J4 depart from the system (although J4 runs in

he background tier during its lifetime, it actual occupies P1 exclu-

ively because its foreground VM is always idle during its execution.

imilarly, J3 runs in P2–3 exclusively during time 0–5), J3 and J6

re picked up by FCFS to run in the foreground tier. For J3, it can

e switched from the background VMs to the foreground VMs at its

riginal processors by swapping the CPU priorities.
4 We here call a job is short when its runtime is less than the average runtime of the

workload.
At time 15, J3 departs from the system, J7 is killed from the back-

round VMs of its original processors (P4–5) and then restarted from

he beginning at the foreground VMs of the newly allocated proces-

ors (P2–3).

.3. Refined algorithm

In CCFCFS, the scheduling strategy in the foreground tier is FCFS.

his manner leads to severe foreground VM fragmentation. Improving

the utilization of the foreground VMs is the key in design of algorithms

under the two-tier VMs architecture. This section devises an aggres-

sive version of CCFCFS, namely, the aggressive consolidation-based

first-come first-serve (ACFCFS).

3.3.1. Algorithm description

To handle a background job departure, ACFCFS behaves the same

as CCFCFS, as shown in Algorithm 2. For the procedure of a job ar-

rival & a foreground job departure, ACFCFS is more aggressive than

CCFCFS as shown in Algorithm 3. The aggressiveness of ACFCFS is

shown in line 4 (the invoking of the TryToRunMoreJobs function) of
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Algorithm 2. CCFCFS & ACFCFS – bg job depature handling.
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2

lgorithm 3, which makes tentative run not only happen in the back-

round tier but also in the foreground tier.

Tentative run in the foreground tier triggers job preemption in

he foreground tier, which may violate the rule of FCFS. In run-

ime, ACFCFS may evict some preemptive jobs currently running in

he foreground tier to make room for the preempted jobs to avoid

his violation. The procedure of the job selection (accompanied by

ob eviction) is implemented by the SelectJobs_Refined function in

lgorithm 3.

.3.2. Example

Fig. 3 (c) gives an example of ACFCFS.

At time 0, after placing J1 onto the foreground VMs of P4–5 ac-

ording to FCFS, J4 and J3 are deployed onto the foreground VMs of

1–3 for tentative runs (their run may be killed or switched to the

ackground tier in future) by SMJF. Then J5 and J7 are assigned onto

he background VMs of P2–5 by SMJF.

At time 5, J1 and J5 depart from the system (we here also assume

5 advances 3 time units during time 0–5). As the total number of

oreground VMs (5) that are either idle or occupied by the jobs (J3–4)

hich arrive later than J2 is greater than the process number of J2

4). So ACFCFS starts to evict some jobs to make room for J2. First,

4 and then J3 are initially selected as candidate jobs to be evicted
according to lines 8–23 in Algorithm 3). Then J4 remains in its original

osition without being evicted because there is one extra foreground

M left (according to line 28–33 in the RefineEvictedJobs function); J3

s switched (by swapping the CPU priorities of its foreground VMs and

ackground VMs) to the background VMs of its original processors as

hese background VMs are all idle at this time (according to line 34–

6 in the RefineEvictedJobs function). J2 is then deployed onto the

oreground VMs of P2–5 at last.

At time 10, J2, J4 and J7 depart from the system (we assume J7

dvances 5 time units during time 0–10 here), J3 is switched from the

ackground tier to the foreground tier by CPU priorities swapping and

6 is deployed to the foreground tier from the waiting queue. Then J3

nd J6 depart from the system at time 15 and time 20 respectively.

. Evaluation

.1. Evaluation methodology

Our algorithms are evaluated by trace-driven simulation (Liu et al.,

013; Mu’alem and Feitelson, 2001), traces here include four real
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Fig. 3. Examples of FCFS, CCFCFS and ACFCFS.
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(a) Average waiting time

(c) Average bounded slowdown

Fig. 4. Performanc
races and two synthetic traces. The four real traces are LANL-CM5

LANL), TC-SP2 (CTC), KTH-SP2 (KTH) and SDSC-SP2 (SDSC), and the

ystem load of them are 0.74, 0.84, 0.69 and 0.83 respectively. The two

ynthetic traces are generated by Feitelson workload model (denoted

y FWload, 350,000 jobs) (Feitelson, 1996) and Jann workload model

JWload, 100,000 jobs) (Jann et al., 1997). EASY is also evaluated in

his paper for comparison. Since EASY needs the estimation of job’s

untime to make decisions, for real traces we use the actual runtime as

he job’s estimated runtime when the estimated runtime is less than

he actual runtime. For synthetic traces we use Tsafrir model (Tsafrir

t al., 2005; Tsafrir) to add the estimated runtime for each job.5 As

ll traces do not contain the CPU usage information of processes, we

ssign a CPU usage of 100% to a process if it is from a single-process

ob, otherwise, a random number between 40% and 100% is assigned

s the CPU usage.

In the two-tier VMs architecture, the progress of a process running

n the foreground VM and the background VM can be calculated by

he following equations respectively:

=
{

T if its bg VMs are all idle
T · (1 − loss) otherwise

t =

⎧⎪⎪⎨
⎪⎪⎩

T if its fg VMs are all idle
T · eff else if CPUi ≥ CPUr

T · eff · CPUi

CPUr
otherwise.

here, T is the length of a time slice, denoting the progress of a

rocess running on a dedicated processor in a time slice; loss is the

performance degradation of jobs running in the foreground tier due

to the context switch; CPUr is the CPU utilization of the background

rocess on a dedicated processor; CPUi is the portion of unused CPU

ycles in the processor; eff is a variable between 0 and 1, representing

ow much time in a time slice effectively contributes to the progress

f the process. According to Section 3.1, loss is a random number
5 All the traces and models can be downloaded from the parallel workload archive

Feitelson).

(b) Maximum waiting time

(d) Maximum bounded slowdown

e for FWload.
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(a) Average waiting time (b) Maximum waiting time

(c) Average bounded slowdown (d) Maximum bounded slowdown

Fig. 5. Performance for JWload.

(a) FWload (b) JWload

Fig. 6. Average number of job kill.
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t

m

4

t

C

W

etween 0.5% and 4% (uniformly distributed), eff is a random number

etween 0.8 and 1.0 (uniformly distributed) in the case of a single-

rocess job and a random number between 0.2 and 0.8 (normally

istributed with μ = 0.43 and σ = 0.14) in other cases.

We use the average waiting time and the average bounded slowdown

s metrics for performance evaluation. The waiting time of a job is

efined as wt = tf − ta − te, and the bounded slowdown of a job is

efined as sdb = (tf − ta)/max(�, te), where tf is the finish time of

he job, ta is the arrival time of the job, te is the execution time of

he job. Compared with slowdown, the bounded slowdown metric

s less affected by very short jobs as it contains a minimal execution

ime element �. According to Feitelson et al. (1997), we set � to

0 s. To show more aspects of the scheduling results, we further use

he maximum waiting time and the maximum bounded slowdown as

etrics in this paper.

.2. Evaluation results

Figs. 4, 5 and 6 show the performance of our algorithms for

he workload models, results in columns (labeled in FCFS/EASY/
CFCFS/ACFCFS) of Table 2 gives the performance for the real traces.

e have the following observations from the results:

1. Both CCFCFS and ACFCFS produce significant better performance

than FCFS, whether from the viewpoint of the average value or

the viewpoint of the maximum value. ACFCFS beats CCFCFS to

much extend by paying the price of more job killings (especially

in higher load). Compared with FCFS, ACFCFS produces an average

of 94.2% improvement on the average waiting time and an av-

erage of 97.5% improvement on the average bounded slowdown

for FWload. The improvements for JWload are 92.4% and 92.9%

respectively.

2. For the average metrics as well as the maximum metrics, ACFCFS

can produce comparable performance to EASY especially on aver-

age bounded slowdown. For the two workload models, EASY can

outperform ACFCFS on the average waiting time/average bounded

slowdown only when the system load is bigger than 0.8/0.85.

3. FWload benefits more from ACFCFS than JWload because JWload

workload contains about 40% (Jann et al., 1997) single-process jobs

but the percentage in FWload is less than 18% (Feitelson, 1996).

The high percentage of single-process jobs in JWload reduces the
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Table 2

Performance for real traces. ACFCFSUN denotes that the algorithm does not use CPU usage information at all. ACFCFS100 means that all the

processes involved consume the whole CPU cycles of their host processors.

Trace FCFS EASY CCFCFS ACFCFS ACFCFSUN ACFCFS100

Value Imp(%) Value Imp(%) Value Imp(%) Value Imp(%) Value Imp(%)

Average waiting time (min)

LANL 1324.5 138.7 89.5 779.2 41.2 264.9 80.0 309.6 76.6 296.2 76.9

CTC 12797.6 249.8 98.0 566.5 95.6 345.9 97.3 471.6 96.3 810.8 81.0

KTH 6498.2 114.2 98.2 154.0 97.6 105.2 98.4 128.6 98.0 127.2 98.3

SCSC 25865.5 353.1 98.6 2125.9 91.8 607.4 97.7 1115.5 95.7 1446.3 89.7

Maximum waiting time (min)

LANL 7837 3001 61.7 7283 7.0 4583 41.5 4838 38.3 4917 37.3

CTC 31923 5400 83.1 8453 73.5 6077 81.0 6973 78.2 10155 68.2

KTH 16972 4370 74.3 4605 72.9 4984 70.6 5406 68.1 5295 68.8

SCSC 91820 7661 91.7 17909 80.5 9600 89.5 14267 84.5 19274 79.0

Average bounded slowdown

LANL 1279.7 73.1 94.3 520.2 59.3 100.4 92.2 123.1 90.4 143.5 88.8

CTC 4275.2 52.0 98.8 76.3 98.2 27.2 99.4 39.1 99.1 96.2 97.8

KTH 7518.7 90.8 98.8 73.3 99.0 30.8 99.6 38.3 99.5 76.3 99.0

SCSC 14031.4 92.9 99.3 479.8 96.6 94.1 99.3 192.5 98.6 290.2 97.9

Maximum bounded slowdown

LANL 46956 10580 77.5 43464 7.4 23579 49.8 25105 46.5 29318 37.6

CTC 174853 9982 94.3 23306 86.7 13272 92.4 13039 92.5 29410 83.2

KTH 101160 14805 85.4 18604 81.6 11521 88.6 13430 86.7 12705 87.4

SCSC 521304 7145 98.6 25127 95.2 11406 97.8 18551 96.4 27575 94.7

(a) Average waiting time (b) Maximum waiting time

(c) Average bounded slowdown (d) Maximum bounded slowdown

Fig. 7. Performance for FWload with estimated CPU usage. Here and hereafter, ACFCFS10 denotes the estimation error of CPU usage is less than 10%; ACFCFSUN depicts that the

algorithm does not use CPU usage information at all.
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4
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f

total idle CPU cycles ACFCFS can use on the one hand, and benefits

the packing of FCFS on the other hand.

4. The improvement ACFCFS makes on bounded slowdown is more

significant than that on the average response time due to the

background execution of small jobs. Small jobs are very likely to

be short jobs as mentioned in Section 3.2.1, hence earlier execution

of short jobs contributes more for the average bounded slowdown.

5. The number of job kills increases as the system load increases

in ACFCFS. The number of tentative runs in the foreground tier

increases as the system load increases. Moreover, these tentative

runs are much easier to be killed because they are very likely to

violate the rule of FCFS in case of high system load.

6. The number of job kills is small when the system load is low or

high in CCFCFS, and is big in modest system load. When the system
load is low, background jobs can be switched to the foreground

tier easier; when the system load is high, more (small) jobs can

benefit from the background execution.

In the results described above, ACFCFS shows better performance

han CCFCFS. We will use ACFCFS for further comparison in the fol-

owing discussions.

.3. Discussions

.3.1. Impact of the accuracy of CPU usage estimation

ACFCFS relies on the CPU usage information of parallel processes

f jobs to make scheduling decisions. The information can be obtained

rom profiling a job in test runs or based on user’s estimation. Either
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(a) Average waiting time (b) Maximum waiting time

(c) Average bounded slowdown (d) Maximum bounded slowdown

Fig. 8. Performance for JWload with estimated CPU usage.

(a) Average waiting time (b) Maximum waiting time

(c) Average bounded slowdown (d) Maximum bounded slowdown

Fig. 9. Performance for FWload under varying average CPU usage. Here and hereafter, ACFCFS60 denotes the average CPU usage of processes in multi-processes jobs is 60%

(20–100%); ACFCFS100 means that all the processes involved consume the whole CPU cycles of their host processors.
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ay, incorrect estimation of such information can be a problem. In

his section, we investigate the impact of information inaccuracy on

he performance of our algorithms by three experiments. We assume

hat the CPU usage estimation of each process has an error r (a factor

f r), i.e., the estimation is within of the accurate value. We set r to

.1 and 0.2 in two experiments. In the third experiment, we assume

o CPU usage information is known and a process has to be randomly

laced in the place where CPU usage is needed.

As shown in Figs. 7, 8 and Table 2, ACFCFS outperforms FCFS sig-

ificantly and produces comparable performance to EASY (especially
hen the system load is less than 0.8) even without any CPU usage

nformation of parallel processes. However, certain estimation of CPU

sage (even with 20% error) can improve the scheduling performance

ignificantly.

.3.2. Impact of average CPU usage of parallel processes

ACFCFS makes use of remaining computing capacity of each pro-

essor. In this section, we further investigate the impact of average

PU usage of parallel processes on the performance of ACFCFS. We
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(a) Average waiting time (b) Maximum waiting time

(c) Average bounded slowdown (d) Maximum bounded slowdown

Fig. 10. Performance for JWload under varying average CPU usage.
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change the average CPU usage of multi-processes jobs and examine

the performance change of ACFCFS.

Figs. 9, 10 and Table 2 show the results under different average

CPU usage. The results demonstrate that the benefit gained from VM

collocation is inversely proportional to the average CPU usage of par-

allel processes. Even if the average CPU usage is 100%, ACFCFS still

performs significantly better than FCFS even with context switch-

ing overhead. This is due to lots of tentative runs successfully by

chance.

5. Conclusions and future work

Running parallel applications in the cloud becomes more and more

popular now. It is a challenging for cloud providers to achieve re-

sponsiveness of parallel jobs and high processor utilization simulta-

neously. In this paper, we introduced a prioritized two-tier VMs ar-

chitecture to organize VMs for running parallel jobs. The foreground

tier of VMs has higher CPU priority than that of the background tier of

VMs. The performance of jobs running in the foreground VMs is close

to that of jobs running in dedicated processors (less than 4% perfor-

mance loss), meanwhile, the idle CPU cycles can be well used by the

jobs running in background VMs. We gave a scheduling algorithm

named ACFCFS to exploit the increased computing capacity provided

by the two-tier VMs architecture. The proposed ACFCFS algorithm

extends the popularly used FCFS algorithm, and it preserves all the

advantages of FCFS, such as no starvation, no requirement for job’s

runtime estimation, easy to implement and no job migration. Our

evaluation showed that ACFCFS significantly outperforms FCFS, and

achieves comparable performance to the runtime-estimation-based

EASY algorithm. ACFCFS is robust in terms that it allows inaccurate

CPU usage estimation of parallel processes and low available idle CPU

cycles.

In our future work, we will exploit mechanisms that can effectively

partition the computing capacity of a processor into k-tiers, which

may further improve the processor utilization and responsiveness

for parallel workload in the cloud. Another issue is that in a large

datacenter, processes of a job may need to be allocated to nodes that

are close to each other to minimize the communication cost. At last,
ode with multi-cores is ubiquitous nowadays, parallel job scheduling

nder this architecture, deserves our further research.
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