
Neural Networks 61 (2015) 85–117
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Review

Deep learning in neural networks: An overview
Jürgen Schmidhuber
The Swiss AI Lab IDSIA, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, University of Lugano & SUPSI, Galleria 2, 6928 Manno-Lugano, Switzerland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 May 2014
Received in revised form 12 September
2014
Accepted 14 September 2014
Available online 13 October 2014

Keywords:
Deep learning
Supervised learning
Unsupervised learning
Reinforcement learning
Evolutionary computation

In recent years, deep artificial neural networks (including recurrent ones) havewon numerous contests in
pattern recognition and machine learning. This historical survey compactly summarizes relevant work,
much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth
of their credit assignment paths, which are chains of possibly learnable, causal links between actions
and effects. I review deep supervised learning (also recapitulating the history of backpropagation),
unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short
programs encoding deep and large networks.

© 2014 Published by Elsevier Ltd.

Contents

1. Introduction to Deep Learning (DL) in Neural Networks (NNs).. 86
2. Event-oriented notation for activation spreading in NNs ... 87
3. Depth of Credit Assignment Paths (CAPs) and of problems .. 88
4. Recurring themes of Deep Learning.. 88

4.1. Dynamic programming for Supervised/Reinforcement Learning (SL/RL).. 88
4.2. Unsupervised Learning (UL) facilitating SL and RL .. 89
4.3. Learning hierarchical representations through deep SL, UL, RL ... 89
4.4. Occam’s razor: compression and Minimum Description Length (MDL) .. 89
4.5. Fast Graphics Processing Units (GPUs) for DL in NNs.. 89

5. Supervised NNs, some helped by unsupervised NNs... 89
5.1. Early NNs since the 1940s (and the 1800s).. 90
5.2. Around 1960: visual cortex provides inspiration for DL (Sections 5.4, 5.11) .. 90
5.3. 1965: deep networks based on the Group Method of Data Handling.. 90
5.4. 1979: convolution + weight replication + subsampling (Neocognitron)... 90
5.5. 1960–1981 and beyond: development of backpropagation (BP) for NNs ... 90

5.5.1. BP for weight-sharing feedforward NNs (FNNs) and recurrent NNs (RNNs).. 91
5.6. Late 1980s–2000 and beyond: numerous improvements of NNs .. 91

5.6.1. Ideas for dealing with long time lags and deep CAPs... 91
5.6.2. Better BP through advanced gradient descent (compare Section 5.24) .. 92
5.6.3. Searching for simple, low-complexity, problem-solving NNs (Section 5.24)... 92
5.6.4. Potential benefits of UL for SL (compare Sections 5.7, 5.10, 5.15)... 92

5.7. 1987: UL through Autoencoder (AE) hierarchies (compare Section 5.15) ... 93
5.8. 1989: BP for convolutional NNs (CNNs, Section 5.4) ... 93
5.9. 1991: Fundamental Deep Learning Problem of gradient descent .. 93

5.10. 1991: UL-based history compression through a deep stack of RNNs... 94
5.11. 1992: Max-Pooling (MP): towards MPCNNs (compare Sections 5.16, 5.19) ... 94

E-mail address: juergen@idsia.ch.
http://dx.doi.org/10.1016/j.neunet.2014.09.003
0893-6080/© 2014 Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2014.09.003&domain=pdf
mailto:juergen@idsia.ch
http://dx.doi.org/10.1016/j.neunet.2014.09.003

86 J. Schmidhuber / Neural Networks 61 (2015) 85–117
5.12. 1994: early contest-winning NNs... 95
5.13. 1995: supervised recurrent very Deep Learner (LSTM RNN).. 95
5.14. 2003: more contest-winning/record-setting NNs; successful deep NNs... 96
5.15. 2006/7: UL for deep belief networks/AE stacks fine-tuned by BP .. 96
5.16. 2006/7: improved CNNs/GPU-CNNs/BP for MPCNNs/LSTM stacks .. 96
5.17. 2009: first official competitions won by RNNs, and with MPCNNs.. 97
5.18. 2010: plain backprop (+ distortions) on GPU breaks MNIST record ... 97
5.19. 2011: MPCNNs on GPU achieve superhuman vision performance .. 97
5.20. 2011: Hessian-free optimization for RNNs .. 98
5.21. 2012: first contests won on ImageNet, object detection, segmentation.. 98
5.22. 2013-: more contests and benchmark records .. 98
5.23. Currently successful techniques: LSTM RNNs and GPU-MPCNNs .. 99
5.24. Recent tricks for improving SL deep NNs (compare Sections 5.6.2, 5.6.3) ... 99
5.25. Consequences for neuroscience.. 100
5.26. DL with spiking neurons? ... 100

6. DL in FNNs and RNNs for Reinforcement Learning (RL) .. 100
6.1. RL through NN world models yields RNNs with deep CAPs ... 100
6.2. Deep FNNs for traditional RL and Markov Decision Processes (MDPs) .. 101
6.3. Deep RL RNNs for partially observable MDPs (POMDPs) .. 101
6.4. RL facilitated by deep UL in FNNs and RNNs.. 102
6.5. Deep hierarchical RL (HRL) and subgoal learning with FNNs and RNNs.. 102
6.6. Deep RL by direct NN search/policy gradients/evolution ... 102
6.7. Deep RL by indirect policy search/compressed NN search ... 103
6.8. Universal RL.. 103

7. Conclusion and outlook ... 103
Acknowledgments ... 104
References... 104
Preface

This is the preprint of an invited Deep Learning (DL) overview.
One of its goals is to assign credit to those who contributed to the
present state of the art. I acknowledge the limitations of attempt-
ing to achieve this goal. The DL research community itself may be
viewed as a continually evolving, deep network of scientists who
have influenced each other in complex ways. Starting from recent
DL results, I tried to trace back the origins of relevant ideas through
the past half century and beyond, sometimes using ‘‘local search’’
to follow citations of citations backwards in time. Since not all
DL publications properly acknowledge earlier relevant work, addi-
tional global search strategies were employed, aided by consulting
numerous neural network experts. As a result, the present preprint
mostly consists of references. Nevertheless, through an expert se-
lection bias I may have missed important work. A related bias was
surely introduced by my special familiarity with the work of my
own DL research group in the past quarter-century. For these rea-
sons, this work should be viewed as merely a snapshot of an on-
going credit assignment process. To help improve it, please do not
hesitate to send corrections and suggestions to juergen@idsia.ch.

1. Introduction toDeep Learning (DL) inNeural Networks (NNs)

Whichmodifiable components of a learning system are respon-
sible for its success or failure?What changes to them improve per-
formance? This has been called the fundamental credit assignment
problem (Minsky, 1963). There are general credit assignmentmeth-
ods for universal problem solvers that are time-optimal in various
theoretical senses (Section 6.8). The present survey, however, will
focus on the narrower, but now commercially important, subfield
of Deep Learning (DL) in Artificial Neural Networks (NNs).

A standard neural network (NN) consists of many simple, con-
nected processors called neurons, each producing a sequence of
real-valued activations. Input neurons get activated through sen-
sors perceiving the environment, other neurons get activated
throughweighted connections frompreviously active neurons (de-
tails in Section 2). Some neurons may influence the environment
by triggering actions. Learning or credit assignment is about finding
weights that make the NN exhibit desired behavior, such as driving
a car. Depending on the problem and how the neurons are con-
nected, such behavior may require long causal chains of compu-
tational stages (Section 3), where each stage transforms (often in
a non-linear way) the aggregate activation of the network. Deep
Learning is about accurately assigning credit across many such
stages.

Shallow NN-like models with few such stages have been around
for many decades if not centuries (Section 5.1). Models with sev-
eral successive nonlinear layers of neurons date back at least to
the 1960s (Section 5.3) and 1970s (Section 5.5). An efficient gra-
dient descent method for teacher-based Supervised Learning (SL)
in discrete, differentiable networks of arbitrary depth called back-
propagation (BP) was developed in the 1960s and 1970s, and ap-
plied to NNs in 1981 (Section 5.5). BP-based training of deep NNs
with many layers, however, had been found to be difficult in prac-
tice by the late 1980s (Section 5.6), and had become an explicit
research subject by the early 1990s (Section 5.9). DL became prac-
tically feasible to some extent through the help of Unsupervised
Learning (UL), e.g., Section 5.10 (1991), Section 5.15 (2006). The
1990s and 2000s also saw many improvements of purely super-
vised DL (Section 5). In the new millennium, deep NNs have fi-
nally attracted wide-spread attention, mainly by outperforming
alternative machine learning methods such as kernel machines
(Schölkopf, Burges, & Smola, 1998; Vapnik, 1995) in numerous im-
portant applications. In fact, since 2009, supervised deep NNs have
won many official international pattern recognition competitions
(e.g., Sections 5.17, 5.19, 5.21 and 5.22), achieving the first super-
human visual pattern recognition results in limited domains (Sec-
tion 5.19, 2011). Deep NNs also have become relevant for themore
general field of Reinforcement Learning (RL) where there is no su-
pervising teacher (Section 6).

Both feedforward (acyclic) NNs (FNNs) and recurrent (cyclic)
NNs (RNNs) havewon contests (Sections 5.12, 5.14, 5.17, 5.19, 5.21,
5.22). In a sense, RNNs are the deepest of all NNs (Section 3)—
they are general computers more powerful than FNNs, and can in
principle create and process memories of arbitrary sequences of
input patterns (e.g., Schmidhuber, 1990a; Siegelmann & Sontag,
1991). Unlike traditional methods for automatic sequential pro-
gram synthesis (e.g., Balzer, 1985; Deville & Lau, 1994; Soloway,

mailto:juergen@idsia.ch

J. Schmidhuber / Neural Networks 61 (2015) 85–117 87
Abbreviations in alphabetical order

AE: Autoencoder
AI: Artificial Intelligence
ANN: Artificial Neural Network
BFGS: Broyden–Fletcher–Goldfarb–Shanno
BNN: Biological Neural Network
BM: Boltzmann Machine
BP: Backpropagation
BRNN: Bi-directional Recurrent Neural Network
CAP: Credit Assignment Path
CEC: Constant Error Carousel
CFL: Context Free Language
CMA-ES: Covariance Matrix Estimation ES
CNN: Convolutional Neural Network
CoSyNE: Co-Synaptic Neuro-Evolution
CSL: Context Sensitive Language
CTC: Connectionist Temporal Classification
DBN: Deep Belief Network
DCT: Discrete Cosine Transform
DL: Deep Learning
DP: Dynamic Programming
DS: Direct Policy Search
EA: Evolutionary Algorithm
EM: Expectation Maximization
ES: Evolution Strategy
FMS: Flat Minimum Search
FNN: Feedforward Neural Network
FSA: Finite State Automaton
GMDH: Group Method of Data Handling
GOFAI: Good Old-Fashioned AI
GP: Genetic Programming
GPU: Graphics Processing Unit
GPU-MPCNN: GPU-Based MPCNN
HMM: Hidden Markov Model
HRL: Hierarchical Reinforcement Learning
HTM: Hierarchical Temporal Memory
HMAX: Hierarchical Model ‘‘and X’’
LSTM: Long Short-Term Memory (RNN)
MDL: Minimum Description Length
MDP: Markov Decision Process
MNIST: Mixed National Institute of Standards and Technol-

ogy Database
MP: Max-Pooling
MPCNN: Max-Pooling CNN
NE: NeuroEvolution
NEAT: NE of Augmenting Topologies
NES: Natural Evolution Strategies
NFQ: Neural Fitted Q-Learning
NN: Neural Network
OCR: Optical Character Recognition
PCC: Potential Causal Connection
PDCC: Potential Direct Causal Connection
PM: Predictability Minimization
POMDP: Partially Observable MDP
RAAM: Recursive Auto-Associative Memory
RBM: Restricted Boltzmann Machine
ReLU: Rectified Linear Unit
RL: Reinforcement Learning
RNN: Recurrent Neural Network
R-prop: Resilient Backpropagation
SL: Supervised Learning
SLIM NN: Self-Delimiting Neural Network
SOTA: Self-Organizing Tree Algorithm
SVM: Support Vector Machine
TDNN: Time-Delay Neural Network
TIMIT: TI/SRI/MIT Acoustic-Phonetic Continuous Speech

Corpus
UL: Unsupervised Learning
WTA: Winner-Take-All
1986; Waldinger & Lee, 1969), RNNs can learn programs that mix
sequential and parallel information processing in a natural and ef-
ficient way, exploiting the massive parallelism viewed as crucial
for sustaining the rapid decline of computation cost observed over
the past 75 years.

The rest of this paper is structured as follows. Section 2 intro-
duces a compact, event-oriented notation that is simple yet general
enough to accommodate both FNNs andRNNs. Section 3 introduces
the concept of Credit Assignment Paths (CAPs) to measure whether
learning in a given NN application is of the deep or shallow type.
Section 4 lists recurring themes of DL in SL, UL, and RL. Section 5 fo-
cuses on SL and UL, and on how UL can facilitate SL, although pure
SL has become dominant in recent competitions (Sections 5.17–
5.23). Section 5 is arranged in a historical timeline format with
subsections on important inspirations and technical contributions.
Section 6 on deep RL discusses traditional Dynamic Programming
(DP)-based RL combined with gradient-based search techniques
for SL or UL in deep NNs, as well as general methods for direct and
indirect search in theweight space of deep FNNs and RNNs, includ-
ing successful policy gradient and evolutionary methods.

2. Event-oriented notation for activation spreading in NNs

Throughout this paper, let i, j, k, t, p, q, r denote positive
integer variables assuming ranges implicit in the given contexts.
Let n,m, T denote positive integer constants.

An NN’s topology may change over time (e.g., Sections 5.3,
5.6.3). At any given moment, it can be described as a finite subset
of units (or nodes or neurons) N = {u1, u2, . . . , } and a finite set
H ⊆ N ×N of directed edges or connections between nodes. FNNs
are acyclic graphs, RNNs cyclic. The first (input) layer is the set
of input units, a subset of N . In FNNs, the kth layer (k > 1) is the
set of all nodes u ∈ N such that there is an edge path of length
k − 1 (but no longer path) between some input unit and u. There
may be shortcut connections between distant layers. In sequence-
processing, fully connected RNNs, all units have connections to all
non-input units.

The NN’s behavior or program is determined by a set of real-
valued, possibly modifiable, parameters or weights wi (i = 1,
. . . , n).We now focus on a single finite episode or epoch of informa-
tion processing and activation spreading,without learning through
weight changes. The following slightly unconventional notation is
designed to compactly describe what is happening during the run-
time of the system.

During an episode, there is a partially causal sequence xt (t =

1, . . . , T) of real values that I call events. Each xt is either an in-
put set by the environment, or the activation of a unit that may
directly depend on other xk(k < t) through a current NN topology-
dependent set int of indices k representing incoming causal con-
nections or links. Let the function v encode topology information
and map such event index pairs (k, t) to weight indices. For ex-
ample, in the non-input case we may have xt = ft(net t) with
real-valued net t =


k∈int xkwv(k,t) (additive case) or net t =

k∈int xkwv(k,t) (multiplicative case), where ft is a typically non-
linear real-valued activation function such as tanh. In many recent
competition-winning NNs (Sections 5.19, 5.21, 5.22) there also are
events of the type xt = maxk∈int (xk); some network types may
also use complex polynomial activation functions (Section 5.3). xt
may directly affect certain xk(k > t) through outgoing connections
or links represented through a current set out t of indices k with
t ∈ ink. Some of the non-input events are called output events.

Note that many of the xt may refer to different, time-varying
activations of the same unit in sequence-processing RNNs (e.g.,
Williams, 1989 ‘‘unfolding in time’’), or also in FNNs sequentially
exposed to time-varying input patterns of a large training set
encoded as input events. During an episode, the same weight

88 J. Schmidhuber / Neural Networks 61 (2015) 85–117
may get reused over and over again in topology-dependent ways,
e.g., in RNNs, or in convolutional NNs (Sections 5.4 and 5.8). I
call this weight sharing across space and/or time. Weight sharing
may greatly reduce the NN’s descriptive complexity, which is
the number of bits of information required to describe the NN
(Section 4.4).

In Supervised Learning (SL), certain NN output events xt may
be associated with teacher-given, real-valued labels or targets dt
yielding errors et , e.g., et = 1/2(xt − dt)2. A typical goal of super-
vised NN training is to find weights that yield episodes with small
total error E, the sum of all such et . The hope is that the NN will
generalize well in later episodes, causing only small errors on pre-
viously unseen sequences of input events. Many alternative error
functions for SL and UL are possible.

SL assumes that input events are independent of earlier output
events (whichmay affect the environment through actions causing
subsequent perceptions). This assumption does not hold in the
broader fields of Sequential Decision Making and Reinforcement
Learning (RL) (Hutter, 2005; Kaelbling, Littman, & Moore, 1996;
Sutton & Barto, 1998; Wiering & van Otterlo, 2012) (Section 6).
In RL, some of the input events may encode real-valued reward
signals given by the environment, and a typical goal is to find
weights that yield episodes with a high sum of reward signals,
through sequences of appropriate output actions.

Section 5.5 will use the notation above to compactly describe
a central algorithm of DL, namely, backpropagation (BP) for
supervised weight-sharing FNNs and RNNs. (FNNs may be viewed
as RNNswith certain fixed zeroweights.) Section 6will address the
more general RL case.

3. Depth of Credit Assignment Paths (CAPs) and of problems

To measure whether credit assignment in a given NN applica-
tion is of the deep or shallow type, I introduce the concept of Credit
Assignment Paths or CAPs, which are chains of possibly causal links
between the events of Section 2, e.g., from input through hidden
to output layers in FNNs, or through transformations over time in
RNNs.

Let us first focus on SL. Consider two events xp and xq (1 ≤ p <
q ≤ T). Depending on the application, they may have a Potential
Direct Causal Connection (PDCC) expressed by the Boolean predi-
cate pdcc(p, q), which is true if and only if p ∈ inq. Then the 2-
element list (p, q) is defined to be a CAP (a minimal one) from p
to q. A learning algorithm may be allowed to change wv(p,q) to im-
prove performance in future episodes.

More general, possibly indirect, Potential Causal Connections
(PCC) are expressed by the recursively defined Boolean predicate
pcc(p, q), which in the SL case is true only if pdcc(p, q), or if
pcc(p, k) for some k and pdcc(k, q). In the latter case, appending
q to any CAP from p to k yields a CAP from p to q (this is a recur-
sive definition, too). The set of such CAPs may be large but is finite.
Note that the same weight may affect many different PDCCs be-
tween successive events listed by a given CAP, e.g., in the case of
RNNs, or weight-sharing FNNs.

Suppose a CAP has the form (. . . , k, t, . . . , q), where k and t
(possibly t = q) are the first successive elements with modifiable
wv(k,t). Then the length of the suffix list (t, . . . , q) is called the CAP’s
depth (which is 0 if there are no modifiable links at all). This depth
limits how far backwards credit assignment can move down the
causal chain to find a modifiable weight.1

Suppose an episode and its event sequence x1, . . . , xT satisfy a
computable criterion used to decide whether a given problem has
been solved (e.g., total error E below some threshold). Then the set

1 An alternative would be to count only modifiable links when measuring depth.
In many typical NN applications this would not make a difference, but in some it
would, e.g., Section 6.1.
of used weights is called a solution to the problem, and the depth
of the deepest CAP within the sequence is called the solution depth.
There may be other solutions (yielding different event sequences)
with different depths. Given some fixed NN topology, the smallest
depth of any solution is called the problem depth.

Sometimeswe also speak of the depth of an architecture: SL FNNs
with fixed topology imply a problem-independent maximal prob-
lem depth bounded by the number of non-input layers. Certain SL
RNNswith fixedweights for all connections except those to output
units (Jaeger, 2001, 2004; Maass, Natschläger, & Markram, 2002;
Schrauwen, Verstraeten, & Van Campenhout, 2007) have a max-
imal problem depth of 1, because only the final links in the cor-
responding CAPs are modifiable. In general, however, RNNs may
learn to solve problems of potentially unlimited depth.

Note that the definitions above are solely based on the depths
of causal chains, and agnostic to the temporal distance between
events. For example, shallow FNNs perceiving large ‘‘time win-
dows’’ of input events may correctly classify long input sequences
through appropriate output events, and thus solve shallow prob-
lems involving long time lags between relevant events.

At which problem depth does Shallow Learning end, and Deep
Learning begin? Discussions with DL experts have not yet yielded a
conclusive response to this question. Instead of committingmyself
to a precise answer, let me just define for the purposes of this
overview: problems of depth >10 require Very Deep Learning.

The difficulty of a problem may have little to do with its depth.
Some NNs can quickly learn to solve certain deep problems, e.g.,
through random weight guessing (Section 5.9) or other types
of direct search (Section 6.6) or indirect search (Section 6.7)
in weight space, or through training an NN first on shallow
problems whose solutions may then generalize to deep problems,
or through collapsing sequences of (non)linear operations into
a single (non)linear operation (but see an analysis of non-trivial
aspects of deep linear networks, Baldi & Hornik, 1995, Section B).
In general, however, finding an NN that precisely models a given
training set is an NP-complete problem (Blum&Rivest, 1992; Judd,
1990), also in the case of deep NNs (de Souto, Souto, & Oliveira,
1999; Síma, 1994; Windisch, 2005); compare a survey of negative
results (Síma, 2002, Section 1).

Above we have focused on SL. In the more general case of RL
in unknown environments, pcc(p, q) is also true if xp is an output
event and xq any later input event—any action may affect the en-
vironment and thus any later perception. (In the real world, the
environment may even influence non-input events computed on
a physical hardware entangled with the entire universe, but this
is ignored here.) It is possible to model and replace such unmod-
ifiable environmental PCCs through a part of the NN that has al-
ready learned to predict (through some of its units) input events
(including reward signals) from former input events and actions
(Section 6.1). Its weights are frozen, but can help to assign credit
to other, still modifiable weights used to compute actions (Sec-
tion 6.1). This approach may lead to very deep CAPs though.

Some DL research is about automatically rephrasing problems
such that their depth is reduced (Section 4). In particular, some-
times UL is used to make SL problems less deep, e.g., Section 5.10.
Often Dynamic Programming (Section 4.1) is used to facilitate cer-
tain traditional RL problems, e.g., Section 6.2. Section 5 focuses on
CAPs for SL, Section 6 on the more complex case of RL.

4. Recurring themes of Deep Learning

4.1. Dynamic programming for Supervised/Reinforcement Learning
(SL/RL)

One recurring theme of DL is Dynamic Programming (DP) (Bell-
man, 1957), which can help to facilitate credit assignment under

J. Schmidhuber / Neural Networks 61 (2015) 85–117 89
certain assumptions. For example, in SL NNs, backpropagation it-
self can be viewed as a DP-derived method (Section 5.5). In tra-
ditional RL based on strong Markovian assumptions, DP-derived
methods can help to greatly reduce problem depth (Section 6.2).
DP algorithms are also essential for systems that combine con-
cepts of NNs and graphical models, such as Hidden Markov Models
(HMMs) (Baum & Petrie, 1966; Stratonovich, 1960) and Expecta-
tionMaximization (EM) (Dempster, Laird, & Rubin, 1977; Friedman,
Hastie, & Tibshirani, 2001), e.g., Baldi and Chauvin (1996), Bengio
(1991), Bishop (2006), Bottou (1991), Bourlard andMorgan (1994),
Dahl, Yu, Deng, and Acero (2012), Hastie, Tibshirani, and Friedman
(2009), Hinton, Deng, et al. (2012), Jordan and Sejnowski (2001),
Poon and Domingos (2011) and Wu and Shao (2014).

4.2. Unsupervised Learning (UL) facilitating SL and RL

Another recurring theme is how UL can facilitate both SL (Sec-
tion 5) and RL (Section 6). UL (Section 5.6.4) is normally used to
encode raw incoming data such as video or speech streams in a
form that is more convenient for subsequent goal-directed learn-
ing. In particular, codes that describe the original data in a less re-
dundant or more compact way can be fed into SL (Sections 5.10,
5.15) or RL machines (Section 6.4), whose search spaces may thus
become smaller (and whose CAPs shallower) than those necessary
for dealing with the raw data. UL is closely connected to the topics
of regularization and compression (Sections 4.4, 5.6.3).

4.3. Learning hierarchical representations through deep SL, UL, RL

Many methods of Good Old-Fashioned Artificial Intelligence (GO-
FAI) (Nilsson, 1980) as well as more recent approaches to AI (Rus-
sell, Norvig, Canny, Malik, & Edwards, 1995) and Machine Learn-
ing (Mitchell, 1997) learn hierarchies of more and more abstract
data representations. For example, certain methods of syntactic
pattern recognition (Fu, 1977) such as grammar induction discover
hierarchies of formal rules to model observations. The partially
(un)supervised Automated Mathematician/EURISKO (Lenat, 1983;
Lenat & Brown, 1984) continually learns concepts by combining
previously learnt concepts. Such hierarchical representation learn-
ing (Bengio, Courville, & Vincent, 2013; Deng & Yu, 2014; Ring,
1994) is also a recurring theme of DL NNs for SL (Section 5),
UL-aided SL (Sections 5.7, 5.10, 5.15), and hierarchical RL (Sec-
tion 6.5). Often, abstract hierarchical representations are natural
by-products of data compression (Section 4.4), e.g., Section 5.10.

4.4. Occam’s razor: compression and Minimum Description Length
(MDL)

Occam’s razor favors simple solutions over complex ones. Given
some programming language, the principle of Minimum Descrip-
tion Length (MDL) can be used to measure the complexity of a
solution candidate by the length of the shortest program that com-
putes it (e.g., Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987;
Chaitin, 1966; Grünwald,Myung, & Pitt, 2005; Kolmogorov, 1965b;
Levin, 1973a; Li & Vitányi, 1997; Rissanen, 1986; Solomonoff, 1964,
1978;Wallace & Boulton, 1968). Somemethods explicitly take into
account program runtime (Allender, 1992; Schmidhuber, 1997,
2002; Watanabe, 1992); many consider only programs with con-
stant runtime, written in non-universal programming languages
(e.g., Hinton & van Camp, 1993; Rissanen, 1986). In the NN case,
the MDL principle suggests that low NN weight complexity corre-
sponds to high NN probability in the Bayesian view (e.g., Buntine
& Weigend, 1991; De Freitas, 2003; MacKay, 1992; Neal, 1995),
and to high generalization performance (e.g., Baum & Haussler,
1989), without overfitting the training data. Many methods have
been proposed for regularizing NNs, that is, searching for solution-
computing but simple, low-complexity SL NNs (Section 5.6.3) and
RL NNs (Section 6.7). This is closely related to certain UL methods
(Sections 4.2, 5.6.4).
4.5. Fast Graphics Processing Units (GPUs) for DL in NNs

While the previous millennium saw several attempts at cre-
ating fast NN-specific hardware (e.g., Faggin, 1992; Heemskerk,
1995; Jackel et al., 1990; Korkin, de Garis, Gers, & Hemmi, 1997;
Ramacher et al., 1993; Urlbe, 1999; Widrow, Rumelhart, & Lehr,
1994), and at exploiting standard hardware (e.g., Anguita & Gomes,
1996; Anguita, Parodi, & Zunino, 1994; Muller, Gunzinger, &
Guggenbühl, 1995), the new millennium brought a DL break-
through in form of cheap, multi-processor graphics cards or GPUs.
GPUs are widely used for video games, a huge and competitive
market that has driven down hardware prices. GPUs excel at the
fast matrix and vector multiplications required not only for con-
vincing virtual realities but also for NN training, where they can
speed up learning by a factor of 50 and more. Some of the GPU-
based FNN implementations (Sections 5.16–5.19) have greatly con-
tributed to recent successes in contests for pattern recognition
(Sections 5.19–5.22), image segmentation (Section 5.21), and ob-
ject detection (Sections 5.21–5.22).

5. Supervised NNs, some helped by unsupervised NNs

Themain focus of current practical applications is on Supervised
Learning (SL), which has dominated recent pattern recognition
contests (Sections 5.17–5.23). Several methods, however, use
additional Unsupervised Learning (UL) to facilitate SL (Sections 5.7,
5.10, 5.15). It does make sense to treat SL and UL in the same
section: often gradient-based methods, such as BP (Section 5.5.1),
are used to optimize objective functions of both UL and SL, and the
boundary between SL andULmay blur, for example, when it comes
to time series prediction and sequence classification, e.g., Sections
5.10, 5.12.

A historical timeline format will help to arrange subsections on
important inspirations and technical contributions (although such
a subsection may span a time interval of many years). Section 5.1
briefly mentions early, shallow NN models since the 1940s (and
1800s), Section 5.2 additional early neurobiological inspiration
relevant formodernDeep Learning (DL). Section 5.3 is aboutGMDH
networks (since 1965), to my knowledge the first (feedforward)
DL systems. Section 5.4 is about the relatively deep Neocognitron
NN (1979) which is very similar to certain modern deep FNN
architectures, as it combines convolutional NNs (CNNs), weight
pattern replication, and subsampling mechanisms. Section 5.5
uses the notation of Section 2 to compactly describe a central
algorithm of DL, namely, backpropagation (BP) for supervised
weight-sharing FNNs and RNNs. It also summarizes the history
of BP 1960–1981 and beyond. Section 5.6 describes problems
encountered in the late 1980s with BP for deep NNs, and mentions
several ideas from the previous millennium to overcome them.
Section 5.7 discusses a first hierarchical stack (1987) of coupled
UL-based Autoencoders (AEs)—this concept resurfaced in the new
millennium (Section 5.15). Section 5.8 is about applying BP to CNNs
(1989), which is important for today’s DL applications. Section 5.9
explains BP’s Fundamental DL Problem (of vanishing/exploding
gradients) discovered in 1991. Section 5.10 explains how a deep
RNN stack of 1991 (the History Compressor) pre-trained by UL
helped to solve previously unlearnable DL benchmarks requiring
Credit Assignment Paths (CAPs, Section 3) of depth 1000 and
more. Section 5.11 discusses a particular winner-take-all (WTA)
method calledMax-Pooling (MP, 1992)widely used in today’s deep
FNNs. Section 5.12 mentions a first important contest won by
SL NNs in 1994. Section 5.13 describes a purely supervised DL
RNN (Long Short-Term Memory, LSTM, 1995) for problems of depth
1000 and more. Section 5.14 mentions an early contest of 2003
won by an ensemble of shallow FNNs, as well as good pattern
recognition results with CNNs and deep FNNs and LSTM RNNs

90 J. Schmidhuber / Neural Networks 61 (2015) 85–117
(2003). Section 5.15 is mostly about Deep Belief Networks (DBNs,
2006) and related stacks of Autoencoders (AEs, Section 5.7), both
pre-trained by UL to facilitate subsequent BP-based SL (compare
Sections 5.6.1, 5.10). Section 5.16 mentions the first SL-based
GPU-CNNs (2006), BP-trained MPCNNs (2007), and LSTM stacks
(2007). Sections 5.17–5.22 focus on official competitions with
secret test sets won by (mostly purely supervised) deep NNs
since 2009, in sequence recognition, image classification, image
segmentation, and object detection. Many RNN results depended
on LSTM (Section 5.13);many FNN results depended onGPU-based
FNN code developed since 2004 (Sections 5.16–5.19), in particular,
GPU-MPCNNs (Section 5.19). Section 5.24 mentions recent tricks
for improving DL in NNs, many of them closely related to earlier
tricks from the previous millennium (e.g., Sections 5.6.2, 5.6.3).
Section 5.25 discusses how artificial NNs can help to understand
biological NNs; Section 5.26 addresses the possibility of DL in NNs
with spiking neurons.

5.1. Early NNs since the 1940s (and the 1800s)

Early NN architectures (McCulloch & Pitts, 1943) did not learn.
The first ideas about UL were published a few years later (Hebb,
1949). The following decades brought simple NNs trained by
SL (e.g., Narendra & Thathatchar, 1974; Rosenblatt, 1958, 1962;
Widrow & Hoff, 1962) and UL (e.g., Grossberg, 1969; Kohonen,
1972; von der Malsburg, 1973; Willshaw & von der Malsburg,
1976), as well as closely related associative memories (e.g., Hop-
field, 1982; Palm, 1980).

In a sense NNs have been around even longer, since early su-
pervised NNs were essentially variants of linear regression meth-
ods going back at least to the early 1800s (e.g., Gauss, 1809, 1821;
Legendre, 1805); Gauss also refers to his work of 1795. Early NNs
had a maximal CAP depth of 1 (Section 3).

5.2. Around 1960: visual cortex provides inspiration for DL (Sections
5.4, 5.11)

Simple cells and complex cells were found in the cat’s visual
cortex (e.g., Hubel & Wiesel, 1962; Wiesel & Hubel, 1959). These
cells fire in response to certain properties of visual sensory inputs,
such as the orientation of edges. Complex cells exhibit more
spatial invariance than simple cells. This inspired later deep NN
architectures (Sections 5.4, 5.11) used in certain modern award-
winning Deep Learners (Sections 5.19–5.22).

5.3. 1965: deep networks based on the Group Method of Data
Handling

Networks trained by the Group Method of Data Handling
(GMDH) (Ivakhnenko, 1968, 1971; Ivakhnenko & Lapa, 1965;
Ivakhnenko, Lapa, & McDonough, 1967) were perhaps the first DL
systems of the Feedforward Multilayer Perceptron type, although
there was earlier work on NNs with a single hidden layer
(e.g., Joseph, 1961; Viglione, 1970). The units of GMDH nets
may have polynomial activation functions implementing Kol-
mogorov–Gabor polynomials (more general than other widely used
NN activation functions, Section 2). Given a training set, lay-
ers are incrementally grown and trained by regression analysis
(e.g., Gauss, 1809, 1821; Legendre, 1805) (Section 5.1), then pruned
with the help of a separate validation set (using today’s terminol-
ogy), whereDecision Regularization is used toweed out superfluous
units (compare Section 5.6.3). The numbers of layers and units per
layer can be learned in problem-dependent fashion. To my knowl-
edge, this was the first example of open-ended, hierarchical rep-
resentation learning in NNs (Section 4.3). A paper of 1971 already
described a deepGMDHnetworkwith 8 layers (Ivakhnenko, 1971).
There have been numerous applications of GMDH-style nets, e.g.
Farlow (1984), Ikeda, Ochiai, and Sawaragi (1976), Ivakhnenko
(1995), Kondo (1998), Kondo and Ueno (2008), Kordík, Náplava,
Snorek, and Genyk-Berezovskyj (2003), Madala and Ivakhnenko
(1994) and Witczak, Korbicz, Mrugalski, and Patton (2006).

5.4. 1979: convolution+weight replication+ subsampling (Neocog-
nitron)

Apart from deep GMDH networks (Section 5.3), the Neocogni-
tron (Fukushima, 1979, 1980, 2013a)was perhaps the first artificial
NN that deserved the attribute deep, and the first to incorporate
the neurophysiological insights of Section 5.2. It introduced con-
volutional NNs (today often called CNNs or convnets), where the
(typically rectangular) receptive field of a convolutional unit with
given weight vector (a filter) is shifted step by step across a 2-
dimensional array of input values, such as the pixels of an image
(usually there are several such filters). The resulting 2D array of
subsequent activation events of this unit can then provide inputs
to higher-level units, and so on. Due to massive weight replication
(Section 2), relatively few parameters (Section 4.4) may be neces-
sary to describe the behavior of such a convolutional layer.

Subsampling or downsampling layers consist of units whose
fixed-weight connections originate from physical neighbors in the
convolutional layers below. Subsampling units become active if at
least one of their inputs is active; their responses are insensitive to
certain small image shifts (compare Section 5.2).

The Neocognitron is very similar to the architecture of modern,
contest-winning, purely supervised, feedforward, gradient-based
Deep Learners with alternating convolutional and downsampling
layers (e.g., Sections 5.19–5.22). Fukushima, however, did not set
the weights by supervised backpropagation (Sections 5.5, 5.8), but
by local, WTA-based unsupervised learning rules (e.g., Fukushima,
2013b), or by pre-wiring. In that sense he did not care for the
DL problem (Section 5.9), although his architecture was compar-
atively deep indeed. For downsampling purposes he used Spatial
Averaging (Fukushima, 1980, 2011) instead of Max-Pooling (MP,
Section 5.11), currently a particularly convenient and popularWTA
mechanism. Today’s DL combinations of CNNs and MP and BP also
profit a lot from later work (e.g., Sections 5.8, 5.16, 5.19).

5.5. 1960–1981 and beyond: development of backpropagation (BP)
for NNs

Theminimization of errors through gradient descent (Hadamard,
1908) in the parameter space of complex, nonlinear, differentiable
(Leibniz, 1684), multi-stage, NN-related systems has been dis-
cussed at least since the early 1960s (e.g., Amari, 1967; Bryson,
1961; Bryson & Denham, 1961; Bryson & Ho, 1969; Director &
Rohrer, 1969; Dreyfus, 1962; Kelley, 1960; Pontryagin, Boltyan-
skii, Gamrelidze, & Mishchenko, 1961; Wilkinson, 1965), initially
within the framework of Euler–Lagrange equations in the Calculus
of Variations (e.g., Euler, 1744).

Steepest descent in theweight space of such systems can be per-
formed (Bryson, 1961; Bryson & Ho, 1969; Kelley, 1960) by iter-
ating the chain rule (Leibniz, 1676; L’Hôpital, 1696) à la Dynamic
Programming (DP) (Bellman, 1957). A simplified derivation of this
backpropagation method uses the chain rule only (Dreyfus, 1962).

The systems of the 1960s were already efficient in the DP sense.
However, they backpropagated derivative information through
standard Jacobian matrix calculations from one ‘‘layer’’ to the pre-
vious one, without explicitly addressing either direct links across
several layers or potential additional efficiency gains due to net-
work sparsity (but perhaps such enhancements seemed obvious
to the authors). Given all the prior work on learning in multilayer
NN-like systems (see also Section 5.3 on deep nonlinear nets since

J. Schmidhuber / Neural Networks 61 (2015) 85–117 91
1965), it seems surprising in hindsight that a book (Minsky & Pa-
pert, 1969) on the limitations of simple linear perceptrons with a
single layer (Section 5.1) discouraged some researchers from fur-
ther studying NNs.

Explicit, efficient error backpropagation (BP) in arbitrary, dis-
crete, possibly sparsely connected, NN-like networks apparently
was first described in a 1970 master’s thesis (Linnainmaa, 1970,
1976), albeit without reference to NNs. BP is also known as the re-
verse mode of automatic differentiation (Griewank, 2012), where
the costs of forward activation spreading essentially equal the
costs of backward derivative calculation. See early FORTRAN code
(Linnainmaa, 1970) and closely related work (Ostrovskii, Volin, &
Borisov, 1971).

Efficient BP was soon explicitly used tominimize cost functions
by adapting control parameters (weights) (Dreyfus, 1973). Com-
pare some preliminary, NN-specific discussion (Werbos, 1974, Sec-
tion 5.5.1), a method for multilayer threshold NNs (Bobrowski,
1978), and a computer program for automatically deriving and
implementing BP for given differentiable systems (Speelpenning,
1980).

To my knowledge, the first NN-specific application of efficient
BP as above was described in 1981 (Werbos, 1981, 2006). Re-
lated work was published several years later (LeCun, 1985, 1988;
Parker, 1985). A paper of 1986 significantly contributed to the pop-
ularization of BP for NNs (Rumelhart, Hinton, & Williams, 1986),
experimentally demonstrating the emergence of useful internal
representations in hidden layers. See generalizations for sequence-
processing recurrent NNs (e.g., Atiya & Parlos, 2000; Baldi, 1995;
Gherrity, 1989; Kremer & Kolen, 2001; Pearlmutter, 1989, 1995;
Robinson & Fallside, 1987; Rohwer, 1989; Schmidhuber, 1992a;
Werbos, 1988;Williams, 1989;Williams & Peng, 1990;Williams &
Zipser, 1988, 1989a, 1989b), also for equilibrium RNNs (Almeida,
1987; Pineda, 1987) with stationary inputs.

5.5.1. BP for weight-sharing feedforward NNs (FNNs) and recurrent
NNs (RNNs)

Using the notation of Section 2 for weight-sharing FNNs or
RNNs, after an episode of activation spreading through differen-
tiable ft , a single iteration of gradient descent through BP computes
changes of all wi in proportion to ∂E

∂wi
=


t

∂E
∂nett

∂nett
∂wi

as in Algo-
rithm 5.5.1 (for the additive case), where each weight wi is associ-
ated with a real-valued variable ∆i initialized by 0.

Algorithm 5.5.1: One iteration of BP for weight-sharing FNNs or
RNNs
for t = T , . . . , 1 do

to compute ∂E
∂nett

, initialize real-valued error signal variable δt
by 0;
if xt is an input event then continue with next iteration;
if there is an error et then δt := xt − dt ;
add to δt the value


k∈outt wv(t,k)δk; (this is the elegant and

efficient recursive chain rule application collecting impacts of nett
on future events)
multiply δt by f ′

t (nett);
for all k ∈ int add to △wv(k,t) the value xkδt

end for
change each wi in proportion to △i and a small real-valued
learning rate

The computational costs of the backward (BP) pass are
essentially those of the forward pass (Section 2). Forward and
backward passes are re-iterated until sufficient performance is
reached.

As of 2014, this simple BP method is still the central learning
algorithm for FNNs and RNNs. Notably, most contest-winning NNs
up to 2014 (Sections 5.12, 5.14, 5.17, 5.19, 5.21, 5.22) did not
augment supervised BP by some sort of unsupervised learning as
discussed in Sections 5.7, 5.10, 5.15.

5.6. Late 1980s–2000 and beyond: numerous improvements of NNs

By the late 1980s it seemed clear that BP by itself (Section 5.5)
was no panacea. Most FNN applications focused on FNNs with
few hidden layers. Additional hidden layers often did not seem
to offer empirical benefits. Many practitioners found solace in
a theorem (Hecht-Nielsen, 1989; Hornik, Stinchcombe, & White,
1989; Kolmogorov, 1965a) stating that an NNwith a single layer of
enough hidden units can approximate anymultivariate continuous
function with arbitrary accuracy.

Likewise, most RNN applications did not require backpropagat-
ing errors far. Many researchers helped their RNNs by first train-
ing them on shallow problems (Section 3) whose solutions then
generalized to deeper problems. In fact, some popular RNN algo-
rithms restricted credit assignment to a single step backwards (El-
man, 1990; Jordan, 1986, 1997), also inmore recent studies (Jaeger,
2001, 2004; Maass et al., 2002).

Generally speaking, although BP allows for deep problems in
principle, it seemed to work only for shallow problems. The late
1980s and early 1990s saw a few ideas with a potential to over-
come this problem, which was fully understood only in 1991 (Sec-
tion 5.9).

5.6.1. Ideas for dealing with long time lags and deep CAPs
To deal with long time lags between relevant events, sev-

eral sequence processing methods were proposed, including Fo-
cused BP based on decay factors for activations of units in RNNs
(Mozer, 1989, 1992), Time-Delay Neural Networks (TDNNs) (Lang,
Waibel, & Hinton, 1990) and their adaptive extension (Boden-
hausen & Waibel, 1991), Nonlinear AutoRegressive with eXogenous
inputs (NARX) RNNs (Lin, Horne, Tino, & Giles, 1996), certain hier-
archical RNNs (Hihi & Bengio, 1996) (compare Section 5.10, 1991),
RL economies in RNNs with WTA units and local learning rules
(Schmidhuber, 1989b), and other methods (e.g., Bengio, Simard, &
Frasconi, 1994; de Vries & Principe, 1991; Plate, 1993; Ring, 1993,
1994; Sun, Chen, & Lee, 1993). However, these algorithms either
worked for shallow CAPs only, could not generalize to unseen CAP
depths, had problemswith greatly varying time lags between rele-
vant events, needed external fine tuning of delay constants, or suf-
fered from other problems. In fact, it turned out that certain simple
but deep benchmark problems used to evaluate such methods are
more quickly solved by randomly guessing RNN weights until a so-
lution is found (Hochreiter & Schmidhuber, 1996).

While the RNN methods above were designed for DL of tem-
poral sequences, the Neural Heat Exchanger (Schmidhuber, 1990c)
consists of two parallel deep FNNs with opposite flow directions.
Input patterns enter the first FNN and are propagated ‘‘up’’. De-
sired outputs (targets) enter the ‘‘opposite’’ FNN and are propa-
gated ‘‘down’’. Using a local learning rule, each layer in each net
tries to be similar (in information content) to the preceding layer
and to the adjacent layer of the other net. The input entering the
first net slowly ‘‘heats up’’ to become the target. The target enter-
ing the opposite net slowly ‘‘cools down’’ to become the input. The
Helmholtz Machine (Dayan & Hinton, 1996; Dayan, Hinton, Neal,
& Zemel, 1995) may be viewed as an unsupervised (Section 5.6.4)
variant thereof (Peter Dayan, personal communication, 1994).

A hybrid approach (Shavlik & Towell, 1989; Towell & Shavlik,
1994) initializes a potentially deep FNN through adomain theory in
propositional logic, which may be acquired through explanation-
based learning (DeJong & Mooney, 1986; Minton et al., 1989;
Mitchell, Keller, & Kedar-Cabelli, 1986). The NN is then fine-tuned
through BP (Section 5.5). The NN’s depth reflects the longest chain

92 J. Schmidhuber / Neural Networks 61 (2015) 85–117
of reasoning in the original set of logical rules. An extension of this
approach (Maclin & Shavlik, 1993; Shavlik, 1994) initializes an RNN
by domain knowledge expressed as a Finite State Automaton (FSA).
BP-based fine-tuning has become important for later DL systems
pre-trained by UL, e.g., Sections 5.10, 5.15.

5.6.2. Better BP through advanced gradient descent (compare Sec-
tion 5.24)

Numerous improvements of steepest descent through BP
(Section 5.5) have been proposed. Least-squares methods (Gauss–
Newton, Levenberg–Marquardt) (Gauss, 1809; Levenberg, 1944;
Marquardt, 1963; Newton, 1687; Schaback & Werner, 1992)
and quasi-Newtonmethods (Broyden–Fletcher–Goldfarb–Shanno,
BFGS) (Broyden et al., 1965; Fletcher & Powell, 1963; Goldfarb,
1970; Shanno, 1970) are computationally too expensive for large
NNs. Partial BFGS (Battiti, 1992; Saito & Nakano, 1997) and
conjugate gradient (Hestenes & Stiefel, 1952; Møller, 1993) as well
as other methods (Cauwenberghs, 1993; Schmidhuber, 1989a;
Solla, 1988) provide sometimes useful fast alternatives. BP can
be treated as a linear least-squares problem (Biegler-König &
Bärmann, 1993), where second-order gradient information is
passed back to preceding layers.

To speed up BP, momentum was introduced (Rumelhart et al.,
1986), ad-hoc constants were added to the slope of the linearized
activation function (Fahlman, 1988), or the nonlinearity of the
slope was exaggerated (West & Saad, 1995).

Only the signs of the error derivatives are taken into account
by the successful and widely used BP variant R-prop (Riedmiller
& Braun, 1993) and the robust variation iRprop+ (Igel & Hüsken,
2003), which was also successfully applied to RNNs.

The local gradient can be normalized based on the NN architec-
ture (Schraudolph& Sejnowski, 1996), through a diagonalizedHes-
sian approach (Becker & Le Cun, 1989), or related efficientmethods
(Schraudolph, 2002).

Some algorithms for controlling BP step size adapt a global
learning rate (Battiti, 1989; Lapedes & Farber, 1986; LeCun, Simard,
& Pearlmutter, 1993; Vogl, Mangis, Rigler, Zink, & Alkon, 1988; Yu,
Chen, & Cheng, 1995), while others compute individual learning
rates for each weight (Jacobs, 1988; Silva & Almeida, 1990). In on-
line learning, where BP is applied after each pattern presentation,
the vario-η algorithm (Neuneier & Zimmermann, 1996) sets each
weight’s learning rate inversely proportional to the empirical stan-
dard deviation of its local gradient, thus normalizing the stochas-
tic weight fluctuations. Compare a local online step size adaptation
method for nonlinear NNs (Almeida, Almeida, Langlois, Amaral, &
Redol, 1997).

Many additional tricks for improving NNs have been described
(e.g., Montavon, Orr, &Müller, 2012; Orr &Müller, 1998). Compare
Section 5.6.3 and recent developments mentioned in Section 5.24.

5.6.3. Searching for simple, low-complexity, problem-solving NNs
(Section 5.24)

Many researchers used BP-like methods to search for ‘‘simple’’,
low-complexity NNs (Section 4.4) with high generalization capa-
bility. Most approaches address the bias/variance dilemma (Geman,
Bienenstock, & Doursat, 1992) through strong prior assumptions.
For example, weight decay (Hanson & Pratt, 1989; Krogh & Hertz,
1992; Weigend, Rumelhart, & Huberman, 1991) encourages near-
zero weights, by penalizing large weights. In a Bayesian frame-
work (Bayes, 1763), weight decay can be derived (Hinton & van
Camp, 1993) from Gaussian or Laplacian weight priors (Gauss,
1809; Laplace, 1774); see also Murray and Edwards (1993). An ex-
tension of this approach postulates that a distribution of networks
withmany similarweights generated byGaussianmixtures is ‘‘bet-
ter’’ a priori (Nowlan & Hinton, 1992).
Often weight priors are implicit in additional penalty terms
(MacKay, 1992) or in methods based on validation sets (Craven
& Wahba, 1979; Eubank, 1988; Golub, Heath, & Wahba, 1979;
Hastie & Tibshirani, 1990; Mosteller & Tukey, 1968; Stone, 1974),
Akaike’s information criterion and final prediction error (Akaike,
1970, 1973, 1974), or generalized prediction error (Moody, 1992;
Moody & Utans, 1994). See also Amari and Murata (1993),
Guyon, Vapnik, Boser, Bottou, and Solla (1992), Holden (1994),
Vapnik (1992), Wang, Venkatesh, and Judd (1994) and Wolpert
(1994). Similar priors (or biases towards simplicity) are implicit in
constructive and pruning algorithms, e.g., layer-by-layer sequential
network construction (e.g., Ash, 1989; Burgess, 1994; Fahlman,
1991; Fritzke, 1994; Gallant, 1988; Honavar & Uhr, 1988, 1993;
Ivakhnenko, 1968, 1971; Moody, 1989; Parekh, Yang, & Honavar,
2000; Ring, 1991; Utgoff & Stracuzzi, 2002;Weng, Ahuja, & Huang,
1992) (see also Sections 5.3, 5.11), input pruning (Moody, 1992;
Refenes, Zapranis, & Francis, 1994), unit pruning (e.g., Ivakhnenko,
1968, 1971; Levin, Leen, & Moody, 1994; Mozer & Smolensky,
1989; White, 1989), weight pruning, e.g., optimal brain damage
(LeCun, Denker, & Solla, 1990), and optimal brain surgeon (Hassibi
& Stork, 1993).

A very general but not always practical approach for discov-
ering low-complexity SL NNs or RL NNs searches among weight
matrix-computing programs written in a universal programming
language, with a bias towards fast and short programs (Schmidhu-
ber, 1997) (Section 6.7).

Flat Minimum Search (FMS) (Hochreiter & Schmidhuber, 1997a,
1999) searches for a ‘‘flat’’ minimum of the error function: a
large connected region in weight space where error is low and
remains approximately constant, that is, few bits of information
are required to describe low-precision weights with high variance.
Compare perturbation tolerance conditions (Bishop, 1993; Carter,
Rudolph, & Nucci, 1990; Hanson, 1990; Kerlirzin & Vallet, 1993;
Matsuoka, 1992; Minai & Williams, 1994; Murray & Edwards,
1993; Neti, Schneider, & Young, 1992). An MDL-based, Bayesian
argument suggests that flat minima correspond to ‘‘simple’’ NNs
and low expected overfitting. Compare Section 5.6.4 and more
recent developments mentioned in Section 5.24.

5.6.4. Potential benefits of UL for SL (compare Sections 5.7, 5.10, 5.15)
The notation of Section 2 introduced teacher-given labels dt .

Many papers of the previous millennium, however, were about
unsupervised learning (UL) without a teacher (e.g., Atick, Li, &
Redlich, 1992; Baldi & Hornik, 1989; Barlow, Kaushal, & Mitchison,
1989; Barrow, 1987; Deco & Parra, 1997; Field, 1987; Földiák,
1990; Földiák & Young, 1995; Grossberg, 1976a, 1976b; Hebb,
1949; Kohonen, 1972, 1982, 1988; Kosko, 1990; Martinetz, Ritter,
& Schulten, 1990; Miller, 1994; Mozer, 1991; Oja, 1989; Palm,
1992; Pearlmutter &Hinton, 1986; Ritter & Kohonen, 1989; Rubner
& Schulten, 1990; Sanger, 1989; Saund, 1994; von der Malsburg,
1973; Watanabe, 1985; Willshaw & von der Malsburg, 1976);
see also post-2000 work (e.g., Carreira-Perpinan, 2001; Franzius,
Sprekeler, & Wiskott, 2007; Waydo & Koch, 2008; Wiskott &
Sejnowski, 2002).

Many UL methods are designed to maximize entropy-related,
information-theoretic (Boltzmann, 1909; Kullback & Leibler, 1951;
Shannon, 1948) objectives (e.g., Amari, Cichocki, & Yang, 1996;
Barlowet al., 1989;Dayan&Zemel, 1995;Deco&Parra, 1997; Field,
1994; Hinton, Dayan, Frey, & Neal, 1995; Linsker, 1988; MacKay &
Miller, 1990; Plumbley, 1991; Redlich, 1993; Schmidhuber, 1992b,
1992c; Schraudolph & Sejnowski, 1993; Zemel, 1993; Zemel &
Hinton, 1994).

Many do this to uncover and disentangle hidden underly-
ing sources of signals (e.g., Andrade, Chacon, Merelo, & Moran,
1993; Bell & Sejnowski, 1995; Belouchrani, Abed-Meraim, Car-
doso, & Moulines, 1997; Cardoso, 1994; Comon, 1994; Hyvärinen,

J. Schmidhuber / Neural Networks 61 (2015) 85–117 93
Karhunen, & Oja, 2001; Jutten & Herault, 1991; Karhunen & Jout-
sensalo, 1995; Molgedey & Schuster, 1994; Schuster, 1992; Shan
& Cottrell, 2014; Shan, Zhang, & Cottrell, 2007; Szabó, Póczos, &
Lőrincz, 2006).

Many UL methods automatically and robustly generate dis-
tributed, sparse representations of input patterns (Falconbridge,
Stamps, & Badcock, 2006; Földiák, 1990; Hinton & Ghahramani,
1997; Hochreiter & Schmidhuber, 1999; Hyvärinen, Hoyer, & Oja,
1999; Lewicki & Olshausen, 1998) throughwell-known feature de-
tectors (e.g., Olshausen & Field, 1996; Schmidhuber, Eldracher, &
Foltin, 1996), such as off-center-on-surround-like structures, aswell
as orientation sensitive edge detectors and Gabor filters (Gabor,
1946). They extract simple features related to those observed in
early visual pre-processing stages of biological systems (e.g., De
Valois, Albrecht, & Thorell, 1982; Jones & Palmer, 1987).

UL can also serve to extract invariant features from different
data items (e.g., Becker, 1991) through coupled NNs observing
two different inputs (Schmidhuber & Prelinger, 1992), also called
Siamese NNs (e.g., Bromley et al., 1993; Chen & Salman, 2011;
Hadsell, Chopra, & LeCun, 2006; Taylor, Spiro, Bregler, & Fergus,
2011).

UL can help to encode input data in a form advantageous for
further processing. In the context of DL, one important goal of
UL is redundancy reduction. Ideally, given an ensemble of input
patterns, redundancy reduction through a deep NN will create a
factorial code (a code with statistically independent components)
of the ensemble (Barlow, 1989; Barlow et al., 1989), to disentangle
the unknown factors of variation (compare Bengio et al., 2013).
Such codes may be sparse and can be advantageous for (1)
data compression, (2) speeding up subsequent BP (Becker, 1991),
(3) trivializing the task of subsequent naive yet optimal Bayes
classifiers (Schmidhuber et al., 1996).

Most early UL FNNs had a single layer. Methods for deeper UL
FNNs include hierarchical (Section 4.3) self-organizing Kohonen
maps (e.g., Dittenbach, Merkl, & Rauber, 2000; Koikkalainen & Oja,
1990; Lampinen & Oja, 1992; Rauber, Merkl, & Dittenbach, 2002;
Versino & Gambardella, 1996), hierarchical Gaussian potential
function networks (Lee & Kil, 1991), layer-wise UL of feature
hierarchies fed into SL classifiers (Behnke, 1999, 2003a), the Self-
Organizing Tree Algorithm (SOTA) (Herrero, Valencia, & Dopazo,
2001), and nonlinear Autoencoders (AEs) with more than 3 (e.g., 5)
layers (DeMers & Cottrell, 1993; Kramer, 1991; Oja, 1991). Such AE
NNs (Rumelhart et al., 1986) can be trained to map input patterns
to themselves, for example, by compactly encoding them through
activations of units of a narrow bottleneck hidden layer. Certain
nonlinear AEs suffer from certain limitations (Baldi, 2012).

Lococode (Hochreiter & Schmidhuber, 1999) uses FMS (Sec-
tion 5.6.3) to find low-complexity AEs with low-precision weights
describable by few bits of information, often producing sparse
or factorial codes. Predictability Minimization (PM) (Schmidhuber,
1992c) searches for factorial codes through nonlinear feature de-
tectors that fight nonlinear predictors, trying to become both as
informative and as unpredictable as possible. PM-based UL was
applied not only to FNNs but also to RNNs (e.g., Lindstädt, 1993;
Schmidhuber, 1993b). Compare Section 5.10 on UL-based RNN
stacks (1991), as well as later UL RNNs (e.g., Klapper-Rybicka,
Schraudolph, & Schmidhuber, 2001; Steil, 2007).

5.7. 1987: UL through Autoencoder (AE) hierarchies (compare
Section 5.15)

Perhaps the first work to study potential benefits of UL-based
pre-training was published in 1987. It proposed unsupervised AE
hierarchies (Ballard, 1987), closely related to certain post-2000
feedforward Deep Learners based on UL (Section 5.15). The lowest-
level AE NN with a single hidden layer is trained to map input
patterns to themselves. Its hidden layer codes are then fed into
a higher-level AE of the same type, and so on. The hope is that
the codes in the hidden AE layers have properties that facilitate
subsequent learning. In one experiment, a particular AE-specific
learning algorithm (different from traditional BP of Section 5.5.1)
was used to learn a mapping in an AE stack pre-trained by
this type of UL (Ballard, 1987). This was faster than learning an
equivalent mapping by BP through a single deeper AE without
pre-training. On the other hand, the task did not really require a
deep AE, that is, the benefits of UL were not that obvious from
this experiment. Compare an early survey (Hinton, 1989) and
the somewhat related Recursive Auto-Associative Memory (RAAM)
(Melnik, Levy, & Pollack, 2000; Pollack, 1988, 1990), originally
used to encode sequential linguistic structures of arbitrary size
through a fixed number of hidden units. More recently, RAAMs
were also used as unsupervised pre-processors to facilitate deep
credit assignment for RL (Gisslen, Luciw, Graziano, & Schmidhuber,
2011) (Section 6.4).

In principle, many UL methods (Section 5.6.4) could be stacked
like the AEs above, the history-compressing RNNs of Section 5.10,
the Restricted Boltzmann Machines (RBMs) of Section 5.15, or
hierarchical Kohonen nets (Section 5.6.4), to facilitate subsequent
SL. Compare Stacked Generalization (Ting &Witten, 1997; Wolpert,
1992), and FNNs that profit from pre-training by competitive UL
(e.g., Rumelhart & Zipser, 1986) prior to BP-based fine-tuning
(Maclin & Shavlik, 1995). See also more recent methods using UL
to improve subsequent SL (e.g., Behnke, 1999, 2003a; Escalante-B
& Wiskott, 2013).

5.8. 1989: BP for convolutional NNs (CNNs, Section 5.4)

In 1989, backpropagation (Section 5.5) was applied (LeCun
et al., 1989; LeCun, Boser, et al., 1990; LeCun, Bottou, Bengio,
& Haffner, 1998) to Neocognitron-like, weight-sharing, convolu-
tional neural layers (Section 5.4) with adaptive connections. This
combination, augmented byMax-Pooling (MP, Sections 5.11, 5.16),
and sped up on graphics cards (Section 5.19), has become an es-
sential ingredient of manymodern, competition-winning, feedfor-
ward, visual Deep Learners (Sections 5.19–5.23). This work also
introduced the MNIST data set of handwritten digits (LeCun et al.,
1989), which over time has become perhaps the most famous
benchmark ofMachine Learning. CNNs helped to achieve good per-
formance on MNIST (LeCun, Boser, et al., 1990) (CAP depth 5) and
on fingerprint recognition (Baldi & Chauvin, 1993); similar CNNs
were used commercially in the 1990s.

5.9. 1991: Fundamental Deep Learning Problem of gradient descent

A diploma thesis (Hochreiter, 1991) represented a milestone of
explicit DL research. Asmentioned in Section 5.6, by the late 1980s,
experiments had indicated that traditional deep feedforward
or recurrent networks are hard to train by backpropagation
(BP) (Section 5.5). Hochreiter’s work formally identified a major
reason: Typical deep NNs suffer from the now famous problem
of vanishing or exploding gradients. With standard activation
functions (Section 1), cumulative backpropagated error signals
(Section 5.5.1) either shrink rapidly, or grow out of bounds. In fact,
they decay exponentially in the number of layers or CAP depth
(Section 3), or they explode. This is also known as the long time
lag problem. Much subsequent DL research of the 1990s and 2000s
was motivated by this insight. Later work (Bengio et al., 1994)
also studied basins of attraction and their stability under noise
from a dynamical systems point of view: either the dynamics are
not robust to noise, or the gradients vanish. See also Hochreiter,
Bengio, Frasconi, and Schmidhuber (2001) and Tiňo and Hammer
(2004). Over the years, several ways of partially overcoming the
Fundamental Deep Learning Problemwere explored:

94 J. Schmidhuber / Neural Networks 61 (2015) 85–117
I. A Very Deep Learner of 1991 (the History Compressor,
Section 5.10) alleviates the problem through unsupervised
pre-training for a hierarchy of RNNs. This greatly facilitates sub-
sequent supervised credit assignment through BP (Section 5.5).
In the FNN case, similar effects can be achieved through con-
ceptually related AE stacks (Sections 5.7, 5.15) and Deep Belief
Networks (DBNs, Section 5.15).

II. LSTM-like networks (Sections 5.13, 5.16, 5.17, 5.21–5.23) alle-
viate the problem through a special architecture unaffected by
it.

III. Today’s GPU-based computers have a million times the com-
putational power of desktop machines of the early 1990s. This
allows for propagating errors a few layers further down within
reasonable time, even in traditional NNs (Section 5.18). That is
basically what is winning many of the image recognition com-
petitions now (Sections 5.19, 5.21, 5.22). (Although this does
not really overcome the problem in a fundamental way.)

IV. Hessian-free optimization (Section 5.6.2) can alleviate the
problem for FNNs (Martens, 2010; Møller, 1993; Pearlmutter,
1994; Schraudolph, 2002) (Section 5.6.2) and RNNs (Martens &
Sutskever, 2011) (Section 5.20).

V. The space of NN weight matrices can also be searched without
relying on error gradients, thus avoiding the Fundamental Deep
Learning Problem altogether. Random weight guessing some-
times works better than more sophisticated methods (Hochre-
iter & Schmidhuber, 1996). Certain more complex problems
are better solved by using Universal Search (Levin, 1973b) for
weightmatrix-computing programswritten in a universal pro-
gramming language (Schmidhuber, 1997). Some are better
solved by using linear methods to obtain optimal weights for
connections to output events (Section 2), and evolving weights
of connections to other events—this is called Evolino (Schmid-
huber, Wierstra, Gagliolo, & Gomez, 2007). Compare also re-
lated RNNs pre-trained by certain UL rules (Steil, 2007), also in
the case of spiking neurons (Klampfl & Maass, 2013; Yin, Meng,
& Jin, 2012) (Section 5.26). Direct search methods are relevant
not only for SL but also for more general RL, and are discussed
in more detail in Section 6.6.

5.10. 1991: UL-based history compression through a deep stack of
RNNs

Aworking Very Deep Learner (Section 3) of 1991 (Schmidhuber,
1992b, 2013a) could perform credit assignment across hundreds
of nonlinear operators or neural layers, by using unsupervised pre-
training for a hierarchy of RNNs.

The basic idea is still relevant today. Each RNN is trained for a
while in unsupervised fashion to predict its next input (e.g., Con-
nor, Martin, & Atlas, 1994; Dorffner, 1996). From then on, only un-
expected inputs (errors) convey new information and get fed to
the next higher RNN which thus ticks on a slower, self-organizing
time scale. It can easily be shown that no information gets lost.
It just gets compressed (much of machine learning is essentially
about compression, e.g., Sections 4.4, 5.6.3, 6.7). For each individ-
ual input sequence, we get a series of less and less redundant en-
codings in deeper and deeper levels of this History Compressor or
Neural Sequence Chunker, which can compress data in both space
(like feedforward NNs) and time. This is another good example
of hierarchical representation learning (Section 4.3). There also
is a continuous variant of the history compressor (Schmidhuber,
Mozer, & Prelinger, 1993).

TheRNNstack is essentially a deep generativemodel of the data,
which can be reconstructed from its compressed form. Adding
another RNN to the stack improves a bound on the data’s descrip-
tion length – equivalent to the negative logarithm of its probabil-
ity (Huffman, 1952; Shannon, 1948) – as long as there is remaining
local learnable predictability in the data representation on the cor-
responding level of the hierarchy. Compare a similar observation
for feedforward Deep Belief Networks (DBNs, 2006, Section 5.15).

The system was able to learn many previously unlearnable
DL tasks. One ancient illustrative DL experiment (Schmidhuber,
1993b) required CAPs (Section 3) of depth 1200. The top level code
of the initially unsupervised RNN stack, however, got so compact
that (previously infeasible) sequence classification through addi-
tional BP-based SL became possible. Essentially the systemusedUL
to greatly reduce problem depth. Compare earlier BP-based fine-
tuning of NNs initialized by rules of propositional logic (Shavlik &
Towell, 1989) (Section 5.6.1).

There is a way of compressing higher levels down into lower
levels, thus fully or partially collapsing the RNN stack. The trick is
to retrain a lower-level RNN to continually imitate (predict) the
hidden units of an already trained, slower, higher-level RNN (the
‘‘conscious’’ chunker), through additional predictive output neu-
rons (Schmidhuber, 1992b). This helps the lower RNN (the autom-
atizer) to develop appropriate, rarely changingmemories that may
bridge very long time lags. Again, this procedure can greatly reduce
the required depth of the BP process.

The 1991 system was a working Deep Learner in the modern
post-2000 sense, and also a firstNeural Hierarchical Temporal Mem-
ory (HTM). It is conceptually similar to earlier AE hierarchies (1987,
Section 5.7) and later Deep Belief Networks (2006, Section 5.15),
but more general in the sense that it uses sequence-processing
RNNs instead of FNNswith unchanging inputs.More recently,well-
known entrepreneurs (Hawkins & George, 2006; Kurzweil, 2012)
also got interested in HTMs; compare also hierarchical HMMs
(e.g., Fine, Singer, & Tishby, 1998), as well as later UL-based recur-
rent systems (Klampfl &Maass, 2013; Klapper-Rybicka et al., 2001;
Steil, 2007; Young, Davis, Mishtal, & Arel, 2014). Clockwork RNNs
(Koutník, Greff, Gomez, & Schmidhuber, 2014) also consist of in-
teracting RNN modules with different clock rates, but do not use
UL to set those rates. Stacks of RNNs were used in later work on SL
with great success, e.g., Sections 5.13, 5.16, 5.17, 5.22.

5.11. 1992: Max-Pooling (MP): towards MPCNNs (compare Sections
5.16, 5.19)

The Neocognitron (Section 5.4) inspired the Cresceptron (Weng
et al., 1992), which adapts its topology during training (Sec-
tion 5.6.3); compare the incrementally growing and shrinking
GMDH networks (1965, Section 5.3).

Instead of using alternative local subsampling or WTA meth-
ods (e.g., Fukushima, 1980, 2013a; Maass, 2000; Schmidhuber,
1989b), the Cresceptron uses Max-Pooling (MP) layers. Here a 2-
dimensional layer or array of unit activations is partitioned into
smaller rectangular arrays. Each is replaced in a downsampling
layer by the activation of its maximally active unit. A later, more
complex version of the Cresceptron (Weng, Ahuja, & Huang, 1997)
also included ‘‘blurring ’’ layers to improve object location toler-
ance.

The neurophysiologically plausible topology of the feedforward
HMAX model (Riesenhuber & Poggio, 1999) is very similar to the
one of the 1992 Cresceptron (and thus to the 1979 Neocognitron).
HMAX does not learn though. Its units have hand-crafted weights;
biologically plausible learning ruleswere later proposed for similar
models (e.g., Serre, Riesenhuber, Louie, & Poggio, 2002; Teichmann,
Wiltschut, & Hamker, 2012).

When CNNs or convnets (Sections 5.4, 5.8) are combined
with MP, they become Cresceptron-like or HMAX-like MPCNNs
with alternating convolutional and max-pooling layers. Unlike
Cresceptron and HMAX, however, MPCNNs are trained by BP
(Sections 5.5, 5.16) (Ranzato, Huang, Boureau, & LeCun, 2007).
Advantages of doing this were pointed out subsequently (Scherer,
Müller, & Behnke, 2010). BP-trainedMPCNNs have become central
to many modern, competition-winning, feedforward, visual Deep
Learners (Sections 5.17, 5.19–5.23).

J. Schmidhuber / Neural Networks 61 (2015) 85–117 95
5.12. 1994: early contest-winning NNs

Back in the 1990s, certain NNs already won certain controlled
pattern recognition contests with secret test sets. Notably, an NN
with internal delay lines won the Santa Fe time-series competition
on chaotic intensity pulsations of an NH3 laser (Wan, 1994;
Weigend&Gershenfeld, 1993). No very deep CAPs (Section 3)were
needed though.

5.13. 1995: supervised recurrent very Deep Learner (LSTM RNN)

Supervised Long Short-Term Memory (LSTM) RNNs (Gers,
Schmidhuber, & Cummins, 2000; Hochreiter & Schmidhuber,
1997b; Pérez-Ortiz, Gers, Eck, & Schmidhuber, 2003) could
eventually perform similar feats as the deep RNNhierarchy of 1991
(Section 5.10), overcoming the Fundamental Deep Learning Problem
(Section 5.9) without any unsupervised pre-training. LSTM could
also learn DL tasks without local sequence predictability (and thus
unlearnable by the partially unsupervised 1991History Compressor,
Section 5.10), dealing with very deep problems (Section 3)
(e.g., Gers, Schraudolph, & Schmidhuber, 2002).

The basic LSTM idea is very simple. Some of the units are called
Constant Error Carousels (CECs). Each CEC uses as an activation
function f , the identity function, and has a connection to itself
with fixed weight of 1.0. Due to f ’s constant derivative of 1.0, er-
rors backpropagated through a CEC cannot vanish or explode (Sec-
tion 5.9) but stay as they are (unless they ‘‘flow out’’ of the CEC
to other, typically adaptive parts of the NN). CECs are connected
to several nonlinear adaptive units (some with multiplicative acti-
vation functions) needed for learning nonlinear behavior. Weight
changes of these units often profit from error signals propagated
far back in time through CECs. CECs are themain reason why LSTM
nets can learn to discover the importance of (andmemorize) events
that happened thousands of discrete time steps ago,while previous
RNNs already failed in case of minimal time lags of 10 steps.

Many different LSTM variants and topologies are allowed. It
is possible to evolve good problem-specific topologies (Bayer,
Wierstra, Togelius, & Schmidhuber, 2009). Some LSTM variants
also use modifiable self-connections of CECs (Gers & Schmidhuber,
2001).

To a certain extent, LSTM is biologically plausible (O’Reilly,
2003). LSTM learned to solve many previously unlearnable DL
tasks involving: Recognition of the temporal order of widely
separated events in noisy input streams; Robust storage of high-
precision real numbers across extended time intervals; Arithmetic
operations on continuous input streams; Extraction of information
conveyed by the temporal distance between events; Recognition
of temporally extended patterns in noisy input sequences (Gers
et al., 2000; Hochreiter & Schmidhuber, 1997b); Stable generation
of precisely timed rhythms, as well as smooth and non-smooth
periodic trajectories (Gers & Schmidhuber, 2000). LSTM clearly
outperformed previous RNNs on tasks that require learning the
rules of regular languages describable by deterministic Finite State
Automata (FSAs) (Blair & Pollack, 1997; Casey, 1996; Kalinke &
Lehmann, 1998; Manolios & Fanelli, 1994; Omlin & Giles, 1996;
Siegelmann, 1992; Vahed & Omlin, 2004; Watrous & Kuhn, 1992;
Zeng, Goodman, & Smyth, 1994), both in terms of reliability and
speed.

LSTM also worked on tasks involving context free languages
(CFLs) that cannot be represented by HMMs or similar FSAs
discussed in the RNN literature (Andrews, Diederich, & Tickle,
1995; Rodriguez & Wiles, 1998; Rodriguez, Wiles, & Elman,
1999; Steijvers & Grunwald, 1996; Sun, Giles, Chen, & Lee, 1993;
Tonkes & Wiles, 1997; Wiles & Elman, 1995). CFL recognition
(Lee, 1996) requires the functional equivalent of a runtime stack.
Some previous RNNs failed to learn small CFL training sets
(Rodriguez & Wiles, 1998). Those that did not (Bodén & Wiles,
2000; Rodriguez et al., 1999) failed to extract the general rules,
and did not generalizewell on substantially larger test sets. Similar
for context-sensitive languages (CSLs) (e.g., Chalup & Blair, 2003).
LSTM generalized well though, requiring only the 30 shortest
exemplars (n ≤ 10) of the CSL anbncn to correctly predict the
possible continuations of sequence prefixes for n up to 1000
and more. A combination of a decoupled extended Kalman filter
(Feldkamp, Prokhorov, Eagen, & Yuan, 1998; Feldkamp, Prokhorov,
& Feldkamp, 2003; Haykin, 2001; Kalman, 1960; Puskorius &
Feldkamp, 1994; Williams, 1992b) and an LSTM RNN (Pérez-Ortiz
et al., 2003) learned to deal correctly with values of n up to 10
million and more. That is, after training the network was able
to read sequences of 30,000,000 symbols and more, one symbol
at a time, and finally detect the subtle differences between legal
strings such as a10,000,000b10,000,000c10,000,000 and very similar but
illegal strings such as a10,000,000b9,999,999c10,000,000. Compare also
more recent RNN algorithms able to deal with long time lags
(Koutník et al., 2014; Martens & Sutskever, 2011; Schäfer, Udluft,
& Zimmermann, 2006; Zimmermann, Tietz, & Grothmann, 2012).

Bi-directional RNNs (BRNNs) (Schuster, 1999; Schuster &
Paliwal, 1997) are designed for input sequences whose starts
and ends are known in advance, such as spoken sentences to
be labeled by their phonemes; compare Fukada, Schuster, and
Sagisaka (1999). To take both past and future context of each
sequence element into account, one RNN processes the sequence
from start to end, the other backwards from end to start. At each
time step their combined outputs predict the corresponding label
(if there is any). BRNNs were successfully applied to secondary
protein structure prediction (Baldi, Brunak, Frasconi, Pollastri, &
Soda, 1999). DAG-RNNs (Baldi & Pollastri, 2003; Wu & Baldi, 2008)
generalize BRNNs to multiple dimensions. They learned to predict
properties of small organic molecules (Lusci, Pollastri, & Baldi,
2013) as well as protein contact maps (Tegge, Wang, Eickholt, &
Cheng, 2009), also in conjunction with a growing deep FNN (Di
Lena, Nagata, & Baldi, 2012) (Section 5.21). BRNNs and DAG-RNNs
unfold their full potential when combined with the LSTM concept
(Graves et al., 2009; Graves & Schmidhuber, 2005, 2009).

Particularly successful in recent competitions are stacks (Sec-
tion 5.10) of LSTM RNNs (Fernandez, Graves, & Schmidhuber,
2007b; Graves& Schmidhuber, 2009) trained by Connectionist Tem-
poral Classification (CTC) (Graves, Fernandez, Gomez, & Schmidhu-
ber, 2006), a gradient-based method for finding RNN weights that
maximize the probability of teacher-given label sequences, given
(typically much longer and more high-dimensional) streams of
real-valued input vectors. CTC-LSTM performs simultaneous seg-
mentation (alignment) and recognition (Section 5.22).

In the early 2000s, speech recognitionwas dominated byHMMs
combinedwith FNNs (e.g., Bourlard&Morgan, 1994). Nevertheless,
when trained from scratch on utterances from the TIDIGITS speech
database, in 2003 LSTM already obtained results comparable
to those of HMM-based systems (Beringer, Graves, Schiel, &
Schmidhuber, 2005; Graves, Eck, Beringer, & Schmidhuber, 2003;
Graves et al., 2006). In 2007, LSTM outperformed HMMs in
keyword spotting tasks (Fernández, Graves, & Schmidhuber,
2007a); compare recent improvements (Indermuhle, Frinken,
Fischer, & Bunke, 2011; Wöllmer, Schuller, & Rigoll, 2013). By
2013, LSTM also achieved best known results on the famous TIMIT
phoneme recognition benchmark (Graves, Mohamed, & Hinton,
2013) (Section 5.22). Recently, LSTM RNN/HMM hybrids obtained
best known performance on medium-vocabulary (Geiger, Zhang,
Weninger, Schuller, & Rigoll, 2014) and large-vocabulary speech
recognition (Sak, Senior, & Beaufays, 2014).

LSTM is also applicable to robot localization (Förster, Graves,
& Schmidhuber, 2007), robot control (Mayer et al., 2008), on-
line driver distraction detection (Wöllmer et al., 2011), and many

96 J. Schmidhuber / Neural Networks 61 (2015) 85–117
other tasks. For example, it helped to improve the state of the
art in diverse applications such as protein analysis (Hochreiter &
Obermayer, 2005), handwriting recognition (Bluche et al., 2014;
Graves, Fernandez, Liwicki, Bunke, & Schmidhuber, 2008; Graves
et al., 2009; Graves & Schmidhuber, 2009), voice activity detec-
tion (Eyben, Weninger, Squartini, & Schuller, 2013), optical char-
acter recognition (Breuel, Ul-Hasan, Al-Azawi, & Shafait, 2013),
language identification (Gonzalez-Dominguez, Lopez-Moreno, Sak,
Gonzalez-Rodriguez, &Moreno, 2014), prosody contour prediction
(Fernandez, Rendel, Ramabhadran, &Hoory, 2014), audio onset de-
tection (Marchi et al., 2014), text-to-speech synthesis (Fan, Qian,
Xie, & Soong, 2014), social signal classification (Brueckner & Schul-
ter, 2014),machine translation (Sutskever, Vinyals, & Le, 2014), and
others.

RNNs can also be used for metalearning (Prokhorov, Feldkamp,
& Tyukin, 2002; Schaul & Schmidhuber, 2010; Schmidhuber, 1987),
because they can in principle learn to run their own weight
change algorithm (Schmidhuber, 1993a). A successful metalearner
(Hochreiter, Younger, & Conwell, 2001) used an LSTM RNN to
quickly learn a learning algorithm for quadratic functions (compare
Section 6.8).

Recently, LSTM RNNs won several international pattern recog-
nition competitions and set numerous benchmark records on large
and complex data sets, e.g., Sections 5.17, 5.21, 5.22. Gradient-
based LSTM is no panacea though—other methods sometimes out-
performed it at least on certain tasks (Jaeger, 2004; Koutník et al.,
2014; Martens & Sutskever, 2011; Pascanu, Mikolov, & Bengio,
2013; Schmidhuber et al., 2007); compare Section 5.20.

5.14. 2003: more contest-winning/record-setting NNs; successful
deep NNs

In the decade around 2000,many practical and commercial pat-
tern recognition applications were dominated by non-neural ma-
chine learning methods such as Support Vector Machines (SVMs)
(Schölkopf et al., 1998; Vapnik, 1995). Nevertheless, at least in cer-
tain domains, NNs outperformed other techniques.

A Bayes NN (Neal, 2006) based on an ensemble (Breiman, 1996;
Dietterich, 2000a; Hashem & Schmeiser, 1992; Schapire, 1990;
Ueda, 2000; Wolpert, 1992) of NNs won the NIPS 2003 Feature
Selection Challenge with secret test set (Neal & Zhang, 2006). The
NN was not very deep though—it had two hidden layers and thus
rather shallow CAPs (Section 3) of depth 3.

Important for many present competition-winning pattern
recognizers (Sections 5.19, 5.21, 5.22) were developments in the
CNN department. A BP-trained (LeCun et al., 1989) CNN (Sections
5.4, 5.8) set a newMNIST record of 0.4% (Simard, Steinkraus, & Platt,
2003), using training pattern deformations (Baird, 1990) but no
unsupervised pre-training (Sections 5.7, 5.10, 5.15). A standard BP
net achieved 0.7% (Simard et al., 2003). Again, the corresponding
CAP depth was low. Compare further improvements in Sections
5.16, 5.18, 5.19.

Good image interpretation results (Behnke, 2003b) were
achieved with rather deep NNs trained by the BP variant R-prop
(Riedmiller & Braun, 1993) (Section 5.6.2); here feedback through
recurrent connections helped to improve image interpretation.
FNNs with CAP depth up to 6 were used to successfully classify
high-dimensional data (Vieira & Barradas, 2003).

Deep LSTM RNNs started to obtain certain first speech recogni-
tion results comparable to those of HMM-based systems (Graves
et al., 2003); compare Sections 5.13, 5.16, 5.21, 5.22.

5.15. 2006/7: UL for deep belief networks/AE stacks fine-tuned by BP

While learning networks with numerous non-linear layers date
back at least to 1965 (Section 5.3), and explicit DL research
results have been published at least since 1991 (Sections 5.9, 5.10),
the expression Deep Learning was actually coined around 2006,
when unsupervised pre-training of deep FNNs helped to accelerate
subsequent SL through BP (Hinton, Osindero, & Teh, 2006; Hinton
& Salakhutdinov, 2006). Compare earlier terminology on loading
deep networks (Síma, 1994; Windisch, 2005) and learning deep
memories (Gomez & Schmidhuber, 2005). Compare also BP-based
(Section 5.5) fine-tuning (Section 5.6.1) of (not so deep) FNNs pre-
trained by competitive UL (Maclin & Shavlik, 1995).

The Deep Belief Network (DBN) is a stack of Restricted
Boltzmann Machines (RBMs) (Smolensky, 1986), which in turn are
Boltzmann Machines (BMs) (Hinton & Sejnowski, 1986) with a
single layer of feature-detecting units; compare also Higher-Order
BMs (Memisevic & Hinton, 2010). Each RBM perceives pattern
representations from the level below and learns to encode them in
unsupervised fashion. At least in theoryunder certain assumptions,
adding more layers improves a bound on the data’s negative
log probability (Hinton et al., 2006) (equivalent to the data’s
description length—compare the corresponding observation for
RNN stacks, Section 5.10). There are extensions for Temporal RBMs
(Sutskever, Hinton, & Taylor, 2008).

Without any training pattern deformations (Section 5.14),
a DBN fine-tuned by BP achieved 1.2% error rate (Hinton &
Salakhutdinov, 2006) on the MNIST handwritten digits (Sections
5.8, 5.14). This result helped to arouse interest in DBNs. DBNs also
achieved good results on phoneme recognition, with an error rate
of 26.7% on the TIMIT core test set (Mohamed & Hinton, 2010);
compare further improvements through FNNs (Deng & Yu, 2014;
Hinton, Deng, et al., 2012) and LSTM RNNs (Section 5.22).

ADBN-based technique called Semantic Hashing (Salakhutdinov
& Hinton, 2009) maps semantically similar documents (of variable
size) to nearby addresses in a space of document representations.
It outperformed previous searchers for similar documents, such as
Locality Sensitive Hashing (Buhler, 2001; Datar, Immorlica, Indyk, &
Mirrokni, 2004). See the RBM/DBN tutorial (Fischer & Igel, 2014).

Autoencoder (AE) stacks (Ballard, 1987) (Section 5.7) became a
popular alternativeway of pre-training deep FNNs in unsupervised
fashion, before fine-tuning (Section 5.6.1) them through BP
(Section 5.5) (Bengio, Lamblin, Popovici, & Larochelle, 2007; Erhan
et al., 2010; Vincent, Hugo, Bengio, & Manzagol, 2008). Sparse
coding (Section 5.6.4) was formulated as a combination of convex
optimization problems (Lee, Battle, Raina, & Ng, 2007). Recent
surveys of stacked RBM and AE methods focus on post-2006
developments (Arel, Rose, & Karnowski, 2010; Bengio, 2009).
Unsupervised DBNs and AE stacks are conceptually similar to,
but in a certain sense less general than, the unsupervised RNN
stack-based History Compressor of 1991 (Section 5.10), which can
process and re-encode not only stationary input patterns, but
entire pattern sequences.

5.16. 2006/7: improved CNNs/GPU-CNNs/BP forMPCNNs/LSTM stacks

Also in 2006, a BP-trained (LeCun et al., 1989) CNN (Sections
5.4, 5.8) set a new MNIST record of 0.39% (Ranzato, Poultney,
Chopra, & LeCun, 2006), using training pattern deformations
(Section 5.14) but no unsupervised pre-training. Compare further
improvements in Sections 5.18, 5.19. Similar CNNs were used
for off-road obstacle avoidance (LeCun, Muller, Cosatto, & Flepp,
2006). A combination of CNNs and TDNNs later learned to map
fixed-size representations of variable-size sentences to features
relevant for language processing, using a combination of SL and UL
(Collobert & Weston, 2008).

2006 also saw an early GPU-based CNN implementation
(Chellapilla, Puri, & Simard, 2006) up to 4 times faster than CPU-
CNNs; compare also earlier GPU implementations of standard
FNNswith a reported speed-up factor of 20 (Oh& Jung, 2004). GPUs

J. Schmidhuber / Neural Networks 61 (2015) 85–117 97
or graphics cards have becomemore andmore important for DL in
subsequent years (Sections 5.18–5.22).

In 2007, BP (Section 5.5) was applied for the first time (Ranzato
et al., 2007) to Neocognitron-inspired (Section 5.4), Cresceptron-
like (or HMAX-like) MPCNNs (Section 5.11) with alternating
convolutional and max-pooling layers. BP-trained MPCNNs have
become an essential ingredient of many modern, competition-
winning, feedforward, visual Deep Learners (Sections 5.17, 5.19–
5.23).

Also in 2007, hierarchical stacks of LSTM RNNswere introduced
(Fernandez et al., 2007b). They can be trained by hierarchical
Connectionist Temporal Classification (CTC) (Graves et al., 2006). For
tasks of sequence labeling, every LSTM RNN level (Section 5.13)
predicts a sequence of labels fed to the next level. Error signals
at every level are back-propagated through all the lower levels.
On spoken digit recognition, LSTM stacks outperformed HMMs,
despite making fewer assumptions about the domain. LSTM stacks
do not necessarily require unsupervised pre-training like the
earlier UL-based RNN stacks (Schmidhuber, 1992b) of Section 5.10.

5.17. 2009: first official competitionswon by RNNs, andwithMPCNNs

Stacks of LSTM RNNs trained by CTC (Sections 5.13, 5.16) be-
came the first RNNs to win official international pattern recogni-
tion contests (with secret test sets known only to the organizers).
More precisely, three connected handwriting competitions at IC-
DAR 2009 in three different languages (French, Arab, Farsi) were
won by deep LSTMRNNswithout any a priori linguistic knowledge,
performing simultaneous segmentation and recognition. Compare
Graves and Jaitly (2014), Graves and Schmidhuber (2005), Graves
et al. (2009), Graves et al. (2013) and Schmidhuber, Ciresan, Meier,
Masci, and Graves (2011) (Section 5.22).

To detect human actions in surveillance videos, a 3-dimensional
CNN (e.g., Jain & Seung, 2009; Prokhorov, 2010), combined with
SVMs, was part of a larger system (Yang et al., 2009) using a bag of
features approach (Nowak, Jurie, & Triggs, 2006) to extract regions
of interest. The system won three 2009 TRECVID competitions.
These were possibly the first official international contests won
with the help of (MP)CNNs (Section 5.16). An improved version of
the method was published later (Ji, Xu, Yang, & Yu, 2013).

2009 also saw a GPU-DBN implementation (Raina, Madhavan,
& Ng, 2009) orders of magnitudes faster than previous CPU-DBNs
(see Section 5.15); see also Coates et al. (2013). The Convolutional
DBN (Lee, Grosse, Ranganath, & Ng, 2009) (with a probabilistic
variant of MP, Section 5.11) combines ideas from CNNs and DBNs,
and was successfully applied to audio classification (Lee, Pham,
Largman, & Ng, 2009).

5.18. 2010: plain backprop (+ distortions) on GPU breaks MNIST
record

In 2010, a new MNIST (Section 5.8) record of 0.35% error
rate was set by good old BP (Section 5.5) in deep but otherwise
standardNNs (Ciresan,Meier, Gambardella, & Schmidhuber, 2010),
using neither unsupervised pre-training (e.g., Sections 5.7, 5.10,
5.15) nor convolution (e.g., Sections 5.4, 5.8, 5.14, 5.16). However,
training pattern deformations (e.g., Section 5.14) were important
to generate a big training set and avoid overfitting. This success
was made possible mainly through a GPU implementation of BP
that was up to 50 times faster than standard CPU versions. A good
value of 0.95% was obtained without distortions except for small
saccadic eye movement-like translations—compare Section 5.15.

Since BP was 3–5 decades old by then (Section 5.5), and pattern
deformations 2 decades (Baird, 1990) (Section 5.14), these results
seemed to suggest that advances in exploiting modern computing
hardware were more important than advances in algorithms.
5.19. 2011:MPCNNs on GPU achieve superhuman vision performance

In 2011, a flexible GPU-implementation (Ciresan, Meier, Masci,
Gambardella, & Schmidhuber, 2011) of Max-Pooling (MP) CNNs or
Convnets was described (a GPU-MPCNN), building on earlier MP
work (Weng et al., 1992) (Section 5.11) CNNs (Fukushima, 1979;
LeCun et al., 1989) (Sections 5.4, 5.8, 5.16), and on early GPU-
based CNNs without MP (Chellapilla et al., 2006) (Section 5.16);
compare early GPU-NNs (Oh & Jung, 2004) and GPU-DBNs (Raina
et al., 2009) (Section 5.17).MPCNNs have alternating convolutional
layers (Section 5.4) and max-pooling layers (MP, Section 5.11)
topped by standard fully connected layers. All weights are trained
by BP (Sections 5.5, 5.8, 5.16) (Ranzato et al., 2007; Scherer et al.,
2010). GPU-MPCNNs have become essential for many contest-
winning FNNs (Sections 5.21, 5.22).

Multi-Column GPU-MPCNNs (Ciresan, Meier, Masci, & Schmid-
huber, 2011) are committees (Breiman, 1996; Dietterich, 2000a;
Hashem & Schmeiser, 1992; Schapire, 1990; Ueda, 2000; Wolpert,
1992) of GPU-MPCNNs with simple democratic output averaging.
Several MPCNNs see the same input; their output vectors are used
to assign probabilities to the various possible classes. The classwith
the on average highest probability is chosen as the system’s classi-
fication of the present input. Compare earlier, more sophisticated
ensemble methods (Schapire, 1990), the contest-winning ensem-
ble Bayes-NN (Neal, 2006) of Section 5.14, and recent related work
(Shao, Wu, & Li, 2014).

An ensemble of GPU-MPCNNs was the first system to achieve
superhuman visual pattern recognition (Ciresan, Meier, Masci,
Schmidhuber, 2011; Ciresan, Meier, Masci, & Schmidhuber, 2012)
in a controlled competition, namely, the IJCNN 2011 traffic sign
recognition contest in San Jose (CA) (Stallkamp, Schlipsing, Salmen,
& Igel, 2011, 2012). This is of interest for fully autonomous, self-
driving cars in traffic (e.g., Dickmanns et al., 1994). The GPU-
MPCNN ensemble obtained 0.56% error rate and was twice better
than human test subjects, three times better than the closest
artificial NN competitor (Sermanet & LeCun, 2011), and six times
better than the best non-neural method.

A few months earlier, the qualifying round was won in a 1st
stage online competition, albeit by a much smaller margin: 1.02%
(Ciresan, Meier, Masci, Schmidhuber, 2011) vs 1.03% for second
place (Sermanet & LeCun, 2011). After the deadline, the organizers
revealed that humanperformance on the test setwas 1.19%. That is,
the best methods already seemed human-competitive. However,
during the qualifying it was possible to incrementally gain infor-
mation about the test set by probing it through repeated submis-
sions. This is illustrated by better and better results obtained by
various teams over time (Stallkamp et al., 2012) (the organizers
eventually imposed a limit of 10 resubmissions). In the final com-
petition this was not possible.

This illustrates a general problem with benchmarks whose test
sets are public, or at least can be probed to some extent: competing
teams tend to overfit on the test set evenwhen it cannot be directly
used for training, only for evaluation.

In 1997 many thought it a big deal that human chess world
champion Kasparov was beaten by an IBM computer. But back
then computers could not at all compete with little kids in visual
pattern recognition, which seems much harder than chess from
a computational perspective. Of course, the traffic sign domain is
highly restricted, and kids are still much better general pattern
recognizers. Nevertheless, by 2011, deep NNs could already learn
to rival them in important limited visual domains.

An ensemble of GPU-MPCNNs was also the first method
to achieve human-competitive performance (around 0.2%) on
MNIST (Ciresan, Meier, & Schmidhuber, 2012a). This represented
a dramatic improvement, since by then the MNIST record had
hovered around 0.4% for almost a decade (Sections 5.14, 5.16, 5.18).

98 J. Schmidhuber / Neural Networks 61 (2015) 85–117
Given all the prior work on (MP)CNNs (Sections 5.4, 5.8,
5.11, 5.16) and GPU-CNNs (Section 5.16), GPU-MPCNNs are not a
breakthrough in the scientific sense. But they are a commercially
relevant breakthrough in efficient coding that has made a
difference in several contests since 2011. Today, most feedforward
competition-winning deep NNs are (ensembles of) GPU-MPCNNs
(Sections 5.21–5.23).

5.20. 2011: Hessian-free optimization for RNNs

Also in 2011 it was shown (Martens & Sutskever, 2011) that
Hessian-free optimization (e.g., Møller, 1993; Pearlmutter, 1994;
Schraudolph, 2002) (Section 5.6.2) can alleviate the Fundamental
Deep Learning Problem (Section 5.9) in RNNs, outperforming
standard gradient-based LSTM RNNs (Section 5.13) on several
tasks. Compare other RNN algorithms (Jaeger, 2004; Koutník et al.,
2014; Pascanu,Mikolov, et al., 2013; Schmidhuber et al., 2007) that
also at least sometimes yield better results than steepest descent
for LSTM RNNs.

5.21. 2012: first contests won on ImageNet, object detection,
segmentation

In 2012, an ensemble of GPU-MPCNNs (Section 5.19) achieved
best results on the ImageNet classification benchmark (Krizhevsky,
Sutskever, & Hinton, 2012), which is popular in the computer
vision community. Here relatively large image sizes of 256 × 256
pixels were necessary, as opposed to only 48 × 48 pixels for
the 2011 traffic sign competition (Section 5.19). See further
improvements in Section 5.22.

Also in 2012, the biggest NN so far (109 free parameters) was
trained in unsupervised mode (Sections 5.7, 5.15) on unlabeled
data (Le et al., 2012), then applied to ImageNet. The codes across its
top layer were used to train a simple supervised classifier, which
achieved best results so far on 20,000 classes. Instead of relying on
efficient GPU programming, this was done by brute force on 1000
standard machines with 16,000 cores.

So by 2011/2012, excellent results had been achieved by Deep
Learners in image recognition and classification (Sections 5.19,
5.21). The computer vision community, however, is especially
interested in object detection in large images, for applications such
as image-based search engines, or for biomedical diagnosis where
the goal may be to automatically detect tumors etc. in images of
human tissue. Object detection presents additional challenges. One
natural approach is to train a deep NN classifier on patches of
big images, then use it as a feature detector to be shifted across
unknown visual scenes, using various rotations and zoom factors.
Image parts that yield highly active output units are likely to
contain objects similar to those the NN was trained on.

2012 finally saw the first DL system (an ensemble of GPU-
MPCNNs, Section 5.19) to win a contest on visual object detection
(Ciresan, Giusti, Gambardella, & Schmidhuber, 2013) in large
images of several million pixels (ICPR, 2012; Roux et al., 2013).
Such biomedical applications may turn out to be among the most
important applications of DL. The world spends over 10% of GDP
on healthcare (>6 trillion USD per year), much of it on medical
diagnosis through expensive experts. Partial automation of this
could not only save lots ofmoney, but alsomake expert diagnostics
accessible to many who currently cannot afford it. It is gratifying
to observe that today deep NNs may actually help to improve
healthcare and perhaps save human lives.

2012 also saw the first pure image segmentation contest won
by DL (Ciresan, Giusti, Gambardella, & Schmidhuber, 2012), again
through an GPU-MPCNN ensemble (Segmentation of Neuronal
Structures in EM Stacks Challenge, 2012).2 EM stacks are relevant
for the recently approved huge brain projects in Europe and
the US (e.g., Markram, 2012). Given electron microscopy images
of stacks of thin slices of animal brains, the goal is to build a
detailed 3Dmodel of the brain’s neurons and dendrites. But human
experts need many hours and days and weeks to annotate the
images:Which parts depict neuronalmembranes?Which parts are
irrelevant background? This needs to be automated (e.g., Turaga
et al., 2010). Deep Multi-Column GPU-MPCNNs learned to solve
this task through experience with many training images, and won
the contest on all three evaluation metrics by a large margin, with
superhuman performance in terms of pixel error.

Both object detection (Ciresan et al., 2013) and image segmen-
tation (Ciresan, Giusti, et al., 2012) profit from fast MPCNN-based
image scans that avoid redundant computations. Recent MPCNN
scanners speed up naive implementations by up to three orders
of magnitude (Giusti, Ciresan, Masci, Gambardella, & Schmidhu-
ber, 2013; Masci, Giusti, Ciresan, Fricout, & Schmidhuber, 2013);
compare earlier efficient methods for CNNs without MP (Vaillant,
Monrocq, & LeCun, 1994).

Also in 2012, a system consisting of growing deep FNNs and
2D-BRNNs (Di Lena et al., 2012) won the CASP 2012 contest on
protein contact map prediction. On the IAM-OnDoDB benchmark,
LSTMRNNs (Section 5.13) outperformed all othermethods (HMMs,
SVMs) on online mode detection (Indermuhle, Frinken, & Bunke,
2012; Otte, Krechel, Liwicki, & Dengel, 2012) and keyword spotting
(Indermuhle et al., 2011). On the long time lag problem of language
modeling, LSTM RNNs outperformed all statistical approaches on
the IAM-DB benchmark (Frinken et al., 2012); improved results
were later obtained through a combination of NNs and HMMs
(Zamora-Martínez et al., 2014). Compare earlier RNNs for object
recognition through iterative image interpretation (Behnke, 2002,
2003b; Behnke & Rojas, 1998); see also more recent publications
(O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013; Wyatte, Curran, &
O’Reilly, 2012) extending work on biologically plausible learning
rules for RNNs (O’Reilly, 1996).

5.22. 2013-: more contests and benchmark records

A stack (Fernandez et al., 2007b; Graves & Schmidhuber, 2009)
(Section 5.10) of bi-directional LSTMRNNs (Graves& Schmidhuber,
2005) trained by CTC (Sections 5.13, 5.17) broke a famous TIMIT
speech (phoneme) recognition record, achieving 17.7% test set
error rate (Graves et al., 2013), despite thousands of man years
previously spent on Hidden Markov Model (HMMs)-based speech
recognition research. Compare earlier DBN results (Section 5.15).

CTC-LSTM also helped to score first at NIST’s OpenHaRT2013
evaluation (Bluche et al., 2014). For optical character recognition
(OCR), LSTM RNNs outperformed commercial recognizers of
historical data (Breuel et al., 2013). LSTM-based systems also
set benchmark records in language identification (Gonzalez-
Dominguez et al., 2014), medium-vocabulary speech recognition
(Geiger et al., 2014), prosody contour prediction (Fernandez et al.,
2014), audio onset detection (Marchi et al., 2014), text-to-speech
synthesis (Fan et al., 2014), and social signal classification (Brueckner
& Schulter, 2014).

An LSTM RNN was used to estimate the state posteriors of
an HMM; this system beat the previous state of the art in large
vocabulary speech recognition (Sak, Senior, et al., 2014; Sak, Vinyals,
et al., 2014). Another LSTM RNN with hundreds of millions of

2 It should be mentioned, however, that LSTM RNNs already performed
simultaneous segmentation and recognition when they became the first recurrent
Deep Learners to win official international pattern recognition contests—see
Section 5.17.

J. Schmidhuber / Neural Networks 61 (2015) 85–117 99
connectionswas used to rerank hypotheses of a statisticalmachine
translation system; this system beat the previous state of the art in
English to French translation (Sutskever et al., 2014).

A new record on the ICDAR Chinese handwriting recognition
benchmark (over 3700 classes) was set on a desktop machine by
an ensemble of GPU-MPCNNs (Section 5.19) with almost human
performance (Ciresan & Schmidhuber, 2013); compare (Yin,Wang,
Zhang, & Liu, 2013).

The MICCAI 2013 Grand Challenge on Mitosis Detection (Veta,
Viergever, Pluim, Stathonikos, & van Diest, 2013) also was won by
an object-detecting GPU-MPCNN ensemble (Ciresan et al., 2013).
Its data set was even larger and more challenging than the one
of ICPR 2012 (Section 5.21): a real-world data set including many
ambiguous cases and frequently encountered problems such as
imperfect slide staining.

Three 2D-CNNs (withmean-pooling instead ofMP, Section 5.11)
observing three orthogonal projections of 3D images outperformed
traditional full 3D methods on the task of segmenting tibial
cartilage in low field knee MRI scans (Prasoon et al., 2013).

Deep GPU-MPCNNs (Section 5.19) also helped to achieve new
best results on important benchmarks of the computer vision
community: ImageNet classification (Szegedy et al., 2014; Zeiler
& Fergus, 2013) and – in conjunction with traditional approaches
– PASCAL object detection (Girshick, Donahue, Darrell, & Malik,
2013). They also learned to predict bounding box coordinates of
objects in the Imagenet 2013 database, and obtained state-of-
the-art results on tasks of localization and detection (Sermanet
et al., 2013). GPU-MPCNNs also helped to recognize multi-digit
numbers in Google Street View images (Goodfellow, Bulatov, Ibarz,
Arnoud, & Shet, 2014), where part of the NN was trained to count
visible digits; compare earlier work on detecting ‘‘numerosity’’
through DBNs (Stoianov & Zorzi, 2012). This system also excelled
at recognizing distorted synthetic text in reCAPTCHA puzzles.
Other successful CNN applications include scene parsing (Farabet,
Couprie, Najman, & LeCun, 2013), object detection (Szegedy,
Toshev, & Erhan, 2013), shadow detection (Khan, Bennamoun,
Sohel, & Togneri, 2014), video classification (Karpathy et al., 2014),
and Alzheimer’s disease neuroimaging (Li et al., 2014).

Additional contests arementioned in thewebpages of the Swiss
AI Lab IDSIA, the University of Toronto, NY University, and the
University of Montreal.

5.23. Currently successful techniques: LSTM RNNs and GPU-MPCNNs

Most competition-winning or benchmark record-setting Deep
Learners actually use one of two supervised techniques: (a)
recurrent LSTM (1997) trained by CTC (2006) (Sections 5.13, 5.17,
5.21, 5.22), or (b) feedforward GPU-MPCNNs (2011, Sections 5.19,
5.21, 5.22) based on CNNs (1979, Section 5.4) with MP (1992,
Section 5.11) trained through BP (1989–2007, Sections 5.8, 5.16).

Exceptions include two 2011 contests (Goodfellow, Courville,
& Bengio, 2011, 2012; Mesnil et al., 2011) specialized on Transfer
Learning from one data set to another (e.g., Caruana, 1997; Pan &
Yang, 2010; Schmidhuber, 2004). However, deep GPU-MPCNNs do
allow for pure SL-based transfer (Ciresan, Meier, & Schmidhuber,
2012b), where pre-training on one training set greatly improves
performance on quite different sets, also in more recent studies
(Donahue et al., 2013; Oquab, Bottou, Laptev, & Sivic, 2013). In fact,
deep MPCNNs pre-trained by SL can extract useful features from
quite diverse off-training-set images, yielding better results than
traditional,widely used features such as SIFT (Lowe, 1999, 2004) on
many vision tasks (Razavian, Azizpour, Sullivan, & Carlsson, 2014).
To deal with changing data sets, slowly learning deep NNs were
also combined with rapidly adapting ‘‘surface’’ NNs (Kak, Chen, &
Wang, 2010).
Remarkably, in the 1990s a trend went from partially unsuper-
vised RNN stacks (Section 5.10) to purely supervised LSTM RNNs
(Section 5.13), just like in the 2000s a trendwent frompartially un-
supervised FNN stacks (Section 5.15) to purely supervisedMPCNNs
(Sections 5.16–5.22). Nevertheless, in many applications it can still
be advantageous to combine the best of both worlds—supervised
learning and unsupervised pre-training (Sections 5.10, 5.15).

5.24. Recent tricks for improving SL deepNNs (compare Sections 5.6.2,
5.6.3)

DBN training (Section 5.15) can be improved through gradi-
ent enhancements and automatic learning rate adjustments during
stochastic gradient descent (Cho, 2014; Cho, Raiko, & Ilin, 2013),
and through Tikhonov-type (Tikhonov, Arsenin, & John, 1977) reg-
ularization of RBMs (Cho, Ilin, & Raiko, 2012). Contractive AEs (Ri-
fai, Vincent, Muller, Glorot, & Bengio, 2011) discourage hidden unit
perturbations in response to input perturbations, similar to how
FMS (Section 5.6.3) for Lococode AEs (Section 5.6.4) discourages
output perturbations in response to weight perturbations.

Hierarchical CNNs in a Neural Abstraction Pyramid (e.g., Behnke,
2003b, 2005) were trained to reconstruct images corrupted by
structured noise (Behnke, 2001), thus enforcing increasingly
abstract image representations in deeper and deeper layers.
Denoising AEs later used a similar procedure (Vincent et al., 2008).

Dropout (Ba & Frey, 2013; Hinton, Srivastava, Krizhevsky,
Sutskever, & Salakhutdinov, 2012) removes units from NNs during
training to improve generalization. Some view it as an ensemble
method that trains multiple data models simultaneously (Baldi
& Sadowski, 2014). Under certain circumstances, it could also be
viewed as a form of training set augmentation: effectively, more
and more informative complex features are removed from the
training data. Compare dropout for RNNs (Pachitariu & Sahani,
2013; Pascanu, Gulcehre, Cho, & Bengio, 2013; Pham, Kermorvant,
& Louradour, 2013). A deterministic approximation coined fast
dropout (Wang & Manning, 2013) can lead to faster learning and
evaluation and was adapted for RNNs (Bayer, Osendorfer, Chen,
Urban, & van der Smagt, 2013). Dropout is closely related to
older, biologically plausible techniques for adding noise to neurons
or synapses during training (e.g., An, 1996; Hanson, 1990; Jim,
Giles, & Horne, 1995; Murray & Edwards, 1993; Nadal & Parga,
1994; Schuster, 1992), which in turn are closely related to finding
perturbation-resistant low-complexity NNs, e.g., through FMS
(Section 5.6.3). MDL-based stochastic variationalmethods (Graves,
2011) are also related to FMS. They are useful for RNNs, where
classic regularizers such as weight decay (Section 5.6.3) represent
a bias towards limited memory capacity (e.g., Pascanu, Mikolov,
et al., 2013). Compare recent work on variational recurrent AEs
(Bayer & Osendorfer, 2014).

The activation function f of Rectified Linear Units (ReLUs) is
f (x) = x for x > 0, f (x) = 0 otherwise—compare the old concept
of half-wave rectified units (Malik & Perona, 1990). ReLU NNs are
useful for RBMs (Maas, Hannun, & Ng, 2013; Nair & Hinton, 2010),
outperformed sigmoidal activation functions in deep NNs (Glorot,
Bordes, & Bengio, 2011), and helped to obtain best results on
several benchmark problems across multiple domains (e.g., Dahl,
Sainath, & Hinton, 2013; Krizhevsky et al., 2012).

NNswith competing linear units tend to outperform those with
non-competing nonlinear units, and avoid catastrophic forgetting
through BP when training sets change over time (Srivastava,
Masci, Kazerounian, Gomez, & Schmidhuber, 2013). In this context,
choosing a learning algorithm may be more important than
choosing activation functions (Goodfellow, Mirza, Da, Courville,
& Bengio, 2014). Maxout NNs (Goodfellow, Warde-Farley, Mirza,
Courville, & Bengio, 2013) combine competitive interactions and
dropout (see above) to achieve excellent results on certain

100 J. Schmidhuber / Neural Networks 61 (2015) 85–117
benchmarks. Compare early RNNs with competing units for SL
and RL (Schmidhuber, 1989b). To address overfitting, instead
of depending on pre-wired regularizers and hyper-parameters
(Bishop, 2006; Hertz, Krogh, & Palmer, 1991), self-delimiting RNNs
(SLIM NNs) with competing units (Schmidhuber, 2012) can in
principle learn to select their own runtime and their own numbers
of effective free parameters, thus learning their own computable
regularizers (Sections 4.4, 5.6.3), becoming fast and slim when
necessary. One may penalize the task-specific total length of
connections (e.g., Clune, Mouret, & Lipson, 2013; Legenstein &
Maass, 2002; Schmidhuber, 2012, 2013b) and communication
costs of SLIM NNs implemented on the 3-dimensional brain-like
multi-processor hardware to be expected in the future.

RmsProp (Schaul, Zhang, & LeCun, 2013; Tieleman & Hinton,
2012) can speed up first order gradient descent methods (Sections
5.5, 5.6.2); compare vario-η (Neuneier & Zimmermann, 1996),
Adagrad (Duchi, Hazan, & Singer, 2011) and Adadelta (Zeiler, 2012).
DL in NNs can also be improved by transforming hidden unit
activations such that they have zero output and slope on average
(Raiko, Valpola, & LeCun, 2012). Many additional, older tricks
(Sections 5.6.2, 5.6.3) should also be applicable to today’s deep
NNs; compare (Montavon et al., 2012; Orr & Müller, 1998).

5.25. Consequences for neuroscience

It is ironic that artificial NNs (ANNs) can help to better under-
stand biological NNs (BNNs)—see the ISBI 2012 results mentioned
in Section 5.21 (Ciresan, Giusti, et al., 2012; Segmentation of Neu-
ronal Structures in EM Stacks Challenge, 2012).

The feature detectors learned by single-layer visual ANNs are
similar to those found in early visual processing stages of BNNs
(e.g., Section 5.6.4). Likewise, the feature detectors learned in
deep layers of visual ANNs should be highly predictive of what
neuroscientists will find in deep layers of BNNs. While the visual
cortex of BNNs may use quite different learning algorithms, its
objective function to be minimized may be quite similar to the
one of visual ANNs. In fact, results obtained with relatively deep
artificial DBNs (Lee, Ekanadham, & Ng, 2007) and CNNs (Yamins,
Hong, Cadieu, & DiCarlo, 2013) seem compatible with insights
about the visual pathway in the primate cerebral cortex, which has
been studied for many decades (e.g., Bichot, Rossi, & Desimone,
2005; Connor, Brincat, & Pasupathy, 2007; Desimone, Albright,
Gross, & Bruce, 1984; DiCarlo, Zoccolan, & Rust, 2012; Felleman &
Van Essen, 1991; Hubel & Wiesel, 1968; Hung, Kreiman, Poggio,
& DiCarlo, 2005; Kobatake & Tanaka, 1994; Kriegeskorte et al.,
2008; Lennie & Movshon, 2005; Logothetis, Pauls, & Poggio, 1995;
Perrett, Hietanen, Oram, Benson, & Rolls, 1992; Perrett, Rolls, &
Caan, 1982); compare a computer vision-oriented survey (Kruger
et al., 2013).

5.26. DL with spiking neurons?

Many recent DL results profit from GPU-based traditional deep
NNs, e.g., Sections 5.16–5.19. Current GPUs, however, are little
ovens, much hungrier for energy than biological brains, whose
neurons efficiently communicate by brief spikes (FitzHugh, 1961;
Hodgkin & Huxley, 1952; Nagumo, Arimoto, & Yoshizawa, 1962),
and often remain quiet. Many computational models of such
spiking neurons have been proposed and analyzed (e.g., Amit
& Brunel, 1997; Bohte, Kok, & La Poutre, 2002; Brea, Senn, &
Pfister, 2013; Brette et al., 2007; Brunel, 2000; Deco & Rolls, 2005;
Gerstner & Kistler, 2002; Gerstner & van Hemmen, 1992; Hoerzer,
Legenstein, & Maass, 2014; Izhikevich et al., 2003; Kasabov, 2014;
Kempter, Gerstner, & Van Hemmen, 1999; Kistler, Gerstner, & van
Hemmen, 1997; Maass, 1996, 1997; Maex & Orban, 1996; Nessler,
Pfeiffer, Buesing, & Maass, 2013; Rezende & Gerstner, 2014;
Seung, 2003; Song, Miller, & Abbott, 2000; Stemmler, 1996; Stoop,
Schindler, & Bunimovich, 2000; Tsodyks, Pawelzik, & Markram,
1998; Tsodyks, Skaggs, Sejnowski, & McNaughton, 1996; Zipser,
Kehoe, Littlewort, & Fuster, 1993).

Future energy-efficient hardware for DL in NNsmay implement
aspects of such models (e.g., Fieres, Schemmel, & Meier, 2008;
Glackin, McGinnity, Maguire, Wu, & Belatreche, 2005; Indiveri
et al., 2011; Jin et al., 2010; Khan et al., 2008; Liu et al., 2001;
Merolla et al., 2014; Neil & Liu, 2014; Roggen, Hofmann, Thoma, &
Floreano, 2003; Schemmel, Grubl,Meier, &Mueller, 2006; Serrano-
Gotarredona et al., 2009). A simulated, event-driven, spiking
variant (Neftci, Das, Pedroni, Kreutz-Delgado, & Cauwenberghs,
2014) of an RBM (Section 5.15) was trained by a variant of
the Contrastive Divergence algorithm (Hinton, 2002). Spiking nets
were evolved to achieve reasonable performance on small face
recognition data sets (Wysoski, Benuskova, & Kasabov, 2010) and
to control simple robots (Floreano & Mattiussi, 2001; Hagras,
Pounds-Cornish, Colley, Callaghan, & Clarke, 2004). A spiking DBN
with about 250,000 neurons (as part of a larger NN; Eliasmith,
2013; Eliasmith et al., 2012) achieved 6% error rate on MNIST;
compare similar results with a spiking DBN variant of depth 3
using a neuromorphic event-based sensor (O’Connor, Neil, Liu,
Delbruck, & Pfeiffer, 2013). In practical applications, however,
current artificial networks of spiking neurons cannot yet compete
with the best traditional deep NNs (e.g., compare MNIST results of
Section 5.19).

6. DL in FNNs and RNNs for Reinforcement Learning (RL)

So far we have focused on Deep Learning (DL) in supervised
or unsupervised NNs. Such NNs learn to perceive/encode/predict/
classify patterns or pattern sequences, but they do not learn to
act in the more general sense of Reinforcement Learning (RL) in
unknown environments (see surveys, e.g., Kaelbling et al., 1996;
Sutton & Barto, 1998; Wiering & van Otterlo, 2012). Here we add a
discussion of DL FNNs and RNNs for RL. It will be shorter than the
discussion of FNNs and RNNs for SL and UL (Section 5), reflecting
the current size of the various fields.

Without a teacher, solely from occasional real-valued pain and
pleasure signals, RL agents must discover how to interact with a
dynamic, initially unknown environment to maximize their ex-
pected cumulative reward signals (Section 2). There may be ar-
bitrary, a priori unknown delays between actions and perceivable
consequences. The problem is as hard as any problem of computer
science, since any task with a computable description can be for-
mulated in the RL framework (e.g., Hutter, 2005). For example, an
answer to the famous question of whether P = NP (Cook, 1971;
Levin, 1973b) would also set limits for what is achievable by gen-
eral RL. Comparemore specific limitations, e.g., Blondel and Tsitsik-
lis (2000), Madani, Hanks, and Condon (2003) and Vlassis, Littman,
and Barber (2012). The following subsections mostly focus on cer-
tain obvious intersections between DL and RL—they cannot serve
as a general RL survey.

6.1. RL through NN world models yields RNNs with deep CAPs

In the special case of an RL FNN controller C interacting with
a deterministic, predictable environment, a separate FNN called M
can learn to become C ’s world model through system identification,
predicting C ’s inputs from previous actions and inputs (e.g., Co-
chocki & Unbehauen, 1993; Ge, Hang, Lee, & Zhang, 2010; Gomi
& Kawato, 1993; Jordan, 1988; Jordan & Rumelhart, 1990; Levin
& Narendra, 1995; Ljung, 1998; Miller, Werbos, & Sutton, 1995;
Munro, 1987; Narendra & Parthasarathy, 1990; Prokhorov, Pusko-
rius, & Feldkamp, 2001; Robinson & Fallside, 1989; Schmidhuber,
1990d; Werbos, 1981, 1987, 1989a, 1989b, 1992). Assume M has

J. Schmidhuber / Neural Networks 61 (2015) 85–117 101
learned to produce accurate predictions. We can use M to substi-
tute the environment. Then M and C form an RNN where M ’s out-
puts become inputs of C , whose outputs (actions) in turn become
inputs ofM . NowBP for RNNs (Section 5.5.1) can be used to achieve
desired input events such as high real-valued reward signals: While
M ’s weights remain fixed, gradient information for C ’s weights is
propagated back through M down into C and back through M etc.
To a certain extent, the approach is also applicable in probabilistic
or uncertain environments, as long as the inner products ofM ’s C-
based gradient estimates and M ’s ‘‘true’’ gradients tend to be pos-
itive.

In general, this approach implies deep CAPs for C , unlike in
DP-based traditional RL (Section 6.2). Decades ago, the method
was used to learn to back up a model truck (Nguyen & Widrow,
1989). An RL active vision system used it to learn sequential
shifts (saccades) of a fovea, to detect targets in visual scenes
(Schmidhuber & Huber, 1991), thus learning to control selective
attention. Compare RL-based attention learning without NNs
(Whitehead, 1992).

To allow for memories of previous events in partially observable
worlds (Section 6.3), the most general variant of this technique
uses RNNs instead of FNNs to implement bothM and C (Feldkamp
& Puskorius, 1998; Schmidhuber, 1990d, 1991c). This may cause
deep CAPs not only for C but also forM .

M can also be used to optimize expected reward by planning
future action sequences (Schmidhuber, 1990d). In fact, thewinners
of the 2004 RoboCup World Championship in the fast league
(Egorova et al., 2004) trained NNs to predict the effects of steering
signals on fast robots with 4 motors for 4 different wheels. During
play, such NN models were used to achieve desirable subgoals,
by optimizing action sequences through quickly planning ahead.
The approach also was used to create self-healing robots able to
compensate for faulty motors whose effects do not longer match
the predictions of the NNmodels (Gloye,Wiesel, Tenchio, & Simon,
2005; Schmidhuber, 2007).

Typically M is not given in advance. Then an essential question
is: which experiments should C conduct to quickly improve M?
The Formal Theory of Fun and Creativity (e.g., Schmidhuber, 2006a,
2013b) formalizes driving forces and value functions behind such
curious and exploratory behavior: A measure of the learning
progress of M becomes the intrinsic reward of C (Schmidhuber,
1991a); compare (Oudeyer, Baranes, & Kaplan, 2013; Singh, Barto,
& Chentanez, 2005). This motivates C to create action sequences
(experiments) such thatM makes quick progress.

6.2. Deep FNNs for traditional RL and Markov Decision Processes
(MDPs)

The classical approach to RL (Bertsekas & Tsitsiklis, 1996;
Samuel, 1959) makes the simplifying assumption of Markov Deci-
sion Processes (MDPs): the current input of the RL agent conveys all
information necessary to compute an optimal next output event
or decision. This allows for greatly reducing CAP depth in RL NNs
(Sections 3, 6.1) by using theDynamic Programming (DP) trick (Bell-
man, 1957). The latter is often explained in a probabilistic frame-
work (e.g., Sutton & Barto, 1998), but its basic idea can already be
conveyed in a deterministic setting. For simplicity, using the nota-
tion of Section 2, let input events xt encode the entire current state
of the environment, including a real-valued reward rt (no need to
introduce additional vector-valued notation, since real values can
encode arbitrary vectors of real values). The original RL goal (find
weights that maximize the sum of all rewards of an episode) is re-
placed by an equivalent set of alternative goals set by a real-valued
value function V defined on input events. Consider any two subse-
quent input events xt , xk. Recursively define V (xt) = rt + V (xk),
where V (xk) = rk if xk is the last input event. Now search for
weights that maximize the V of all input events, by causing ap-
propriate output events or actions.

Due to the Markov assumption, an FNN suffices to implement
the policy that maps input to output events. Relevant CAPs are not
deeper than this FNN. V itself is often modeled by a separate FNN
(also yielding typically short CAPs) learning to approximate V (xt)
only from local information rt , V (xk).

Many variants of traditional RL exist (e.g., Abounadi, Bertsekas,
& Borkar, 2002; Baird, 1995; Baird & Moore, 1999; Barto,
Sutton, & Anderson, 1983; Bertsekas, 2001; Bradtke, Barto, &
Kaelbling, 1996; Brafman & Tennenholtz, 2002; Kaelbling, Littman,
& Cassandra, 1995; Lagoudakis & Parr, 2003; Maei & Sutton,
2010; Mahadevan, 1996; Meuleau, Peshkin, Kim, & Kaelbling,
1999; Moore & Atkeson, 1993; Morimoto & Doya, 2000; Peng &
Williams, 1996; Prokhorov &Wunsch, 1997; Rummery &Niranjan,
1994; Santamaría, Sutton, & Ram, 1997; Schwartz, 1993; Singh,
1994; Sutton & Barto, 1998; Sutton, Szepesvári, & Maei, 2008;
Tsitsiklis & van Roy, 1996; van Hasselt, 2012; Watkins, 1989;
Watkins & Dayan, 1992; Wiering & Schmidhuber, 1998b). Most
are formulated in a probabilistic framework, and evaluate pairs of
input and output (action) events (instead of input events only). To
facilitate certainmathematical derivations, some discount delayed
rewards, but such distortions of the original RL problem are
problematic.

Perhaps the most well-known RL NN is the world-class RL
backgammon player (Tesauro, 1994), which achieved the level of
human world champions by playing against itself. Its nonlinear,
rather shallow FNN maps a large but finite number of discrete
board states to values. More recently, a rather deep GPU-CNN
was used in a traditional RL framework to play several Atari 2600
computer games directly from 84 × 84 pixel 60 Hz video input
(Mnih et al., 2013), using experience replay (Lin, 1993), extending
previous work on Neural Fitted Q-Learning (NFQ) (Riedmiller,
2005). Even better results are achieved by using (slow)Monte Carlo
tree planning to train comparatively fast deepNNs (Guo, Singh, Lee,
Lewis, & Wang, 2014). Compare RBM-based RL (Sallans & Hinton,
2004) with high-dimensional inputs (Elfwing, Otsuka, Uchibe, &
Doya, 2010), earlier RL Atari players (Grüttner, Sehnke, Schaul, &
Schmidhuber, 2010), and an earlier, raw video-based RL NN for
computer games (Koutník, Cuccu, Schmidhuber, & Gomez, 2013)
trained by Indirect Policy Search (Section 6.7).

6.3. Deep RL RNNs for partially observable MDPs (POMDPs)

The Markov assumption (Section 6.2) is often unrealistic. We
cannot directly perceive what is behind our back, let alone
the current state of the entire universe. However, memories of
previous events can help to deal with partially observable Markov
decision problems (POMDPs) (e.g., Boutilier & Poole, 1996; Jaakkola,
Singh, & Jordan, 1995; Kaelbling et al., 1995; Kimura, Miyazaki, &
Kobayashi, 1997; Lin, 1993; Littman, Cassandra, & Kaelbling, 1995;
McCallum, 1996; Otsuka, Yoshimoto, & Doya, 2010; Ring, 1991,
1993, 1994; Schmidhuber, 1990d, 1991c; Teller, 1994; Wiering
& Schmidhuber, 1996, 1998a; Williams, 1992a). A naive way of
implementing memories without leaving the MDP framework
(Section 6.2) would be to simply consider a possibly huge state
space, namely, the set of all possible observation histories and their
prefixes. A more realistic way is to use function approximators
such as RNNs that produce compact state features as a function
of the entire history seen so far. Generally speaking, POMDP RL
often uses DL RNNs to learn which events to memorize and which
to ignore. Three basic alternatives are:
1. Use an RNN as a value function mapping arbitrary event

histories to values (e.g., Bakker, 2002; Lin, 1993; Schmidhuber,
1990b, 1991c). For example, deep LSTM RNNs were used in this
way for RL robots (Bakker, Zhumatiy, Gruener, & Schmidhuber,
2003).

102 J. Schmidhuber / Neural Networks 61 (2015) 85–117
2. Use an RNN controller in conjunction with a second RNN as
predictive world model, to obtain a combined RNN with deep
CAPs—see Section 6.1.

3. Use anRNN for RL byDirect Search (Section 6.6) or Indirect Search
(Section 6.7) in weight space.

In general, however, POMDPs may imply greatly increased CAP
depth.

6.4. RL facilitated by deep UL in FNNs and RNNs

RL machines may profit from UL for input preprocessing
(e.g., Jodogne & Piater, 2007). In particular, an UL NN can learn to
compactly encode environmental inputs such as images or videos,
e.g., Sections 5.7, 5.10, 5.15. The compact codes (instead of the
high-dimensional raw data) can be fed into an RL machine, whose
job thus may become much easier (Cuccu, Luciw, Schmidhuber, &
Gomez, 2011; Legenstein, Wilbert, & Wiskott, 2010), just like SL
may profit from UL, e.g., Sections 5.7, 5.10, 5.15. For example, NFQ
(Riedmiller, 2005)was applied to real-world control tasks (Lange &
Riedmiller, 2010; Riedmiller, Lange, & Voigtlaender, 2012) where
purely visual inputs were compactly encoded by deep autoen-
coders (Sections 5.7, 5.15). RL combined with UL based on Slow
Feature Analysis (Kompella, Luciw, & Schmidhuber, 2012; Wiskott
& Sejnowski, 2002) enabled a real humanoid robot to learn skills
from raw high-dimensional video streams (Luciw, Kompella, Kaze-
rounian, & Schmidhuber, 2013). To deal with POMDPs (Section 6.3)
involving high-dimensional inputs, RBM-based RL was used (Ot-
suka, 2010), and a RAAM (Pollack, 1988) (Section 5.7) was em-
ployed as a deep unsupervised sequence encoder for RL (Gisslen
et al., 2011). Certain types of RL and UL also were combined in
biologically plausible RNNs with spiking neurons (Section 5.26)
(e.g., Klampfl & Maass, 2013; Rezende & Gerstner, 2014; Yin et al.,
2012).

6.5. Deep hierarchical RL (HRL) and subgoal learning with FNNs and
RNNs

Multiple learnable levels of abstraction (Bengio et al., 2013;
Deng & Yu, 2014; Fu, 1977; Lenat & Brown, 1984; Ring, 1994)
seem as important for RL as for SL. Work on NN-based Hier-
archical RL (HRL) has been published since the early 1990s. In
particular, gradient-based subgoal discovery with FNNs or RNNs
decomposes RL tasks into subtasks for RL submodules (Schmid-
huber, 1991b; Schmidhuber & Wahnsiedler, 1992). Numerous
alternative HRL techniques have been proposed (e.g., Bakker
& Schmidhuber, 2004; Barto & Mahadevan, 2003; Dietterich,
2000b; Doya, Samejima, Katagiri, & Kawato, 2002; Ghavamzadeh
& Mahadevan, 2003; Jameson, 1991; Menache, Mannor, &
Shimkin, 2002; Moore & Atkeson, 1995; Precup, Sutton, &
Singh, 1998; Ring, 1991, 1994; Samejima, Doya, & Kawato,
2003; Simsek & Barto, 2008; Tenenberg, Karlsson, & White-
head, 1993; Weiss, 1994; Whiteson, Kohl, Miikkulainen, & Stone,
2005). While HRL frameworks such as Feudal RL (Dayan &
Hinton, 1993) and options (Barto, Singh, & Chentanez, 2004;
Singh et al., 2005; Sutton, Precup, & Singh, 1999) do not di-
rectly address the problem of automatic subgoal discovery,
HQ-Learning (Wiering & Schmidhuber, 1998a) automatically
decomposes POMDPs (Section 6.3) into sequences of simpler sub-
tasks that can be solved by memoryless policies learnable by reac-
tive sub-agents. Recent HRL organizes potentially deep NN-based
RL sub-modules into self-organizing, 2-dimensional motor control
maps (Ring, Schaul, & Schmidhuber, 2011) inspired by neurophys-
iological findings (Graziano, 2009).
6.6. Deep RL by direct NN search/policy gradients/evolution

Not quite as universal as the methods of Section 6.8, yet both
practical and more general than most traditional RL algorithms
(Section 6.2), are methods for Direct Policy Search (DS). Without a
need for value functions or Markovian assumptions (Sections 6.2,
6.3), the weights of an FNN or RNN are directly evaluated on the
given RL problem. The results of successive trials inform further
search for betterweights. Unlikewith RL supported by BP (Sections
5.5, 6.3, 6.1), CAP depth (Sections 3, 5.9) is not a crucial issue. DS
may solve the credit assignment problem without backtracking
through deep causal chains of modifiable parameters—it neither
cares for their existence, nor tries to exploit them.

An important class of DS methods for NNs are Policy Gradient
methods (Aberdeen, 2003; Baxter & Bartlett, 2001; Ghavamzadeh
& Mahadevan, 2003; Grondman, Busoniu, Lopes, & Babuska, 2012;
Grüttner et al., 2010;Heess, Silver, & Teh, 2012; Kohl & Stone, 2004;
Peters, 2010; Peters & Schaal, 2008a, 2008b; Rückstieß, Felder, &
Schmidhuber, 2008; Sehnke et al., 2010; Sutton, McAllester, Singh,
&Mansour, 1999;Wierstra, Foerster, Peters, & Schmidhuber, 2010;
Wierstra, Schaul, Peters, & Schmidhuber, 2008; Williams, 1986,
1988, 1992a). Gradients of the total rewardwith respect to policies
(NNweights) are estimated (and then exploited) through repeated
NN evaluations.

RL NNs can also be evolved through Evolutionary Algorithms
(EAs) (Fogel, Owens, & Walsh, 1966; Goldberg, 1989; Holland,
1975; Rechenberg, 1971; Schwefel, 1974) in a series of trials. Here
several policies are represented by a population of NNs improved
throughmutations and/or repeated recombinations of the popula-
tion’s fittest individuals (e.g., Fogel, Fogel, & Porto, 1990; Happel &
Murre, 1994;Maniezzo, 1994;Montana &Davis, 1989; Nolfi, Parisi,
& Elman, 1994). Compare Genetic Programming (GP) (Cramer,
1985) (see also Smith, 1980)which can be used to evolve computer
programs of variable size (Dickmanns, Schmidhuber, & Winkl-
hofer, 1987; Koza, 1992), and Cartesian GP (Miller &Harding, 2009;
Miller & Thomson, 2000) for evolving graph-like programs, includ-
ing NNs (Khan, Khan, & Miller, 2010) and their topology (Turner
& Miller, 2013). Related methods include probability distribution-
based EAs (Baluja, 1994; Larraanaga & Lozano, 2001; Sałustowicz &
Schmidhuber, 1997; Saravanan & Fogel, 1995), Covariance Matrix
Estimation Evolution Strategies (CMA-ES) (Hansen, Müller, &
Koumoutsakos, 2003; Hansen & Ostermeier, 2001; Heidrich-
Meisner & Igel, 2009; Igel, 2003), and NeuroEvolution of Aug-
menting Topologies (NEAT) (Stanley & Miikkulainen, 2002). Hybrid
methods combine traditional NN-based RL (Section 6.2) and EAs
(e.g., Whiteson & Stone, 2006).

Since RNNs are general computers, RNN evolution is like GP in
the sense that it can evolve general programs. Unlike sequential
programs learned by traditional GP, however, RNNs can mix se-
quential and parallel information processing in a natural and effi-
cient way, as already mentioned in Section 1. Many RNN evolvers
have been proposed (e.g., Cliff, Husbands, & Harvey, 1993; Juang,
2004; Miglino, Lund, & Nolfi, 1995; Miller, Todd, & Hedge, 1989;
Moriarty, 1997; Nolfi, Floreano, Miglino, & Mondada, 1994; Pase-
mann, Steinmetz, & Dieckman, 1999; Sims, 1994; Whiteson, 2012;
Wieland, 1991; Yamauchi & Beer, 1994; Yao, 1993). One partic-
ularly effective family of methods coevolves neurons, combining
them into networks, and selecting those neurons for reproduction
that participated in the best-performing networks (Gomez, 2003;
Gomez&Miikkulainen, 2003;Moriarty &Miikkulainen, 1996). This
can help to solve deep POMDPs (Gomez & Schmidhuber, 2005).
Co-Synaptic Neuro-Evolution (CoSyNE) does something similar on
the level of synapses or weights (Gomez, Schmidhuber, & Miikku-
lainen, 2008); benefits of this were shown on difficult nonlinear
POMDP benchmarks.

J. Schmidhuber / Neural Networks 61 (2015) 85–117 103
Natural Evolution Strategies (NES) (Glasmachers, Schaul, Sun,
Wierstra, & Schmidhuber, 2010; Sun, Gomez, Schaul, & Schmid-
huber, 2013; Sun, Wierstra, Schaul, & Schmidhuber, 2009; Wier-
stra et al., 2008) link policy gradient methods and evolutionary
approaches through the concept of Natural Gradients (Amari,
1998). RNN evolution may also help to improve SL for deep RNNs
through Evolino (Schmidhuber et al., 2007) (Section 5.9).

6.7. Deep RL by indirect policy search/compressed NN search

Some DS methods (Section 6.6) can evolve NNs with hundreds
or thousands of weights, but not millions. How to search for large
anddeepNNs?Most SL andRLmethodsmentioned so far somehow
search the space of weights wi. Some profit from a reduction of
the search space through shared wi that get reused over and over
again, e.g., in CNNs (Sections 5.4, 5.8, 5.16, 5.21), or in RNNs for SL
(Sections 5.5, 5.13, 5.17) and RL (Sections 6.1, 6.3, 6.6).

It may be possible, however, to exploit additional regulari-
ties/compressibilities in the space of solutions, through indirect
search in weight space. Instead of evolving large NNs directly (Sec-
tion 6.6), one can sometimes greatly reduce the search space
by evolving compact encodings of NNs, e.g., through Lindenmeyer
Systems (Jacob, Lindenmayer, & Rozenberg, 1994; Lindenmayer,
1968), graph rewriting (Kitano, 1990), Cellular Encoding (Gruau,
Whitley, & Pyeatt, 1996), HyperNEAT (Clune, Stanley, Pennock, &
Ofria, 2011; D’Ambrosio & Stanley, 2007; Stanley, D’Ambrosio, &
Gauci, 2009; van den Berg & Whiteson, 2013) (extending NEAT;
Section 6.6), and extensions thereof (e.g., Risi & Stanley, 2012).
This helps to avoid overfitting (compare Sections 5.6.3, 5.24) and is
closely related to the topics of regularization andMDL (Section 4.4).

A general approach (Schmidhuber, 1997) for both SL and RL
seeks to compactly encode weights of large NNs (Schmidhuber,
1997) through programs written in a universal programming
language (Church, 1936; Gödel, 1931; Post, 1936; Turing, 1936).
Often it ismuchmore efficient to systematically search the space of
such programs with a bias towards short and fast programs (Levin,
1973b; Schmidhuber, 1997, 2004), instead of directly searching the
huge space of possible NN weight matrices. A previous universal
language for encoding NNs was assembler-like (Schmidhuber,
1997). More recent work uses more practical languages based
on coefficients of popular transforms (Fourier, wavelet, etc.).
In particular, RNN weight matrices may be compressed like
images, by encoding them through the coefficients of a discrete
cosine transform (DCT) (Koutník et al., 2013; Koutník, Gomez,
& Schmidhuber, 2010). Compact DCT-based descriptions can be
evolved through NES or CoSyNE (Section 6.6). An RNN with over
a million weights learned (without a teacher) to drive a simulated
car in the TORCS driving game (Loiacono, Cardamone, & Lanzi,
2011; Loiacono et al., 2009), based on a high-dimensional video-
like visual input stream (Koutník et al., 2013). The RNN learned
both control and visual processing from scratch, without being
aided by UL. (Of course, UL might help to generate more compact
image codes (Sections 6.4, 4.2) to be fed into a smaller RNN, to
reduce the overall computational effort.)

6.8. Universal RL

General purpose learning algorithms may improve themselves
in open-ended fashion and environment-specific ways in a
lifelong learning context (Schmidhuber, 1987; Schmidhuber,
Zhao, & Schraudolph, 1997; Schmidhuber, Zhao, & Wiering,
1997). The most general type of RL is constrained only by
the fundamental limitations of computability identified by the
founders of theoretical computer science (Church, 1936; Gödel,
1931; Post, 1936; Turing, 1936). Remarkably, there exist blueprints
of universal problem solvers or universal RL machines for unlimited
problem depth that are time-optimal in various theoretical senses
(Hutter, 2002, 2005; Schmidhuber, 2002, 2006b). In particular, the
Gödel Machine can be implemented on general computers such
as RNNs and may improve any part of its software (including the
learning algorithm itself) in a way that is provably time-optimal
in a certain sense (Schmidhuber, 2006b). It can be initialized
by an asymptotically optimal meta-method (Hutter, 2002) (also
applicable to RNNs) which will solve any well-defined problem
as quickly as the unknown fastest way of solving it, save for an
additive constant overhead that becomes negligible as problem
size grows. Note that most problems are large; only few are small.
AI and DL researchers are still in business because many are
interested in problems so small that it is worth trying to reduce the
overhead through less general methods, including heuristics. Here
I will not further discuss universal RL methods, which go beyond
what is usually called DL.

7. Conclusion and outlook

Deep Learning (DL) in Neural Networks (NNs) is relevant for
Supervised Learning (SL) (Section 5), Unsupervised Learning (UL)
(Section 5), and Reinforcement Learning (RL) (Section 6). By
alleviating problems with deep Credit Assignment Paths (CAPs,
Sections 3, 5.9), UL (Section 5.6.4) cannot only facilitate SL of
sequences (Section 5.10) and stationary patterns (Sections 5.7,
5.15), but also RL (Sections 6.4, 4.2). Dynamic Programming (DP,
Section 4.1) is important for both deep SL (Section 5.5) and
traditional RL with deep NNs (Section 6.2). A search for solution-
computing, perturbation-resistant (Sections 5.6.3, 5.15, 5.24),
low-complexity NNs describable by few bits of information
(Section 4.4) can reduce overfitting and improve deep SL & UL
(Sections 5.6.3, 5.6.4) as well as RL (Section 6.7), also in the case
of partially observable environments (Section 6.3). Deep SL, UL, RL
often create hierarchies ofmore andmore abstract representations
of stationary data (Sections 5.3, 5.7, 5.15), sequential data
(Section 5.10), or RL policies (Section 6.5). While UL can facilitate
SL, pure SL for feedforward NNs (FNNs) (Sections 5.5, 5.8, 5.16,
5.18) and recurrent NNs (RNNs) (Sections 5.5, 5.13) did not only
win early contests (Sections 5.12, 5.14) but also most of the recent
ones (Sections 5.17–5.22). Especially DL in FNNs profited from
GPU implementations (Sections 5.16–5.19). In particular, GPU-
based (Section 5.19)Max-Pooling (Section 5.11) Convolutional NNs
(Sections 5.4, 5.8, 5.16) won competitions not only in pattern
recognition (Sections 5.19–5.22) but also image segmentation
(Section 5.21) and object detection (Sections 5.21, 5.22).

Unlike these systems, humans learn to actively perceive patterns
by sequentially directing attention to relevant parts of the available
data. Near future deep NNs will do so, too, extending previous
work since 1990 on NNs that learn selective attention through
RL of (a) motor actions such as saccade control (Section 6.1) and
(b) internal actions controlling spotlights of attention within RNNs,
thus closing the general sensorimotor loop through both external
and internal feedback (e.g., Sections 2, 5.21, 6.6, 6.7).

Many future deep NNs will also take into account that it costs
energy to activate neurons, and to send signals between them.
Brains seem to minimize such computational costs during prob-
lem solving in at least two ways: (1) At a given time, only a
small fraction of all neurons is active because local competition
through winner-take-all mechanisms shuts downmany neighbor-
ing neurons, and only winners can activate other neurons through
outgoing connections (compare SLIM NNs; Section 5.24). (2) Nu-
merous neurons are sparsely connected in a compact 3D vol-
ume by many short-range and few long-range connections (much
like microchips in traditional supercomputers). Often neighboring
neurons are allocated to solve a single task, thus reducing com-
munication costs. Physics seems to dictate that any efficient com-
putational hardware will in the future also have to be brain-like

104 J. Schmidhuber / Neural Networks 61 (2015) 85–117
in keeping with these two constraints. The most successful cur-
rent deep RNNs, however, are not. Unlike certain spiking NNs (Sec-
tion 5.26), they usually activate all units at least slightly, and tend
to be strongly connected, ignoring natural constraints of 3D hard-
ware. It should be possible to improve them by adopting (1) and
(2), and by minimizing non-differentiable energy and communi-
cation costs through direct search in program (weight) space (e.g.,
Sections 6.6, 6.7). These more brain-like RNNs will allocate neigh-
boring RNNparts to related behaviors, and distant RNNparts to less
related ones, thus self-modularizing in a way more general than
that of traditional self-organizing maps in FNNs (Section 5.6.4).
They will also implement Occam’s razor (Sections 4.4, 5.6.3) as a
by-product of energy minimization, by finding simple (highly gen-
eralizing) problem solutions that require few active neurons and
few, mostly short connections.

Themore distant futuremay belong to general purpose learning
algorithms that improve themselves in provably optimal ways
(Section 6.8), but these are not yet practical or commercially
relevant.

Acknowledgments

Since 16 April 2014, drafts of this paper have undergone mas-
sive open online peer review through publicmailing lists including
connectionists@cs.cmu.edu, ml-news@googlegroups.com, comp-
neuro@neuroinf.org, genetic_programming@yahoogroups.com, rl-
list@googlegroups.com, imageworld@diku.dk, Google+ machine
learning forum. Thanks to numerous NN/DL experts for valuable
comments. Thanks to SNF, DFG, and the European Commission for
partially fundingmyDL research group in the past quarter-century.
The contents of this paper may be used for educational and non-
commercial purposes, including articles for Wikipedia and similar
sites.

References

Aberdeen, D. (2003). Policy-gradient algorithms for partially observable Markov
decision processes (Ph.D. thesis), Australian National University.

Abounadi, J., Bertsekas, D., & Borkar, V. S. (2002). Learning algorithms for Markov
decision processes with average cost. SIAM Journal on Control and Optimization,
40(3), 681–698.

Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of
Statistical Mathematics, 22, 203–217.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood
principle. In Second intl. symposium on information theory (pp. 267–281).
Akademinai Kiado.

Akaike, H. (1974). A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19(6), 716–723.

Allender, A. (1992). Application of time-bounded Kolmogorov complexity in com-
plexity theory. In O. Watanabe (Ed.), EATCS monographs on theoretical com-
puter science, Kolmogorov complexity and computational complexity (pp. 6–22).
Springer.

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback
in a combinatorial environment. In IEEE 1st international conference on neural
networks, vol. 2 (pp. 609–618).

Almeida, L. B., Almeida, L. B., Langlois, T., Amaral, J. D., & Redol, R. A. (1997). On-line
step size adaptation. Technical report, INESC, 9 Rua Alves Redol, 1000.

Amari, S. (1967). A theory of adaptive pattern classifiers. IEEE Transactions on
Electronic Computers, 16(3), 299–307.

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural
Computation, 10(2), 251–276.

Amari, S., Cichocki, A., & Yang, H. (1996). A new learning algorithm for blind signal
separation. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in
neural information processing systems (NIPS), vol. 8. The MIT Press.

Amari, S., & Murata, N. (1993). Statistical theory of learning curves under entropic
loss criterion. Neural Computation, 5(1), 140–153.

Amit, D. J., & Brunel, N. (1997). Dynamics of a recurrent network of spiking neurons
before and following learning. Network: Computation in Neural Systems, 8(4),
373–404.

An, G. (1996). The effects of adding noise during backpropagation training on a
generalization performance. Neural Computation, 8(3), 643–674.

Andrade, M. A., Chacon, P., Merelo, J. J., & Moran, F. (1993). Evaluation of secondary
structure of proteins fromUV circular dichroism spectra using an unsupervised
learning neural network. Protein Engineering , 6(4), 383–390.

Andrews, R., Diederich, J., & Tickle, A. B. (1995). Survey and critique of techniques
for extracting rules from trained artificial neural networks. Knowledge-Based
Systems, 8(6), 373–389.
Anguita, D., & Gomes, B. A. (1996).Mixing floating- and fixed-point formats for neu-
ral network learning on neuroprocessors. Microprocessing and Microprogram-
ming , 41(10), 757–769.

Anguita, D., Parodi, G., & Zunino, R. (1994). An efficient implementation of BP on
RISC-based workstations. Neurocomputing , 6(1), 57–65.

Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deepmachine learning—a new frontier
in artificial intelligence research. IEEE Computational IntelligenceMagazine, 5(4),
13–18.

Ash, T. (1989). Dynamic node creation in backpropagation neural networks.
Connection Science, 1(4), 365–375.

Atick, J. J., Li, Z., & Redlich, A. N. (1992). Understanding retinal color coding from
first principles. Neural Computation, 4, 559–572.

Atiya, A. F., & Parlos, A. G. (2000). New results on recurrent network training:
unifying the algorithms and accelerating convergence. IEEE Transactions on
Neural Networks, 11(3), 697–709.

Ba, J., & Frey, B. (2013). Adaptive dropout for training deep neural networks.
In Advances in neural information processing systems (NIPS) (pp. 3084–3092).

Baird, H. (1990). Document image defect models. In Proceddings, IAPR workshop on
syntactic and structural pattern recognition.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function
approximation. In International conference on machine learning (pp. 30–37).

Baird, L., & Moore, A. W. (1999). Gradient descent for general reinforcement
learning. In Advances in neural information processing systems, vol. 12 (NIPS)
(pp. 968–974). MIT Press.

Bakker, B. (2002). Reinforcement learning with long short-term memory. In T. G.
Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information
processing systems, vol. 14 (pp. 1475–1482). Cambridge, MA: MIT Press.

Bakker, B., & Schmidhuber, J. (2004). Hierarchical reinforcement learning based on
subgoal discovery and subpolicy specialization. In F. Groen, et al. (Eds.), Proc. 8th
conference on intelligent autonomous systems IAS-8 (pp. 438–445). Amsterdam,
NL: IOS Press.

Bakker, B., Zhumatiy, V., Gruener, G., & Schmidhuber, J. (2003). A robot
that reinforcement-learns to identify and memorize important previous
observations. In Proceedings of the 2003 IEEE/RSJ international conference on
intelligent robots and systems (pp. 430–435).

Baldi, P. (1995). Gradient descent learning algorithms overview: A general
dynamical systems perspective. IEEE Transactions on Neural Networks, 6(1),
182–195.

Baldi, P. (2012). Autoencoders, unsupervised learning, and deep architectures.
Journal of Machine Learning Research, 27, 37–50. (Proc. 2011 ICML Workshop
on Unsupervised and Transfer Learning).

Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., & Soda, G. (1999). Exploiting the past
and the future in protein secondary structure prediction. Bioinformatics, 15,
937–946.

Baldi, P., & Chauvin, Y. (1993). Neural networks for fingerprint recognition. Neural
Computation, 5(3), 402–418.

Baldi, P., & Chauvin, Y. (1996). Hybrid modeling, HMM/NN architectures, and
protein applications. Neural Computation, 8(7), 1541–1565.

Baldi, P., & Hornik, K. (1989). Neural networks and principal component analysis:
learning from examples without local minima. Neural Networks, 2, 53–58.

Baldi, P., &Hornik, K. (1995). Learning in linear networks: a survey. IEEE Transactions
on Neural Networks, 6(4), 837–858. 1995.

Baldi, P., & Pollastri, G. (2003). The principled design of large-scale recursive
neural network architectures—DAG-RNNs and the protein structure prediction
problem. Journal of Machine Learning Research, 4, 575–602.

Baldi, P., & Sadowski, P. (2014). The dropout learning algorithm. Artificial
Intelligence, 210C , 78–122.

Ballard, D. H. (1987). Modular learning in neural networks. In Proc. AAAI
(pp. 279–284).

Baluja, S. (1994). Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning. Technical
report CMU-CS-94-163. Carnegie Mellon University.

Balzer, R. (1985). A 15 year perspective on automatic programming. IEEE
Transactions on Software Engineering , 11(11), 1257–1268.

Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1(3), 295–311.
Barlow, H. B., Kaushal, T. P., & Mitchison, G. J. (1989). Finding minimum entropy

codes. Neural Computation, 1(3), 412–423.
Barrow, H. G. (1987). Learning receptive fields. In Proceedings of the IEEE 1st annual

conference on neural networks, vol. IV (pp. 115–121). IEEE.
Barto, A. G., &Mahadevan, S. (2003). Recent advances in hierarchical reinforcement

learning. Discrete Event Dynamic Systems, 13(4), 341–379.
Barto, A. G., Singh, S., & Chentanez, N. (2004). Intrinsically motivated learning of

hierarchical collections of skills. In Proceedings of international conference on
developmental learning (pp. 112–119). Cambridge, MA: MIT Press.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Transactions on Systems,
Man and Cybernetics, SMC-13, 834–846.

Battiti, R. (1989). Accelerated backpropagation learning: two optimization
methods. Complex Systems, 3(4), 331–342.

Battiti, T. (1992). First- and second-order methods for learning: between steepest
descent and Newton’s method. Neural Computation, 4(2), 141–166.

Baum, E. B., & Haussler, D. (1989). What size net gives valid generalization? Neural
Computation, 1(1), 151–160.

Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic functions of
finite state Markov chains. The Annals of Mathematical Statistics, 1554–1563.

Baxter, J., & Bartlett, P. L. (2001). Infinite-horizonpolicy-gradient estimation. Journal
of Artificial Intelligence Research, 15(1), 319–350.

mailto:connectionists@cs.cmu.edu
mailto:ml-news@googlegroups.com
mailto:comp-neuro@neuroinf.org
mailto:comp-neuro@neuroinf.org
mailto:genetic_programming@yahoogroups.com
mailto:rl-list@googlegroups.com
mailto:rl-list@googlegroups.com
mailto:imageworld@diku.dk
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref1
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref2
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref3
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref4
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref5
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref6
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref8
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref9
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref10
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref11
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref12
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref13
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref14
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref15
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref16
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref17
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref18
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref19
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref20
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref21
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref22
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref23
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref26
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref27
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref28
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref30
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref31
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref32
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref33
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref34
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref35
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref36
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref37
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref38
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref40
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref41
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref42
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref43
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref44
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref45
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref46
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref47
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref48
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref49
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref50
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref51
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref52

J. Schmidhuber / Neural Networks 61 (2015) 85–117 105
Bayer, J., & Osendorfer, C. (2014). Variational inference of latent state sequences
using recurrent networks. ArXiv Preprint arXiv:1406.1655.

Bayer, J., Osendorfer, C., Chen, N., Urban, S., & van der Smagt, P. (2013). On
fast dropout and its applicability to recurrent networks. ArXiv Preprint
arXiv:1311.0701.

Bayer, J., Wierstra, D., Togelius, J., & Schmidhuber, J. (2009). Evolving memory cell
structures for sequence learning. In Proc. ICANN (2) (pp. 755–764).

Bayes, T. (1763). An essay toward solving a problem in the doctrine of
chances. Philosophical Transactions of the Royal Society of London, 53, 370–418.
Communicated by R. Price, in a letter to J. Canton.

Becker, S. (1991). Unsupervised learning procedures for neural networks.
International Journal of Neural Systems, 2(1–2), 17–33.

Becker, S., & Le Cun, Y. (1989). Improving the convergence of back-propagation
learning with second order methods. In D. Touretzky, G. Hinton, & T. Sejnowski
(Eds.), Proc. 1988 connectionist models summer school, 1988 (pp. 29–37). San
Mateo: Morgan Kaufmann.

Behnke, S. (1999). Hebbian learning and competition in the neural abstraction
pyramid. In Proceedings of the international joint conference on neural networks,
vol. 2 (pp. 1356–1361).

Behnke, S. (2001). Learning iterative image reconstruction in the neural abstraction
pyramid. International Journal of Computational Intelligence and Applications,
1(4), 427–438.

Behnke, S. (2002). Learning face localization using hierarchical recurrent networks.
In Proceedings of the 12th international conference on artificial neural networks
(pp. 1319–1324).

Behnke, S. (2003a). Discovering hierarchical speech features using convolutional
non-negative matrix factorization. In Proceedings of the international joint
conference on neural networks, vol. 4 (pp. 2758–2763).

Behnke, S. (2003b). LNCS, Lecture notes in computer science: Vol. 2766. Hierarchical
neural networks for image interpretation. Springer.

Behnke, S. (2005). Face localization and tracking in the neural abstraction pyramid.
Neural Computing and Applications, 14(2), 97–103.

Behnke, S., & Rojas, R. (1998). Neural abstraction pyramid: a hierarchical image
understanding architecture. In Proceedings of international joint conference on
neural networks, vol. 2 (pp. 820–825).

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind
separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.

Bellman, R. (1957). Dynamic programming (1st ed). Princeton, NJ, USA: Princeton
University Press.

Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., & Moulines, E. (1997). A blind
source separation technique using second-order statistics. IEEE Transactions on
Signal Processing , 45(2), 434–444.

Bengio, Y. (1991). Artificial neural networks and their application to sequence
recognition (Ph.D. thesis), Montreal, QC, Canada: McGill University, (Computer
Science).

Bengio, Y. (2009). Foundations and trends in machine learning: Vol. 2(1). Learning
deep architectures for AI . Now Publishers.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: a review and
newperspectives. IEEE Transactions on Pattern Analysis andMachine Intelligence,
35(8), 1798–1828.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise
training of deep networks. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.),
Advances in neural information processing systems, vol. 19 (NIPS) (pp. 153–160).
MIT Press.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2),
157–166.

Beringer, N., Graves, A., Schiel, F., & Schmidhuber, J. (2005). Classifying unprompted
speech by retraining LSTM nets. In W. Duch, J. Kacprzyk, E. Oja, & S. Zadrozny
(Eds.), LNCS: Vol. 3696. Artificial neural networks: biological inspirations—ICANN
2005 (pp. 575–581). Berlin, Heidelberg: Springer-Verlag.

Bertsekas, D. P. (2001).Dynamic programming and optimal control. Athena Scientific.
Bertsekas, D. P., & Tsitsiklis, J. N. (1996).Neuro-dynamic programming. Belmont,MA:

Athena Scientific.
Bichot, N. P., Rossi, A. F., & Desimone, R. (2005). Parallel and serial neural

mechanisms for visual search in macaque area V4. Science, 308, 529–534.
Biegler-König, F., & Bärmann, F. (1993). A learning algorithm for multilayered

neural networks based on linear least squares problems. Neural Networks, 6(1),
127–131.

Bishop, C. M. (1993). Curvature-driven smoothing: A learning algorithm for feed-
forward networks. IEEE Transactions on Neural Networks, 4(5), 882–884.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Blair, A. D., & Pollack, J. B. (1997). Analysis of dynamical recognizers. Neural

Computation, 9(5), 1127–1142.
Blondel, V. D., & Tsitsiklis, J. N. (2000). A survey of computational complexity results

in systems and control. Automatica, 36(9), 1249–1274.
Bluche, T., Louradour, J., Knibbe, M., Moysset, B., Benzeghiba, F., & Kermorvant,

C. (2014). The A2iA Arabic handwritten text recognition system at the
OpenHaRT2013 evaluation. In International workshop on document analysis
systems.

Blum, A. L., & Rivest, R. L. (1992). Training a 3-node neural network is NP-complete.
Neural Networks, 5(1), 117–127.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Occam’s razor.
Information Processing Letters, 24, 377–380.

Bobrowski, L. (1978). Learning processes in multilayer threshold nets. Biological
Cybernetics, 31, 1–6.

Bodén, M., & Wiles, J. (2000). Context-free and context-sensitive dynamics in
recurrent neural networks. Connection Science, 12(3–4), 197–210.
Bodenhausen, U., & Waibel, A. (1991). The Tempo 2 algorithm: adjusting time-
delays by supervised learning. In D. S. Lippman, J. E. Moody, & D. S. Touretzky
(Eds.), Advances in neural information processing systems, vol. 3 (pp. 155–161).
Morgan Kaufmann.

Bohte, S. M., Kok, J. N., & La Poutre, H. (2002). Error-backpropagation in temporally
encoded networks of spiking neurons. Neurocomputing , 48(1), 17–37.

Boltzmann, L. (1909). In F. Hasenöhrl (Ed.),Wissenschaftliche Abhandlungen. Leipzig:
Barth (collection of Boltzmann’s articles in scientific journals).

Bottou, L. (1991). Une approche théorique de l’apprentissage connexioniste; applica-
tions à la reconnaissance de la parole (Ph.D. thesis), Université de Paris XI.

Bourlard, H., & Morgan, N. (1994). Connnectionist speech recognition: a hybrid
approach. Kluwer Academic Publishers.

Boutilier, C., & Poole, D. (1996). Computing optimal policies for partially observable
Markov decision processes using compact representations. In Proceedings of the
AAAI.

Bradtke, S. J., Barto, A. G., & Kaelbling, L. P. (1996). Linear least-squares algorithms
for temporal difference learning.Machine Learning , 22–33.

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX—a general polynomial time
algorithm for near-optimal reinforcement learning. Journal of Machine Learning
Research, 3, 213–231.

Brea, J., Senn, W., & Pfister, J.-P. (2013). Matching recall and storage in sequence
learning with spiking neural networks. The Journal of Neuroscience, 33(23),
9565–9575.

Breiman, L. (1996). Bagging predictors.Machine Learning , 24, 123–140.
Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al.

(2007). Simulation of networks of spiking neurons: a review of tools and
strategies. Journal of Computational Neuroscience, 23(3), 349–398.

Breuel, T. M., Ul-Hasan, A., Al-Azawi, M. A., & Shafait, F. (2013). High-performance
OCR for printed English and Fraktur using LSTM networks. In 12th International
conference on document analysis and recognition (pp. 683–687). IEEE.

Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., et al. (1993).
Signature verification using a Siamese time delay neural network. International
Journal of Pattern Recognition and Artificial Intelligence, 7(4), 669–688.

Broyden, C. G., et al. (1965). A class of methods for solving nonlinear simultaneous
equations.Mathematics of Computation, 19(92), 577–593.

Brueckner, R., & Schulter, B. (2014). Social signal classification using deep BLSTM
recurrent neural networks. In Proceedings 39th IEEE international conference on
acoustics, speech, and signal processing (pp. 4856–4860).

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons. Journal of Computational Neuroscience, 8(3),
183–208.

Bryson, A. E. (1961). A gradient method for optimizing multi-stage allocation
processes. In Proc. Harvard Univ. symposium on digital computers and their
applications.

Bryson Jr., A. E., & Denham, W. F. (1961). A steepest-ascent method for solving
optimum programming problems. Technical report BR-1303. Raytheon Company,
Missle and Space Division.

Bryson, A., & Ho, Y. (1969). Applied optimal control: optimization, estimation, and
control. Blaisdell Pub. Co.

Buhler, J. (2001). Efficient large-scale sequence comparison by locality-sensitive
hashing. Bioinformatics, 17(5), 419–428.

Buntine, W. L., & Weigend, A. S. (1991). Bayesian back-propagation. Complex
Systems, 5, 603–643.

Burgess, N. (1994). A constructive algorithm that converges for real-valued input
patterns. International Journal of Neural Systems, 5(1), 59–66.

Cardoso, J.-F. (1994). On the performance of orthogonal source separation
algorithms. In Proc. EUSIPCO (pp. 776–779).

Carreira-Perpinan, M. A. (2001). Continuous latent variable models for dimensionality
reduction and sequential data reconstruction (Ph.D. thesis), UK: University of
Sheffield.

Carter, M. J., Rudolph, F. J., & Nucci, A. J. (1990). Operational fault tolerance of CMAC
networks. In D. S. Touretzky (Ed.), Advances in neural information processing
systems (NIPS), vol. 2 (pp. 340–347). San Mateo, CA: Morgan Kaufmann.

Caruana, R. (1997). Multitask learning.Machine Learning , 28(1), 41–75.
Casey, M. P. (1996). The dynamics of discrete-time computation, with application

to recurrent neural networks and finite state machine extraction. Neural
Computation, 8(6), 1135–1178.

Cauwenberghs, G. (1993). A fast stochastic error-descent algorithm for supervised
learning and optimization. In D. S. Lippman, J. E. Moody, & D. S. Touretzky
(Eds.), Advances in neural information processing systems, vol. 5 (p. 244). Morgan
Kaufmann.

Chaitin, G. J. (1966). On the length of programs for computing finite binary
sequences. Journal of the ACM , 13, 547–569.

Chalup, S. K., & Blair, A. D. (2003). Incremental training of first order recurrent
neural networks to predict a context-sensitive language. Neural Networks,
16(7), 955–972.

Chellapilla, K., Puri, S., & Simard, P. (2006). High performance convolutional neural
networks for document processing. In International workshop on Frontiers in
handwriting recognition.

Chen, K., & Salman, A. (2011). Learning speaker-specific characteristics with a deep
neural architecture. IEEE Transactions on Neural Networks, 22(11), 1744–1756.

Cho, K. (2014). Foundations and advances in deep learning (Ph.D. thesis), Aalto
University School of Science.

Cho, K., Ilin, A., & Raiko, T. (2012). Tikhonov-type regularization for restricted
Boltzmannmachines. In Intl. conf. on artificial neural networks 2012 (pp. 81–88).
Springer.

Cho, K., Raiko, T., & Ilin, A. (2013). Enhanced gradient for training restricted
Boltzmann machines. Neural Computation, 25(3), 805–831.

http://arxiv.org/1406.1655
http://arxiv.org/1311.0701
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref56
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref57
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref58
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref60
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref63
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref64
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref66
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref67
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref68
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref69
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref70
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref71
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref72
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref73
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref74
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref75
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref76
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref77
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref78
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref79
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref80
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref81
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref82
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref84
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref85
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref86
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref87
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref88
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref89
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref90
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref91
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref92
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref94
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref95
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref96
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref97
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref98
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref99
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref100
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref101
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref103
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref105
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref106
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref107
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref108
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref109
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref111
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref112
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref113
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref114
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref115
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref116
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref117
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref119
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref120
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref121
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref122

106 J. Schmidhuber / Neural Networks 61 (2015) 85–117
Church, A. (1936). An unsolvable problem of elementary number theory. The
American Journal of Mathematics, 58, 345–363.

Ciresan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2012). Deep
neural networks segment neuronalmembranes in electronmicroscopy images.
In Advances in neural information processing systems (NIPS) (pp. 2852–2860).

Ciresan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2013). Mitosis
detection in breast cancer histology images with deep neural networks. In Proc.
MICCAI, vol. 2 (pp. 411–418).

Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2010). Deep
big simple neural nets for handwritten digit recogntion. Neural Computation,
22(12), 3207–3220.

Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., & Schmidhuber, J.
(2011). Flexible, high performance convolutional neural networks for image
classification. In Intl. joint conference on artificial intelligence (pp. 1237–1242).

Ciresan, D. C., Meier, U., Masci, J., & Schmidhuber, J. (2011). A committee of neural
networks for traffic sign classification. In International joint conference on neural
networks (pp. 1918–1921).

Ciresan, D. C., Meier, U., Masci, J., & Schmidhuber, J. (2012). Multi-column deep
neural network for traffic sign classification. Neural Networks, 32, 333–338.

Ciresan, D. C., Meier, U., & Schmidhuber, J. (2012a). Multi-column deep neural
networks for image classification. In IEEE Conference on computer vision and
pattern recognition. Long preprint arXiv:1202.2745v1 [cs.CV].

Ciresan, D. C., Meier, U., & Schmidhuber, J. (2012b). Transfer learning for Latin and
Chinese characters with deep neural networks. In International joint conference
on neural networks (pp. 1301–1306).

Ciresan, D. C., & Schmidhuber, J. (2013). Multi-column deep neural networks
for offline handwritten Chinese character classification. Technical report. IDSIA.
arXiv:1309.0261.

Cliff, D. T., Husbands, P., & Harvey, I. (1993). Evolving recurrent dynamical networks
for robot control. In Artificial neural nets and genetic algorithms (pp. 428–435).
Springer.

Clune, J., Mouret, J.-B., & Lipson, H. (2013). The evolutionary origins of modularity.
Proceedings of the Royal Society B: Biological Sciences, 280(1755), 20122863.

Clune, J., Stanley, K. O., Pennock, R. T., & Ofria, C. (2011). On the performance
of indirect encoding across the continuum of regularity. IEEE Transactions on
Evolutionary Computation, 15(3), 346–367.

Coates, A., Huval, B., Wang, T., Wu, D. J., Ng, A. Y., & Catanzaro, B. (2013). Deep
learning with COTS HPC systems. In Proc. international conference on machine
learning.

Cochocki, A., & Unbehauen, R. (1993). Neural networks for optimization and signal
processing. John Wiley & Sons, Inc.

Collobert, R., & Weston, J. (2008). A unified architecture for natural language
processing: deep neural networks withmultitask learning. In Proceedings of the
25th international conference on machine learning (pp. 160–167). ACM.

Comon, P. (1994). Independent component analysis—a new concept? Signal
Processing , 36(3), 287–314.

Connor, C. E., Brincat, S. L., & Pasupathy, A. (2007). Transformation of shape
information in the ventral pathway. Current Opinion in Neurobiology, 17(2),
140–147.

Connor, J., Martin, D. R., & Atlas, L. E. (1994). Recurrent neural networks and robust
time series prediction. IEEE Transactions on Neural Networks, 5(2), 240–254.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of
the 3rd annual ACM symposium on the theory of computing (pp. 151–158). New
York: ACM.

Cramer, N. L. (1985). A representation for the adaptive generation of simple se-
quential programs. In J. Grefenstette (Ed.), Proceedings of an international con-
ference on genetic algorithms and their applications, Carnegie-Mellon University.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions:
estimating the correct degree of smoothing by themethod of generalized cross-
validation. Numerische Mathematik, 31, 377–403.

Cuccu, G., Luciw, M., Schmidhuber, J., & Gomez, F. (2011). Intrinsically motivated
evolutionary search for vision-based reinforcement learning. In Proceedings of
the 2011 IEEE conference on development and learning and epigenetic robotics
IEEE-ICDL-EPIROB, vol. 2 (pp. 1–7). IEEE.

Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013). Improving deep neural networks for
LVCSR using rectified linear units and dropout. In IEEE International conference
on acoustics, speech and signal processing (pp. 8609–8613). IEEE.

Dahl, G., Yu, D., Deng, L., & Acero, A. (2012). Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition. IEEE Transactions on
Audio, Speech and Language Processing , 20(1), 30–42.

D’Ambrosio, D. B., & Stanley, K. O. (2007). A novel generative encoding for exploiting
neural network sensor and output geometry. In Proceedings of the conference on
genetic and evolutionary computation (pp. 974–981).

Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. (2004). Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the 20th
annual symposium on computational geometry (pp. 253–262). ACM.

Dayan, P., & Hinton, G. (1993). Feudal reinforcement learning. In D. S. Lippman, J.
E. Moody, & D. S. Touretzky (Eds.), Advances in neural information processing
systems (NIPS), vol. 5 (pp. 271–278). Morgan Kaufmann.

Dayan, P., & Hinton, G. E. (1996). Varieties of Helmholtz machine. Neural Networks,
9(8), 1385–1403.

Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995). The Helmholtz machine.
Neural Computation, 7, 889–904.

Dayan, P., & Zemel, R. (1995). Competition and multiple cause models. Neural
Computation, 7, 565–579.

Deco, G., & Parra, L. (1997). Non-linear feature extraction by redundancy reduction
in an unsupervised stochastic neural network.Neural Networks, 10(4), 683–691.
Deco, G., & Rolls, E. T. (2005). Neurodynamics of biased competition and cooper-
ation for attention: a model with spiking neurons. Journal of Neurophysiology,
94(1), 295–313.

De Freitas, J. F. G. (2003). Bayesian methods for neural networks (Ph.D. thesis),
University of Cambridge.

DeJong, G., & Mooney, R. (1986). Explanation-based learning: an alternative view.
Machine Learning , 1(2), 145–176.

DeMers, D., & Cottrell, G. (1993). Non-linear dimensionality reduction. In
S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information
processing systems (NIPS), vol. 5 (pp. 580–587). Morgan Kaufmann.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society B,
39.

Deng, L., & Yu, D. (2014). Deep learning: methods and applications. NOW Publishers.
Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-selective

properties of inferior temporal neurons in the macaque. The Journal of
Neuroscience, 4(8), 2051–2062.

de Souto,M. C., Souto,M. C. P. D., & Oliveira,W. R. D. (1999). The loading problem for
pyramidal neural networks. Electronic Journal on Mathematics of Computation.

De Valois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity
of cells in macaque visual cortex. Vision Research, 22(5), 545–559.

Deville, Y., & Lau, K. K. (1994). Logic program synthesis. Journal of Logic
Programming , 19(20), 321–350.

de Vries, B., & Principe, J. C. (1991). A theory for neural networks with time delays.
In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural
information processing systems (NIPS), vol. 3 (pp. 162–168). Morgan Kaufmann.

DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). Howdoes the brain solve visual object
recognition? Neuron, 73(3), 415–434.

Dickmanns, E. D., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., &
Thomanek, F., et al. (1994). The seeing passenger car ’VaMoRs-P’. In Proc. int.
symp. on intelligent vehicles (pp. 68–73).

Dickmanns, D., Schmidhuber, J., &Winklhofer, A. (1987).Der genetische algorithmus:
eine implementierung in prolog. Technical report. Inst. of Informatics, Tech. Univ.
Munich. http://www.idsia.ch/~juergen/geneticprogramming.html.

Dietterich, T. G. (2000a). Ensemble methods in machine learning. In Multiple
classifier systems (pp. 1–15). Springer.

Dietterich, T. G. (2000b). Hierarchical reinforcement learning with theMAXQ value
function decomposition. Journal of Artificial Intelligence Research (JAIR), 13,
227–303.

Di Lena, P., Nagata, K., & Baldi, P. (2012). Deep architectures for protein contactmap
prediction. Bioinformatics, 28, 2449–2457.

Director, S. W., & Rohrer, R. A. (1969). Automated network design—the frequency-
domain case. IEEE Transactions on Circuit Theory, CT-16, 330–337.

Dittenbach, M., Merkl, D., & Rauber, A. (2000). The growing hierarchical self-
organizing map. In IEEE-INNS-ENNS International joint conference on neural
networks, vol. 6 (p. 6015). IEEE Computer Society.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., & Tzeng, E., et al. (2013). DeCAF:
a deep convolutional activation feature for generic visual recognition. ArXiv
Preprint arXiv:1310.1531.

Dorffner, G. (1996). Neural networks for time series processing. In Neural network
world.

Doya, K., Samejima, K., Ichi Katagiri, K., & Kawato, M. (2002). Multiple model-based
reinforcement learning. Neural Computation, 14(6), 1347–1369.

Dreyfus, S. E. (1962). The numerical solution of variational problems. Journal of
Mathematical Analysis and Applications, 5(1), 30–45.

Dreyfus, S. E. (1973). The computational solution of optimal control problems with
time lag. IEEE Transactions on Automatic Control, 18(4), 383–385.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. The Journal of Machine Learning , 12,
2121–2159.

Egorova, A., Gloye, A., Göktekin, C., Liers, A., Luft, M., & Rojas, R., et al. (2004). FU-
fighters small size 2004, team description. In RoboCup 2004 symposium: papers
and team description papers. CD edition.

Elfwing, S., Otsuka, M., Uchibe, E., & Doya, K. (2010). Free-energy based
reinforcement learning for vision-based navigation with high-dimensional
sensory inputs. InNeural information processing. theory and algorithms (ICONIP),
vol. 1 (pp. 215–222). Springer.

Eliasmith, C. (2013). How to build a brain: a neural architecture for biological
cognition. New York, NY: Oxford University Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al. (2012).
A large-scale model of the functioning brain. Science, 338(6111), 1202–1205.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.
Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., & Bengio, S. (2010).

Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11, 625–660.

Escalante-B, A. N., & Wiskott, L. (2013). How to solve classification and regression
problemsonhigh-dimensional datawith a supervised extension of slow feature
analysis. Journal of Machine Learning Research, 14, 3683–3719.

Eubank, R. L. (1988). Spline smoothing and nonparametric regression. In S. Farlow
(Ed.), Self-organizing methods in modeling . New York: Marcel Dekker.

Euler, L. (1744). Methodus inveniendi.
Eyben, F., Weninger, F., Squartini, S., & Schuller, B. (2013). Real-life voice

activity detection with LSTM recurrent neural networks and an application
to Hollywood movies. In Proc. 38th IEEE international conference on acoustics,
speech, and signal processing (pp. 483–487).

Faggin, F. (1992). Neural network hardware. In International joint conference on
neural networks, vol. 1 (p. 153).

http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref123
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref124
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref126
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref129
http://arxiv.org/1202.2745v1
http://arxiv.org/1309.0261
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref133
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref134
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref135
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref137
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref138
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref139
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref140
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref141
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref142
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref143
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref144
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref145
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref146
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref147
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref149
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref150
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref151
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref152
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref153
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref154
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref155
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref156
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref157
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref158
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref159
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref160
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref161
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref162
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref163
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref164
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref165
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref166
http://www.idsia.ch/~juergen/geneticprogramming.html
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref169
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref170
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref171
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref172
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref173
http://arxiv.org/1310.1531
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref176
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref177
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref178
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref179
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref181
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref182
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref183
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref184
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref185
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref186
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref187

J. Schmidhuber / Neural Networks 61 (2015) 85–117 107
Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation
networks. Technical report CMU-CS-88-162. Carnegie-Mellon Univ..

Fahlman, S. E. (1991). The recurrent cascade-correlation learning algorithm. In
R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural
information processing systems (NIPS), vol. 3 (pp. 190–196). Morgan Kaufmann.

Falconbridge, M. S., Stamps, R. L., & Badcock, D. R. (2006). A simple Hebbian/anti-
Hebbian network learns the sparse, independent components of natural
images. Neural Computation, 18(2), 415–429.

Fan, Y., Qian, Y., Xie, F., & Soong, F. K. (2014). TTS synthesis with bidirectional LSTM
based recurrent neural networks. In Proc. Interspeech.

Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2013). Learning hierarchical features
for scene labeling. IEEE Transactions on Pattern Analysis andMachine Intelligence,
35(8), 1915–1929.

Farlow, S. J. (1984). Self-organizing methods in modeling: GMDH type algorithms,
vol. 54. CRC Press.

Feldkamp, L. A., Prokhorov, D. V., Eagen, C. F., & Yuan, F. (1998). Enhanced multi-
stream Kalman filter training for recurrent networks. In Nonlinear modeling
(pp. 29–53). Springer.

Feldkamp, L. A., Prokhorov, D. V., & Feldkamp, T. M. (2003). Simple and conditioned
adaptive behavior from Kalman filter trained recurrent networks. Neural
Networks, 16(5), 683–689.

Feldkamp, L. A., & Puskorius, G. V. (1998). A signal processing framework based on
dynamic neural networks with application to problems in adaptation, filtering,
and classification. Proceedings of the IEEE, 86(11), 2259–2277.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the
primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.

Fernández, S., Graves, A., & Schmidhuber, J. (2007a). An application of recurrent
neural networks to discriminative keyword spotting. In Proc. ICANN (2)
(pp. 220–229).

Fernandez, S., Graves, A., & Schmidhuber, J. (2007b). Sequence labelling in
structured domains with hierarchical recurrent neural networks. In Proceedings
of the 20th international joint conference on artificial intelligence.

Fernandez, R., Rendel, A., Ramabhadran, B., & Hoory, R. (2014). Prosody contour
prediction with long short-termmemory, bi-directional, deep recurrent neural
networks. In Proc. Interspeech.

Field, D. J. (1987). Relations between the statistics of natural images and the
response properties of cortical cells. Journal of the Optical Society of America,
4, 2379–2394.

Field, D. J. (1994). What is the goal of sensory coding? Neural Computation, 6,
559–601.

Fieres, J., Schemmel, J., & Meier, K. (2008). Realizing biological spiking network
models in a configurable wafer-scale hardware system. In IEEE International
joint conference on neural networks (pp. 969–976).

Fine, S., Singer, Y., & Tishby, N. (1998). The hierarchical hidden Markov model:
analysis and applications.Machine Learning , 32(1), 41–62.

Fischer, A., & Igel, C. (2014). Training restricted Boltzmann machines: an
introduction. Pattern Recognition, 47, 25–39.

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of
nerve membrane. Biophysical Journal, 1(6), 445–466.

Fletcher, R., & Powell, M. J. (1963). A rapidly convergent descent method for
minimization. The Computer Journal, 6(2), 163–168.

Floreano, D., & Mattiussi, C. (2001). Evolution of spiking neural controllers for
autonomous vision-based robots. In Evolutionary robotics. From intelligent
robotics to artificial life (pp. 38–61). Springer.

Fogel, D. B., Fogel, L. J., & Porto, V. (1990). Evolving neural networks. Biological
Cybernetics, 63(6), 487–493.

Fogel, L., Owens, A., & Walsh, M. (1966). Artificial intelligence through simulated
evolution. New York: Wiley.

Földiák, P. (1990). Forming sparse representations by local anti-Hebbian learning.
Biological Cybernetics, 64, 165–170.

Földiák, P., & Young,M. P. (1995). Sparse coding in the primate cortex. InM. A. Arbib
(Ed.), The handbook of brain theory and neural networks (pp. 895–898). The MIT
Press.

Förster, A., Graves, A., & Schmidhuber, J. (2007). RNN-based learning of compact
maps for efficient robot localization. In 15th European symposium on artificial
neural networks (pp. 537–542).

Franzius, M., Sprekeler, H., & Wiskott, L. (2007). Slowness and sparseness lead to
place, head-direction, and spatial-view cells. PLoS Computational Biology, 3(8),
166.

Friedman, J., Hastie, T., & Tibshirani, R. (2001). Springer series in statistics: Vol. 1. The
elements of statistical learning. New York.

Frinken, V., Zamora-Martinez, F., Espana-Boquera, S., Castro-Bleda, M. J., Fischer,
A., & Bunke, H. (2012). Long-short term memory neural networks language
modeling for handwriting recognition. In 2012 21st International conference on
pattern recognition (pp. 701–704). IEEE.

Fritzke, B. (1994). A growing neural gas network learns topologies. In G. Tesauro,
D. S. Touretzky, & T. K. Leen (Eds.), NIPS (pp. 625–632). MIT Press.

Fu, K. S. (1977). Syntactic pattern recognition and applications. Berlin: Springer.
Fukada, T., Schuster, M., & Sagisaka, Y. (1999). Phoneme boundary estimation

using bidirectional recurrent neural networks and its applications. Systems and
Computers in Japan, 30(4), 20–30.

Fukushima, K. (1979). Neural network model for a mechanism of pattern
recognition unaffected by shift in position—Neocognitron. Transactions of the
IECE, J62-A(10), 658–665.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network for a
mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36(4), 193–202.
Fukushima, K. (2011). Increasing robustness against background noise: visual
pattern recognition by a neocognitron. Neural Networks, 24(7), 767–778.

Fukushima, K. (2013a). Artificial vision by multi-layered neural networks:
neocognitron and its advances. Neural Networks, 37, 103–119.

Fukushima, K. (2013b). Training multi-layered neural network neocognitron.
Neural Networks, 40, 18–31.

Gabor, D. (1946). Theory of communication. Part 1: the analysis of information.
Electrical Engineers-Part III: Journal of the Institution of Radio and Communication
Engineering , 93(26), 429–441.

Gallant, S. I. (1988). Connectionist expert systems. Communications of the ACM ,
31(2), 152–169.

Gauss, C. F. (1809). Theoriamotus corporumcoelestium in sectionibus conicis solem
ambientium.

Gauss, C. F. (1821). Theoria combinationis observationum erroribus minimis
obnoxiae (Theory of the combination of observations least subject to error).

Ge, S., Hang, C. C., Lee, T. H., & Zhang, T. (2010). Stable adaptive neural network control.
Springer.

Geiger, J. T., Zhang, Z., Weninger, F., Schuller, B., & Rigoll, G. (2014). Robust speech
recognition using long short-term memory recurrent neural networks for
hybrid acoustic modelling. In Proc. interspeech.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural Computation, 4, 1–58.

Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count.
In Proceedings of the IEEE-INNS-ENNS international joint conference on neural
networks, 2000, vol. 3 (pp. 189–194). IEEE.

Gers, F. A., & Schmidhuber, J. (2001). LSTM recurrent networks learn simple context
free and context sensitive languages. IEEE Transactions on Neural Networks,
12(6), 1333–1340.

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: continual
prediction with LSTM. Neural Computation, 12(10), 2451–2471.

Gers, F. A., Schraudolph, N., & Schmidhuber, J. (2002). Learning precise timing with
LSTM recurrent networks. Journal of Machine Learning Research, 3, 115–143.

Gerstner, W., & Kistler, W. K. (2002). Spiking neuron models. Cambridge University
Press.

Gerstner, W., & van Hemmen, J. L. (1992). Associative memory in a network of
spiking neurons. Network: Computation in Neural Systems, 3(2), 139–164.

Ghavamzadeh, M., &Mahadevan, S. (2003). Hierarchical policy gradient algorithms.
In Proceedings of the twentieth conference on machine learning (pp. 226–233).

Gherrity,M. (1989). A learning algorithm for analog fully recurrent neural networks.
In IEEE/INNS International joint conference on neural networks, San Diego, vol. 1
(pp. 643–644).

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2013). Rich feature hierarchies
for accurate object detection and semantic segmentation. Technical report. UC
Berkeley and ICSI. arxiv.org/abs/1311.2524.

Gisslen, L., Luciw, M., Graziano, V., & Schmidhuber, J. (2011). Sequential constant
size compressor for reinforcement learning. In Proc. fourth conference on
artificial general intelligence (pp. 31–40). Springer.

Giusti, A., Ciresan, D. C., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2013). Fast
image scanning with deepmax-pooling convolutional neural networks. In Proc.
ICIP.

Glackin, B., McGinnity, T. M., Maguire, L. P., Wu, Q., & Belatreche, A. (2005).
A novel approach for the implementation of large scale spiking neural networks
on FPGA hardware. In Computational intelligence and bioinspired systems
(pp. 552–563). Springer.

Glasmachers, T., Schaul, T., Sun, Y., Wierstra, D., & Schmidhuber, J. (2010).
Exponential natural evolution strategies. In Proceedings of the genetic and
evolutionary computation conference (pp. 393–400). ACM.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier networks. In AISTATS,
vol. 15 (pp. 315–323).

Gloye, A., Wiesel, F., Tenchio, O., & Simon,M. (2005). Reinforcing the driving quality
of soccer playing robots by anticipation. IT—Information Technology, 47(5).

Gödel, K. (1931). Über formal unentscheidbare Sätze der PrincipiaMathematica und
verwandter Systeme I.Monatshefte für Mathematik und Physik, 38, 173–198.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine
learning. Reading, MA: Addison-Wesley.

Goldfarb, D. (1970). A family of variable-metric methods derived by variational
means. Mathematics of Computation, 24(109), 23–26.

Golub, G., Heath, H., & Wahba, G. (1979). Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21, 215–224.

Gomez, F. J. (2003). Robust nonlinear control through neuroevolution (Ph.D. thesis),
Department of Computer Sciences, University of Texas at Austin.

Gomez, F. J., & Miikkulainen, R. (2003). Active guidance for a finless rocket using
neuroevolution. In Proc. GECCO 2003.

Gomez, F. J., & Schmidhuber, J. (2005). Co-evolving recurrent neurons learn deep
memory POMDPs. In Proc. of the 2005 conference on genetic and evolutionary
computation. New York, NY, USA: ACM Press.

Gomez, F. J., Schmidhuber, J., & Miikkulainen, R. (2008). Accelerated neural
evolution through cooperatively coevolved synapses. Journal of Machine
Learning Research, 9(May), 937–965.

Gomi, H., & Kawato, M. (1993). Neural network control for a closed-loop system
using feedback-error-learning. Neural Networks, 6(7), 933–946.

Gonzalez-Dominguez, J., Lopez-Moreno, I., Sak, H., Gonzalez-Rodriguez, J., &
Moreno, P. J. (2014). Automatic language identification using long short-term
memory recurrent neural networks. In Proc. Interspeech.

Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., & Shet, V. (2014). Multi-digit
number recognition from street view imagery using deep convolutional neural
networks. ArXiv Preprint arXiv:1312.6082v4.

http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref191
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref192
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref193
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref195
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref196
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref197
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref198
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref199
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref200
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref204
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref205
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref207
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref208
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref209
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref210
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref211
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref212
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref213
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref214
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref215
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref217
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref219
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref220
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref221
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref222
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref223
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref224
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref225
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref226
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref227
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref228
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref229
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref232
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref234
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref235
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref236
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref237
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref238
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref239
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref240
http://arxiv.org/arxiv.org/abs/1311.2524
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref244
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref246
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref247
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref249
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref250
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref251
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref252
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref253
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref254
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref256
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref257
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref258
http://arxiv.org/1312.6082v4

108 J. Schmidhuber / Neural Networks 61 (2015) 85–117
Goodfellow, I. J., Courville, A., & Bengio, Y. (2011). Spike-and-slab sparse coding
for unsupervised feature discovery. In NIPS Workshop on challenges in learning
hierarchical models.

Goodfellow, I. J., Courville, A. C., & Bengio, Y. (2012). Large-scale feature learning
with spike-and-slab sparse coding. In Proceedings of the 29th international
conference on machine learning.

Goodfellow, I., Mirza, M., Da, X., Courville, A., & Bengio, Y. (2014). An empirical
investigation of catastrophic forgetting in gradient-based neural networks. TR.
arXiv:1312.6211v2.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013).
Maxout networks. In International conference on machine learning.

Graves, A. (2011). Practical variational inference for neural networks. In Advances
in neural information processing systems (NIPS) (pp. 2348–2356).

Graves, A., Eck, D., Beringer, N., & Schmidhuber, J. (2003). Isolated digit recognition
with LSTM recurrent networks. In First international workshop on biologically
inspired approaches to advanced information technology.

Graves, A., Fernandez, S., Gomez, F. J., & Schmidhuber, J. (2006). Connectionist
temporal classification: Labelling unsegmented sequence data with recurrent
neural nets. In ICML’06: Proceedings of the 23rd international conference on
machine learning (pp. 369–376).

Graves, A., Fernandez, S., Liwicki, M., Bunke, H., & Schmidhuber, J. (2008). Uncon-
strained on-line handwriting recognition with recurrent neural networks. In
J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information
processing systems (NIPS), vol. 20 (pp. 577–584). Cambridge, MA: MIT Press.

Graves, A., & Jaitly, N. (2014). Towards end-to-end speech recognition with
recurrent neural networks. In Proc. 31st International conference on machine
learning (pp. 1764–1772).

Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J.
(2009). A novel connectionist system for improved unconstrained handwriting
recognition. IEEE Transactions on Pattern Analysis andMachine Intelligence, 31(5).

Graves, A., Mohamed, A.-R., & Hinton, G. E. (2013). Speech recognition with deep
recurrent neural networks. In IEEE International conference on acoustics, speech
and signal processing (pp. 6645–6649). IEEE.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Networks,
18(5–6), 602–610.

Graves, A., & Schmidhuber, J. (2009). Offline handwriting recognition with
multidimensional recurrent neural networks. In Advances in neural information
processing systems (NIPS), vol. 21 (pp. 545–552). Cambridge, MA: MIT Press.

Graziano, M. (2009). The intelligent movement machine: an ethological perspective on
the primate motor system. USA: Oxford University Press.

Griewank, A. (2012). DocumentaMathematica—Extra Volume ISMP, (pp. 389–400).
Grondman, I., Busoniu, L., Lopes, G. A. D., & Babuska, R. (2012). A survey of

actor-critic reinforcement learning: standard and natural policy gradients. IEEE
Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews,
42(6), 1291–1307.

Grossberg, S. (1969). Some networks that can learn, remember, and reproduce
any number of complicated space–time patterns, I. Journal of Mathematics and
Mechanics, 19, 53–91.

Grossberg, S. (1976a). Adaptive pattern classification and universal recoding,
1: parallel development and coding of neural feature detectors. Biological
Cybernetics, 23, 187–202.

Grossberg, S. (1976b). Adaptive pattern classification and universal recoding, 2:
feedback, expectation, olfaction, and illusions. Biological Cybernetics, 23.

Gruau, F.,Whitley, D., & Pyeatt, L. (1996).A comparison between cellular encoding and
direct encoding for genetic neural networks. NeuroCOLT Technical report NC-TR-
96-048, ESPRITWorking Group in Neural and Computational Learning, NeuroCOLT
8556.

Grünwald, P. D., Myung, I. J., & Pitt, M. A. (2005). Advances in minimum description
length: theory and applications. MIT Press.

Grüttner, M., Sehnke, F., Schaul, T., & Schmidhuber, J. (2010). Multi-dimensional
deep memory atari-go players for parameter exploring policy gradients.
In Proceedings of the international conference on artificial neural networks ICANN
(pp. 114–123). Springer.

Guo, X., Singh, S., Lee, H., Lewis, R., & Wang, X. (2014). Deep learning for real-time
Atari game play using offline Monte-Carlo tree search planning. In Advances in
neural information processing systems, vol. 27 (NIPS).

Guyon, I., Vapnik, V., Boser, B., Bottou, L., & Solla, S. A. (1992). Structural risk
minimization for character recognition. In D. S. Lippman, J. E. Moody, &
D. S. Touretzky (Eds.), Advances in neural information processing systems (NIPS),
vol. 4 (pp. 471–479). Morgan Kaufmann.

Hadamard, J. (1908).Mémoire sur le problème d’analyse relatif à l’équilibre des plaques
élastiques encastrées. Mémoires présentés par divers savants à l’Académie des
sciences de l’Institut de France: Éxtrait. Imprimerie nationale.

Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality reduction by learning an
invariant mapping. In Proc. computer vision and pattern recognition conference.
IEEE Press.

Hagras, H., Pounds-Cornish, A., Colley,M., Callaghan, V., & Clarke, G. (2004). Evolving
spiking neural network controllers for autonomous robots. In IEEE International
conference on robotics and automation, vol. 5 (pp. 4620–4626).

Hansen, N., Müller, S. D., & Koumoutsakos, P. (2003). Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary Computation, 11(1), 1–18.

Hansen, N., & Ostermeier, A. (2001). Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9(2), 159–195.

Hanson, S. J. (1990). A stochastic version of the delta rule. Physica D: Nonlinear
Phenomena, 42(1), 265–272.
Hanson, S. J., & Pratt, L. Y. (1989). Comparing biases for minimal network
constructionwith back-propagation. In D. S. Touretzky (Ed.), Advances in neural
information processing systems (NIPS), vol. 1 (pp. 177–185). San Mateo, CA:
Morgan Kaufmann.

Happel, B. L., &Murre, J. M. (1994). Design and evolution ofmodular neural network
architectures. Neural Networks, 7(6), 985–1004.

Hashem, S., & Schmeiser, B. (1992). Improvingmodel accuracy using optimal linear
combinations of trained neural networks. IEEE Transactions on Neural Networks,
6, 792–794.

Hassibi, B., & Stork, D. G. (1993). Second order derivatives for network pruning:
optimal brain surgeon. In D. S. Lippman, J. E. Moody, & D. S. Touretzky (Eds.),
Advances in neural information processing systems, vol. 5 (pp. 164–171). Morgan
Kaufmann.

Hastie, T. J., & Tibshirani, R. J. (1990).Monographs on statisics and applied probability:
Vol. 43. Generalized additive models.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Springer series in statistics. The
elements of statistical learning .

Hawkins, J., & George, D. (2006). Hierarchical temporal memory—concepts, theory,
and terminology. Numenta Inc.

Haykin, S. S. (2001). Kalman filtering and neural networks. Wiley Online Library.
Hebb, D. O. (1949). The organization of behavior. New York: Wiley.
Hecht-Nielsen, R. (1989). Theory of the backpropagation neural network.

In International joint conference on neural networks (pp. 593–605). IEEE.
Heemskerk, J. N. (1995). Overview of neural hardware. InNeurocomputers for brain-

style processing. Design, implementation and application.
Heess, N., Silver, D., & Teh, Y. W. (2012). Actor-critic reinforcement learning with

energy-based policies. In Proc. European workshop on reinforcement learning
(pp. 43–57).

Heidrich-Meisner, V., & Igel, C. (2009). Neuroevolution strategies for episodic
reinforcement learning. Journal of Algorithms, 64(4), 152–168.

Herrero, J., Valencia, A., & Dopazo, J. (2001). A hierarchical unsupervised growing
neural network for clustering gene expression patterns. Bioinformatics, 17(2),
126–136.

Hertz, J., Krogh, A., & Palmer, R. (1991). Introduction to the theory of neural
computation. Redwood City: Addison-Wesley.

Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards, 49,
409–436.

Hihi, S. E., & Bengio, Y. (1996). Hierarchical recurrent neural networks for long-term
dependencies. In D. S. Touretzky,M. C.Mozer, &M. E. Hasselmo (Eds.), Advances
in neural information processing systems, vol. 8 (pp. 493–499). MIT Press.

Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelligence, 40(1),
185–234.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive
divergence. Neural Computation, 14(8), 1771–1800.

Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995). The wake-sleep algorithm
for unsupervised neural networks. Science, 268, 1158–1160.

Hinton, G. E., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., et al. (2012). Deep
neural networks for acoustic modeling in speech recognition: the shared views
of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.

Hinton, G. E., & Ghahramani, Z. (1997). Generative models for discovering sparse
distributed representations. Philosophical Transactions of the Royal Society B,
352, 1177–1190.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7), 1527–1554.

Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786), 504–507.

Hinton, G. E., & Sejnowski, T. E. (1986). Learning and relearning in Boltzmann
machines. In Parallel distributed processing, vol. 1 (pp. 282–317). MIT Press.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature
detectors. Technical report. arXiv:1207.0580.

Hinton, G. E., & van Camp,D. (1993). Keeping neural networks simple. In Proceedings
of the international conference on artificial neural networks, Amsterdam
(pp. 11–18). Springer.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen (Diploma
thesis), Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität
München, Advisor: J. Schmidhuber.

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow
in recurrent nets: the difficulty of learning long-term dependencies. In S. C.
Kremer, & J. F. Kolen (Eds.), A field guide to dynamical recurrent neural networks.
IEEE Press.

Hochreiter, S., & Obermayer, K. (2005). Sequence classification for protein analysis.
In Snowbird workshop, Snowbird: Utah. Computational and Biological Learning
Society.

Hochreiter, S., & Schmidhuber, J. (1996). Bridging long time lags byweight guessing
and Long Short-TermMemory. In F. L. Silva, J. C. Principe, & L. B. Almeida (Eds.),
Frontiers in artificial intelligence and applications: Vol. 37. Spatiotemporal models
in biological and artificial systems (pp. 65–72). Amsterdam, Netherlands: IOS
Press.

Hochreiter, S., & Schmidhuber, J. (1997a). Flat minima. Neural Computation, 9(1),
1–42.

Hochreiter, S., & Schmidhuber, J. (1997b). Long short-term memory. Neural
Computation, 9(8), 1735–1780. Based on TR FKI-207-95, TUM (1995).

Hochreiter, S., & Schmidhuber, J. (1999). Feature extraction through LOCOCODE.
Neural Computation, 11(3), 679–714.

Hochreiter, S., Younger, A. S., & Conwell, P. R. (2001). Learning to learn using
gradient descent. In Lecture notes on comp. sci.: Vol. 2130. Proc. intl. conf. on
artificial neural networks (pp. 87–94). Berlin, Heidelberg: Springer.

http://arxiv.org/1312.6211v2
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref265
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref268
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref270
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref271
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref272
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref273
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref274
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref276
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref277
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref278
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref279
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref280
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref281
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref282
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref283
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref284
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref285
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref286
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref288
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref289
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref290
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref291
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref292
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref293
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref294
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref295
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref296
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref297
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref298
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref299
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref300
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref301
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref303
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref304
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref305
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref306
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref307
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref308
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref309
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref310
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref311
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref312
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref313
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref314
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref315
http://arxiv.org/1207.0580
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref317
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref318
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref319
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref321
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref322
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref323
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref324
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref325

J. Schmidhuber / Neural Networks 61 (2015) 85–117 109
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal
of Physiology, 117(4), 500.

Hoerzer, G. M., Legenstein, R., & Maass, W. (2014). Emergence of complex
computational structures from chaotic neural networks through reward-
modulated Hebbian learning. Cerebral Cortex, 24, 677–690.

Holden, S. B. (1994). On the theory of generalization and self-structuring in
linearly weighted connectionist networks (Ph.D. thesis), Cambridge University,
Engineering Department.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor:
University of Michigan Press.

Honavar, V., & Uhr, L. M. (1988). A network of neuron-like units that learns to
perceive by generation as well as reweighting of its links. In D. Touretzky, G.
E. Hinton, & T. Sejnowski (Eds.), Proc. of the 1988 connectionist models summer
school (pp. 472–484). San Mateo: Morgan Kaufman.

Honavar, V., & Uhr, L. (1993). Generative learning structures and processes for
generalized connectionist networks. Information Sciences, 70(1), 75–108.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of
Sciences, 79, 2554–2558.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5), 359–366.

Hubel, D. H., & Wiesel, T. (1962). Receptive fields, binocular interaction, and
functional architecture in the cat’s visual cortex. Journal of Physiology (London),
160, 106–154.

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of
monkey striate cortex. The Journal of Physiology, 195(1), 215–243.

Huffman, D. A. (1952). A method for construction of minimum-redundancy codes.
Proceedings IRE, 40, 1098–1101.

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast readout of object
identity from macaque inferior temporal cortex. Science, 310(5749), 863–866.

Hutter, M. (2002). The fastest and shortest algorithm for all well-defined problems.
International Journal of Foundations of Computer Science, 13(3), 431–443. (On J.
Schmidhuber’s SNF grant 20-61847).

Hutter, M. (2005). Universal artificial intelligence: sequential decisions based on
algorithmic probability. Berlin: Springer, (On J. Schmidhuber’s SNF grant 20-
61847).

Hyvärinen, A., Hoyer, P., & Oja, E. (1999). Sparse code shrinkage: denoising by
maximum likelihood estimation. In M. Kearns, S. A. Solla, & D. Cohn (Eds.),
Advances in neural information processing systems (NIPS), vol. 12. MIT Press.

Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. John
Wiley & Sons.

ICPR (2012). Contest on Mitosis Detection in Breast Cancer Histological Images
(2012). IPAL laboratory and TRIBVN company and pitie-salpetriere hospital and
CIALAB of Ohio State Univ. http://ipal.cnrs.fr/ICPR2012/.

Igel, C. (2003). Neuroevolution for reinforcement learning using evolution
strategies. In R. Reynolds, H. Abbass, K. C. Tan, B. Mckay, D. Essam, & T. Gedeon
(Eds.), Congress on evolutionary computation, vol. 4 (pp. 2588–2595). IEEE.

Igel, C., & Hüsken, M. (2003). Empirical evaluation of the improved Rprop learning
algorithm. Neurocomputing , 50(C), 105–123.

Ikeda, S., Ochiai, M., & Sawaragi, Y. (1976). Sequential GMDH algorithm and its
application to river flow prediction. IEEE Transactions on Systems, Man and
Cybernetics, (7), 473–479.

Indermuhle, E., Frinken, V., & Bunke, H. (2012). Mode detection in online
handwritten documents using BLSTM neural networks. In Frontiers in
handwriting recognition (ICFHR), 2012 international conference on (pp. 302–307).
IEEE.

Indermuhle, E., Frinken, V., Fischer, A., & Bunke, H. (2011). Keyword spotting
in online handwritten documents containing text and non-text using
BLSTM neural networks. In Document analysis and recognition (ICDAR), 2011
international conference on (pp. 73–77). IEEE.

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-Cummings,
R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron circuits. Frontiers in
Neuroscience, 5(73).

Ivakhnenko, A. G. (1968). The groupmethod of data handling—a rival of themethod
of stochastic approximation. Soviet Automatic Control, 13(3), 43–55.

Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE Transactions
on Systems, Man and Cybernetics, (4), 364–378.

Ivakhnenko, A. G. (1995). The review of problems solvable by algorithms of
the group method of data handling (GMDH). Pattern Recognition and Image
Analysis/Raspoznavaniye Obrazov I Analiz Izobrazhenii, 5, 527–535.

Ivakhnenko, A. G., & Lapa, V. G. (1965). Cybernetic predicting devices. CCM
Information Corporation.

Ivakhnenko, A. G., Lapa, V. G., &McDonough, R. N. (1967). Cybernetics and forecasting
techniques. NY: American Elsevier.

Izhikevich, E. M., et al. (2003). Simple model of spiking neurons. IEEE Transactions
on Neural Networks, 14(6), 1569–1572.

Jaakkola, T., Singh, S. P., & Jordan,M. I. (1995). Reinforcement learning algorithm for
partially observable Markov decision problems. In G. Tesauro, D. S. Touretzky,
& T. K. Leen (Eds.), Advances in neural information processing systems, vol. 7
(pp. 345–352). MIT Press.

Jackel, L., Boser, B., Graf, H.-P., Denker, J., LeCun, Y., & Henderson, D., et al. (1990).
VLSI implementation of electronic neural networks: and example in character
recognition. In IEEE (Ed.), IEEE international conference on systems, man, and
cybernetics (pp. 320–322).

Jacob, C., Lindenmayer, A., & Rozenberg, G. (1994). Genetic L-system programming.
In Lecture notes in computer science. Parallel problem solving from nature III .
Jacobs, R. A. (1988). Increased rates of convergence through learning rate
adaptation. Neural Networks, 1(4), 295–307.

Jaeger, H. (2001). The ‘‘echo state’’ approach to analysing and training recurrent neural
networks. Technical report GMD Report 148. German National Research Center
for Information Technology.

Jaeger, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science, 304, 78–80.

Jain, V., & Seung, S. (2009). Natural image denoising with convolutional networks.
In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural
information processing systems (NIPS), vol. 21 (pp. 769–776). Curran Associates,
Inc.

Jameson, J. (1991). Delayed reinforcement learning with multiple time scale
hierarchical backpropagated adaptive critics. In Neural networks for control.

Ji, S., Xu, W., Yang, M., & Yu, K. (2013). 3D convolutional neural networks for
human action recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(1), 221–231.

Jim, K., Giles, C. L., & Horne, B. G. (1995). Effects of noise on convergence and
generalization in recurrent networks. In G. Tesauro, D. Touretzky, & T. Leen
(Eds.), Advances in neural information processing systems (NIPS), vol. 7 (p. 649).
San Mateo, CA: Morgan Kaufmann.

Jin, X., Lujan, M., Plana, L. A., Davies, S., Temple, S., & Furber, S. B. (2010). Modeling
spiking neural networks on SpiNNaker. Computing in Science and Engineering ,
12(5), 91–97.

Jodogne, S. R., & Piater, J. H. (2007). Closed-loop learning of visual control policies.
Journal of Artificial Intelligence Research, 28, 349–391.

Jones, J. P., & Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter
model of simple receptive fields in cat striate cortex. Journal of Neurophysiology,
58(6), 1233–1258.

Jordan, M. I. (1986). Serial order: a parallel distributed processing approach. Technical
report ICS report 8604. San Diego: Institute for Cognitive Science, University of
California.

Jordan, M. I. (1988). Supervised learning and systems with excess degrees of freedom.
Technical report COINS TR 88-27. Massachusetts Institute of Technology.

Jordan, M. I. (1997). Serial order: a parallel distributed processing approach.
Advances in Psychology, 121, 471–495.

Jordan, M. I., & Rumelhart, D. E. (1990). Supervised learning with a distal teacher.
Technical report Occasional Paper #40. Center for Cog. Sci., Massachusetts
Institute of Technology.

Jordan, M. I., & Sejnowski, T. J. (2001). Graphical models: foundations of neural
computation. MIT Press.

Joseph, R. D. (1961). Contributions to perceptron theory (Ph.D. thesis), Cornell Univ.
Juang, C.-F. (2004). A hybrid of genetic algorithm and particle swarm optimization

for recurrent network design. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 34(2), 997–1006.

Judd, J. S. (1990).Neural network modeling and connectionism.Neural network design
and the complexity of learning . MIT Press.

Jutten, C., & Herault, J. (1991). Blind separation of sources, part I: an adaptive
algorithm based on neuromimetic architecture. Signal Processing , 24(1), 1–10.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1995). Planning and acting in
partially observable stochastic domains. Technical report. Providence RI: Brown
University.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of AI Research, 4, 237–285.

Kak, S., Chen, Y., &Wang, L. (2010). Datamining using surface and deep agents based
on neural networks. In AMCIS 2010 proceedings.

Kalinke, Y., & Lehmann, H. (1998). Computation in recurrent neural networks:
from counters to iterated function systems. In G. Antoniou, & J. Slaney (Eds.),
LNAI: Vol. 1502. Advanced topics in artificial intelligence, Proceedings of the 11th
Australian joint conference on artificial intelligence. Berlin, Heidelberg: Springer.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Journal of Basic Engineering , 82(1), 35–45.

Karhunen, J., & Joutsensalo, J. (1995). Generalizations of principal component
analysis, optimization problems, and neural networks. Neural Networks, 8(4),
549–562.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014).
Large-scale video classification with convolutional neural networks. In IEEE
conference on computer vision and pattern recognition.

Kasabov, N. K. (2014). Neucube: a spiking neural network architecture formapping,
learning and understanding of spatio-temporal brain data. Neural Networks.

Kelley, H. J. (1960). Gradient theory of optimal flight paths. ARS Journal, 30(10),
947–954.

Kempter, R., Gerstner,W., & VanHemmen, J. L. (1999). Hebbian learning and spiking
neurons. Physical Review E, 59(4), 4498.

Kerlirzin, P., & Vallet, F. (1993). Robustness in multilayer perceptrons. Neural
Computation, 5(1), 473–482.

Khan, S. H., Bennamoun, M., Sohel, F., & Togneri, R. (2014). Automatic feature
learning for robust shadow detection. In IEEE conference on computer vision and
pattern recognition.

Khan, M. M., Khan, G. M., & Miller, J. F. (2010). Evolution of neural networks using
Cartesian Genetic Programming. In IEEE congress on evolutionary computation
(pp. 1–8).

Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E., et al.
(2008). SpiNNaker: mapping neural networks onto a massively-parallel
chip multiprocessor. In International joint conference on neural networks
(pp. 2849–2856). IEEE.

Kimura, H., Miyazaki, K., & Kobayashi, S. (1997). Reinforcement learning in POMDPs
with function approximation. In ICML, vol. 97 (pp. 152–160).

http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref326
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref327
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref328
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref329
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref330
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref331
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref332
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref333
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref334
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref335
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref336
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref337
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref338
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref339
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref340
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref341
http://ipal.cnrs.fr/ICPR2012/
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref343
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref344
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref345
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref346
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref347
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref348
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref349
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref350
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref351
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref352
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref353
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref354
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref355
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref357
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref358
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref359
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref360
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref361
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref362
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref363
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref364
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref365
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref366
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref367
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref368
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref369
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref370
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref371
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref372
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref373
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref374
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref375
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref376
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref377
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref378
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref380
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref381
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref382
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref384
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref385
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref386
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref387
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref390

110 J. Schmidhuber / Neural Networks 61 (2015) 85–117
Kistler, W. M., Gerstner, W., & van Hemmen, J. L. (1997). Reduction of the
Hodgkin–Huxley equations to a single-variable threshold model. Neural
Computation, 9(5), 1015–1045.

Kitano, H. (1990). Designing neural networks using genetic algorithms with graph
generation system. Complex Systems, 4, 461–476.

Klampfl, S., & Maass, W. (2013). Emergence of dynamic memory traces in
cortical microcircuit models through STDP. The Journal of Neuroscience, 33(28),
11515–11529.

Klapper-Rybicka, M., Schraudolph, N. N., & Schmidhuber, J. (2001). Unsupervised
learning in LSTM recurrent neural networks. In Lecture Notes on Comp. Sci.:
Vol. 2130. Proc. intl. conf. on artificial neural networks (pp. 684–691). Berlin,
Heidelberg: Springer.

Kobatake, E., & Tanaka, K. (1994). Neuronal selectivities to complex object features
in the ventral visual pathway of the macaque cerebral cortex. Journal of
Neurophysiology, 71, 856–867.

Kohl, N., & Stone, P. (2004). Policy gradient reinforcement learning for fast
quadrupedal locomotion. InRobotics and automation, 2004. Proceedings. ICRA’04.
2004 IEEE international conference on, vol. 3 (pp. 2619–2624). IEEE.

Kohonen, T. (1972). Correlation matrix memories. IEEE Transactions on Computers,
100(4), 353–359.

Kohonen, T. (1982). Self-organized formation of topologically correct featuremaps.
Biological Cybernetics, 43(1), 59–69.

Kohonen, T. (1988). Self-organization and associative memory (2nd ed). Springer.
Koikkalainen, P., & Oja, E. (1990). Self-organizing hierarchical feature maps.

In International joint conference on neural networks (pp. 279–284). IEEE.
Kolmogorov, A. N. (1965a). On the representation of continuous functions of several

variables by superposition of continuous functions of one variable and addition.
Doklady Akademii Nauk SSSR, 114, 679–681.

Kolmogorov, A. N. (1965b). Three approaches to the quantitative definition of
information. Problems of Information Transmission, 1, 1–11.

Kompella, V. R., Luciw, M. D., & Schmidhuber, J. (2012). Incremental slow
feature analysis: Adaptive low-complexity slow feature updating from high-
dimensional input streams. Neural Computation, 24(11), 2994–3024.

Kondo, T. (1998). GMDH neural network algorithm using the heuristic self-
organization method and its application to the pattern identification problem.
In Proceedings of the 37th SICE annual conference (pp. 1143–1148). IEEE.

Kondo, T., & Ueno, J. (2008). Multi-layered GMDH-type neural network self-
selecting optimum neural network architecture and its application to 3-
dimensional medical image recognition of blood vessels. International Journal
of Innovative Computing, Information and Control, 4(1), 175–187.

Kordík, P., Náplava, P., Snorek,M., &Genyk-Berezovskyj,M. (2003).ModifiedGMDH
method and models quality evaluation by visualization. Control Systems and
Computers, 2, 68–75.

Korkin, M., de Garis, H., Gers, F., & Hemmi, H. (1997). CBM (CAM-Brain Machine)—a
hardware tool which evolves a neural net module in a fraction of a second and
runs a million neuron artificial brain in real time.

Kosko, B. (1990). Unsupervised learning in noise. IEEE Transactions on Neural
Networks, 1(1), 44–57.

Koutník, J., Cuccu, G., Schmidhuber, J., & Gomez, F. (2013). Evolving large-scale
neural networks for vision-based reinforcement learning. In Proceedings of the
genetic and evolutionary computation conference (pp. 1061–1068). Amsterdam:
ACM.

Koutník, J., Gomez, F., & Schmidhuber, J. (2010). Evolving neural networks in
compressedweight space. In Proceedings of the 12th annual conference on genetic
and evolutionary computation (pp. 619–626).

Koutník, J., Greff, K., Gomez, F., & Schmidhuber, J. (2014). A clockwork RNN. In
Proceedings of the 31th international conference on machine learning, vol. 32 (pp.
1845–1853). arXiv:1402.3511 [cs.NE].

Koza, J. R. (1992). Genetic programming—on the programming of computers by means
of natural selection. MIT Press.

Kramer, M. (1991). Nonlinear principal component analysis using autoassociative
neural networks. AIChE Journal, 37, 233–243.

Kremer, S. C., & Kolen, J. F. (2001). Field guide to dynamical recurrent networks.Wiley-
IEEE Press.

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., et al. (2008).
Matching categorical object representations in inferior temporal cortex of man
and monkey. Neuron, 60(6), 1126–1141.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems (p. 4).

Krogh, A., & Hertz, J. A. (1992). A simple weight decay can improve generalization.
In D. S. Lippman, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural
information processing systems, vol. 4 (pp. 950–957). Morgan Kaufmann.

Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., et al. (2013).
Deep hierarchies in the primate visual cortex: what can we learn for computer
vision? IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8),
1847–1871.

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 79–86.

Kurzweil, R. (2012). How to create a mind: the secret of human thought revealed.
Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal of

Machine Learning Research, 4, 1107–1149.
Lampinen, J., & Oja, E. (1992). Clustering properties of hierarchical self-organizing

maps. Journal of Mathematical Imaging and Vision, 2(2–3), 261–272.
Lang, K.,Waibel, A., &Hinton, G. E. (1990). A time-delay neural network architecture

for isolated word recognition. Neural Networks, 3, 23–43.
Lange, S., & Riedmiller, M. (2010). Deep auto-encoder neural networks in
reinforcement learning. In Neural networks, The 2010 international joint
conference on (pp. 1–8).

Lapedes, A., & Farber, R. (1986). A self-optimizing, nonsymmetrical neural net for
content addressable memory and pattern recognition. Physica D, 22, 247–259.

Laplace, P. (1774). Mémoire sur la probabilité des causes par les évènements.
Mémoires de l’Academie Royale des Sciences Presentés par Divers Savan, 6,
621–656.

Larraanaga, P., & Lozano, J. A. (2001). Estimation of distribution algorithms: a new tool
for evolutionary computation. Norwell, MA, USA: Kluwer Academic Publishers.

Le, Q. V., Ranzato, M., Monga, R., Devin, M., Corrado, G., & Chen, K., et al. (2012).
Building high-level features using large scale unsupervised learning. In Proc.
ICML’12.

LeCun, Y. (1985). Une procédure d’apprentissage pour réseau à seuil asymétrique.
In Proceedings of cognitiva 85 (pp. 599–604).

LeCun, Y. (1988). A theoretical framework for back-propagation. In D. Touretzky,
G. Hinton, & T. Sejnowski (Eds.), Proceedings of the 1988 connectionist models
summer school (pp. 21–28). CMU, Pittsburgh, Pa: Morgan Kaufmann.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., et al.
(1989). Back-propagation applied to handwritten zip code recognition. Neural
Computation, 1(4), 541–551.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., et al.
(1990). Handwritten digit recognition with a back-propagation network. In D.
S. Touretzky (Ed.), Advances in neural information processing systems, vol. 2
(pp. 396–404). Morgan Kaufmann.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

LeCun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In D. S. Touretzky
(Ed.), Advances in neural information processing systems, vol. 2 (pp. 598–605).
Morgan Kaufmann.

LeCun, Y., Muller, U., Cosatto, E., & Flepp, B. (2006). Off-road obstacle avoidance
through end-to-end learning. In Advances in neural information processing
systems (NIPS 2005).

LeCun, Y., Simard, P., & Pearlmutter, B. (1993). Automatic learning rate maximiza-
tion by on-line estimation of the Hessian’s eigenvectors. In S. Hanson, J. Cowan,
& L. Giles (Eds.), Advances in neural information processing systems, vol. 5 (NIPS
1992). San Mateo, CA: Morgan Kaufmann Publishers.

Lee, L. (1996). Learning of context-free languages: a survey of the literature. Technical
report TR-12-96. Cambridge, Massachusetts: Center for Research in Computing
Technology, Harvard University.

Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2007). Efficient sparse coding
algorithms. In Advances in neural information processing systems (NIPS), vol. 19
(pp. 801–808).

Lee, H., Ekanadham, C., & Ng, A. Y. (2007). Sparse deep belief net model for visual
area V2. In Advances in neural information processing systems (NIPS), vol. 7
(pp. 873–880).

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations.
In Proceedings of the 26th international conference on machine learning (pp.
609–616).

Lee, S., & Kil, R.M. (1991). AGaussian potential function networkwith hierarchically
self-organizing learning. Neural Networks, 4(2), 207–224.

Lee, H., Pham, P. T., Largman, Y., & Ng, A. Y. (2009). Unsupervised feature learning
for audio classification using convolutional deep belief networks. In Proc. NIPS,
vol. 9 (pp. 1096–1104).

Legendre, A. M. (1805). Nouvelles méthodes pour la détermination des orbites des
cometes. F. Didot.

Legenstein, R. A., & Maass, W. (2002). Neural circuits for pattern recognition with
small total wire length. Theoretical Computer Science, 287(1), 239–249.

Legenstein, R., Wilbert, N., & Wiskott, L. (2010). Reinforcement learning on slow
features of high-dimensional input streams. PLoS Computational Biology, 6(8).

Leibniz, G.W. (1676).Memoir using the chain rule (cited in TMME7:2&3p. 321–332,
2010).

Leibniz, G. W. (1684). Nova methodus pro maximis et minimis, itemque
tangentibus, quae nec fractas, nec irrationales quantitatesmoratur, et singulare
pro illis calculi genus. Acta Eruditorum, 467–473.

Lenat, D. B. (1983). Theory formation by heuristic search.Machine Learning , 21.
Lenat, D. B., & Brown, J. S. (1984). Why AM an EURISKO appear to work. Artificial

Intelligence, 23(3), 269–294.
Lennie, P., & Movshon, J. A. (2005). Coding of color and form in the geniculostriate

visual pathway. Journal of the Optical Society of America A, 22(10), 2013–2033.
Levenberg, K. (1944). Amethod for the solution of certain problems in least squares.

Quarterly of Applied Mathematics, 2, 164–168.
Levin, L. A. (1973a). On the notion of a random sequence. Soviet Mathematics

Doklady, 14(5), 1413–1416.
Levin, L. A. (1973b). Universal sequential search problems. Problems of Information

Transmission, 9(3), 265–266.
Levin, A. U., Leen, T. K., & Moody, J. E. (1994). Fast pruning using principal

components. In Advances in neural information processing systems (NIPS), vol.
6 (p. 35). Morgan Kaufmann.

Levin, A. U., & Narendra, K. S. (1995). Control of nonlinear dynamical systems using
neural networks. II. Observability, identification, and control. IEEE Transactions
on Neural Networks, 7(1), 30–42.

Lewicki, M. S., & Olshausen, B. A. (1998). Inferring sparse, overcomplete image
codes using an efficient coding framework. In M. I. Jordan, M. J. Kearns, & S.
A. Solla (Eds.), Advances in neural information processing systems (NIPS), vol. 10
(pp. 815–821).

http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref392
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref393
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref394
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref395
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref396
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref397
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref398
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref399
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref400
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref401
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref402
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref403
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref404
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref405
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref406
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref407
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref409
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref410
http://arxiv.org/1402.3511
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref413
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref414
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref415
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref416
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref417
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref418
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref419
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref420
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref421
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref422
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref423
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref424
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref426
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref427
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref428
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref431
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref432
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref433
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref434
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref435
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref436
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref437
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref438
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref439
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref440
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref442
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref444
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref445
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref446
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref448
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref449
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref450
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref451
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref452
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref453
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref454
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref455
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref456
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref457

J. Schmidhuber / Neural Networks 61 (2015) 85–117 111
L’Hôpital, G. F. A. (1696). Analyse des infiniment petits, pour l’intelligence des lignes
courbes. Paris: L’Imprimerie Royale.

Li, M., & Vitányi, P. M. B. (1997). An introduction to Kolmogorov complexity and its
applications (2nd ed.). Springer.

Li, R., Zhang,W., Suk, H.-I., Wang, L., Li, J., Shen, D., et al. (2014). Deep learning based
imaging data completion for improved brain disease diagnosis. In Proc. MICCAI .
Springer.

Lin, L. (1993). Reinforcement learning for robots using neural networks (Ph.D. thesis),
Pittsburgh: Carnegie Mellon University.

Lin, T., Horne, B., Tino, P., & Giles, C. (1996). Learning long-term dependencies in
NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6),
1329–1338.

Lindenmayer, A. (1968). Mathematical models for cellular interaction in develop-
ment. Journal of Theoretical Biology, 18, 280–315.

Lindstädt, S. (1993). Comparison of two unsupervised neural network models for
redundancy reduction. InM. C.Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman,
& A. S. Weigend (Eds.), Proc. of the 1993 connectionist models summer school
(pp. 308–315). Hillsdale, NJ: Erlbaum Associates.

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors (Master’s thesis),
Univ. Helsinki.

Linnainmaa, S. (1976). Taylor expansion of the accumulated rounding error. BIT
Numerical Mathematics, 16(2), 146–160.

Linsker, R. (1988). Self-organization in a perceptual network. IEEE Computer , 21,
105–117.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995). Learning policies for
partially observable environments: scaling up. In A. Prieditis, & S. Russell
(Eds.), Machine learning: proceedings of the twelfth international conference
(pp. 362–370). San Francisco, CA: Morgan Kaufmann Publishers.

Liu, S.-C., Kramer, J., Indiveri, G., Delbrück, T., Burg, T., Douglas, R., et al.
(2001). Orientation-selective aVLSI spiking neurons. Neural Networks, 14(6–7),
629–643.

Ljung, L. (1998). System identification. Springer.
Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior

temporal cortex of monkeys. Current Biology, 5(5), 552–563.
Loiacono, D., Cardamone, L., & Lanzi, P. L. (2011). Simulated car racing championship

competition softwaremanual. Technical report. Italy: Dipartimento di Elettronica
e Informazione, Politecnico di Milano.

Loiacono, D., Lanzi, P. L., Togelius, J., Onieva, E., Pelta, D. A., & Butz,M. V., et al. (2009).
The 2009 simulated car racing championship.

Lowe, D. (1999). Object recognition from local scale-invariant features. In The
Proceedings of the seventh IEEE international conference on computer vision, vol. 2
(pp. 1150–1157).

Lowe, D. (2004). Distinctive image features from scale-invariant key-points.
International Journal of Computer Vision, 60, 91–110.

Luciw, M., Kompella, V. R., Kazerounian, S., & Schmidhuber, J. (2013). An
intrinsic value system for developing multiple invariant representations with
incremental slowness learning. Frontiers in Neurorobotics, 7(9).

Lusci, A., Pollastri, G., & Baldi, P. (2013). Deep architectures and deep learning in
chemoinformatics: the prediction of aqueous solubility for drug-likemolecules.
Journal of Chemical Information and Modeling , 53(7), 1563–1575.

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models. In International conference on machine learning.

Maass, W. (1996). Lower bounds for the computational power of networks of
spiking neurons. Neural Computation, 8(1), 1–40.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Networks, 10(9), 1659–1671.

Maass, W. (2000). On the computational power of winner-take-all. Neural
Computation, 12, 2519–2535.

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural Computation, 14(11), 2531–2560.

MacKay, D. J. C. (1992). A practical Bayesian framework for backprop networks.
Neural Computation, 4, 448–472.

MacKay, D. J. C., & Miller, K. D. (1990). Analysis of Linsker’s simulation of Hebbian
rules. Neural Computation, 2, 173–187.

Maclin, R., & Shavlik, J. W. (1993). Using knowledge-based neural networks to
improve algorithms: Refining the Chou–Fasman algorithm for protein folding.
Machine Learning , 11(2–3), 195–215.

Maclin, R., & Shavlik, J. W. (1995). Combining the predictions of multiple classifiers:
Using competitive learning to initialize neural networks. In Proc. IJCAI (pp.
524–531).

Madala, H. R., & Ivakhnenko, A. G. (1994). Inductive learning algorithms for complex
systems modeling. Boca Raton: CRC Press.

Madani, O., Hanks, S., & Condon, A. (2003). On the undecidability of probabilistic
planning and related stochastic optimization problems. Artificial Intelligence,
147(1), 5–34.

Maei, H. R., & Sutton, R. S. (2010). GQ(λ): A general gradient algorithm for temporal-
difference prediction learning with eligibility traces. In Proceedings of the third
conference on artificial general intelligence, vol. 1 (pp. 91–96).

Maex, R., &Orban, G. (1996).Model circuit of spiking neurons generating directional
selectivity in simple cells. Journal of Neurophysiology, 75(4), 1515–1545.

Mahadevan, S. (1996). Average reward reinforcement learning: Foundations,
algorithms, and empirical results.Machine Learning , 22, 159.

Malik, J., & Perona, P. (1990). Preattentive texture discrimination with early vision
mechanisms. Journal of the Optical Society of America A, 7(5), 923–932.

Maniezzo, V. (1994). Genetic evolution of the topology and weight distribution of
neural networks. IEEE Transactions on Neural Networks, 5(1), 39–53.
Manolios, P., & Fanelli, R. (1994). First-order recurrent neural networks and
deterministic finite state automata. Neural Computation, 6, 1155–1173.

Marchi, E., Ferroni, G., Eyben, F., Gabrielli, L., Squartini, S., & Schuller, B. (2014).
Multi-resolution linear prediction based features for audio onset detectionwith
bidirectional LSTM neural networks. In Proc. 39th IEEE international conference
on acoustics, speech, and signal processing (pp. 2183–2187).

Markram, H. (2012). The human brain project. Scientific American, 306(6), 50–55.
Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear

parameters. Journal of the Society for Industrial & Applied Mathematics, 11(2),
431–441.

Martens, J. (2010). Deep learning via Hessian-free optimization. In J. Fürnkranz, &
T. Joachims (Eds.), Proceedings of the 27th international conference on machine
learning (pp. 735–742). Haifa, Israel: OmniPress.

Martens, J., & Sutskever, I. (2011). Learning recurrent neural networkswithHessian-
free optimization. In Proceedings of the 28th international conference on machine
learning (pp. 1033–1040).

Martinetz, T. M., Ritter, H. J., & Schulten, K. J. (1990). Three-dimensional neural net
for learning visuomotor coordination of a robot arm. IEEE Transactions onNeural
Networks, 1(1), 131–136.

Masci, J., Giusti, A., Ciresan, D. C., Fricout, G., & Schmidhuber, J. (2013). A fast learning
algorithm for image segmentation with max-pooling convolutional networks.
In International conference on image processing (pp. 2713–2717).

Matsuoka, K. (1992). Noise injection into inputs in back-propagation learning. IEEE
Transactions on Systems, Man and Cybernetics, 22(3), 436–440.

Mayer, H., Gomez, F., Wierstra, D., Nagy, I., Knoll, A., & Schmidhuber, J. (2008). A
system for robotic heart surgery that learns to tie knots using recurrent neural
networks. Advanced Robotics, 22(13–14), 1521–1537.

McCallum, R. A. (1996). Learning to use selective attention and short-termmemory
in sequential tasks. In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, & S. W.
Wilson (Eds.), From animals to animats 4: proceedings of the fourth international
conference on simulation of adaptive behavior (pp. 315–324).MIT Press, Bradford
Books.

McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 7, 115–133.

Melnik, O., Levy, S. D., & Pollack, J. B. (2000). RAAM for infinite context-free
languages. In Proc. IJCNN (5) (pp. 585–590).

Memisevic, R., & Hinton, G. E. (2010). Learning to represent spatial transformations
with factored higher-order Boltzmann machines. Neural Computation, 22(6),
1473–1492.

Menache, I., Mannor, S., & Shimkin, N. (2002). Q -cut—dynamic discovery of sub-
goals in reinforcement learning. In Proc. ECML’02 (pp. 295–306).

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,
F., et al. (2014). A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science, 345(6197), 668–673.

Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., & Goodfellow, I., et al. (2011).
Unsupervised and transfer learning challenge: a deep learning approach. In
JMLR W&CP: proc. unsupervised and transfer learning, vol. 7.

Meuleau, N., Peshkin, L., Kim, K. E., & Kaelbling, L. P. (1999). Learning finite
state controllers for partially observable environments. In 15th international
conference of uncertainty in AI (pp. 427–436).

Miglino, O., Lund, H., & Nolfi, S. (1995). Evolvingmobile robots in simulated and real
environments. Artificial Life, 2(4), 417–434.

Miller, K. D. (1994). Amodel for the development of simple cell receptive fields and
the ordered arrangement of orientation columns through activity-dependent
competition between on- and off-center inputs. Journal of Neuroscience, 14(1),
409–441.

Miller, J. F., & Harding, S. L. (2009). Cartesian genetic programming. In Proceedings of
the 11th annual conference companion on genetic and evolutionary computation
conference: late breaking papers (pp. 3489–3512). ACM.

Miller, J. F., & Thomson, P. (2000). Cartesian genetic programming. In Genetic
programming (pp. 121–132). Springer.

Miller, G., Todd, P., & Hedge, S. (1989). Designing neural networks using genetic
algorithms. In Proceedings of the 3rd international conference on genetic
algorithms (pp. 379–384). Morgan Kauffman.

Miller, W. T., Werbos, P. J., & Sutton, R. S. (1995). Neural networks for control. MIT
Press.

Minai, A. A., & Williams, R. D. (1994). Perturbation response in feedforward
networks. Neural Networks, 7(5), 783–796.

Minsky, M. (1963). Steps toward artificial intelligence. In E. Feigenbaum, & J.
Feldman (Eds.), Computers and thought (pp. 406–450). New York:McGraw-Hill.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.
Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., Etzioni, O., & Gil, Y.

(1989). Explanation-based learning: A problem solving perspective. Artificial
Intelligence, 40(1), 63–118.

Mitchell, T. (1997).Machine learning. McGraw Hill.
Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based

generalization: A unifying view.Machine Learning , 1(1), 47–80.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

et al. (2013). Playing Atari with deep reinforcement learning. Technical report.
Deepmind Technologies, arXiv:1312.5602 [cs.LG].

Mohamed, A., & Hinton, G. E. (2010). Phone recognition using restricted Boltzmann
machines. In IEEE international conference on acoustics, speech and signal
processing (pp. 4354–4357).

Molgedey, L., & Schuster, H. G. (1994). Separation of independent signals using
time-delayed correlations. Physical Review Letters, 72(23), 3634–3637.

Møller, M. F. (1993). Exact calculation of the product of the Hessian matrix of feed-
forward network error functions and a vector in O(N) time. Technical report PB-
432. Denmark: Computer Science Department, Aarhus University.

http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref458
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref459
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref460
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref461
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref462
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref463
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref464
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref465
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref466
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref467
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref468
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref469
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref470
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref471
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref472
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref475
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref476
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref477
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref479
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref480
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref481
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref482
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref483
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref484
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref485
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref487
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref488
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref490
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref491
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref492
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref493
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref494
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref496
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref497
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref498
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref500
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref502
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref503
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref504
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref505
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref507
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref509
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref512
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref513
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref514
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref515
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref516
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref517
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref518
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref519
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref520
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref521
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref522
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref523
http://arxiv.org/1312.5602
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref526
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref527

112 J. Schmidhuber / Neural Networks 61 (2015) 85–117
Montana, D. J., & Davis, L. (1989). Training feedforward neural networks using
genetic algorithms. In Proceedings of the 11th international joint conference on
artificial intelligence—vol. 1 (pp. 762–767). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Montavon, G., Orr, G., & Müller, K. (2012). Lecture Notes in Computer Science Series.
LNCS: Vol. 7700. Neural networks: tricks of the trade. Springer Verlag.

Moody, J. E. (1989). Fast learning in multi-resolution hierarchies. In D. S. Touretzky
(Ed.),Advances in neural information processing systems (NIPS), vol. 1 (pp. 29–39).
Morgan Kaufmann.

Moody, J. E. (1992). The effective number of parameters: An analysis of
generalization and regularization in nonlinear learning systems. In D. S.
Lippman, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural information
processing systems (NIPS), vol. 4 (pp. 847–854). Morgan Kaufmann.

Moody, J. E., & Utans, J. (1994). Architecture selection strategies for neural
networks: Application to corporate bond rating prediction. In A. N. Refenes
(Ed.), Neural networks in the capital markets. John Wiley & Sons.

Moore, A., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning
with less data and less time.Machine Learning , 13, 103–130.

Moore, A., & Atkeson, C. (1995). The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Machine Learning ,
21(3), 199–233.

Moriarty, D. E. (1997). Symbiotic evolution of neural networks in sequential decision
tasks (Ph.D. thesis), Department of Computer Sciences, The University of Texas
at Austin.

Moriarty, D. E., & Miikkulainen, R. (1996). Efficient reinforcement learning through
symbiotic evolution.Machine Learning , 22, 11–32.

Morimoto, J., & Doya, K. (2000). Robust reinforcement learning. In T. K. Leen, T. G.
Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems
(NIPS), vol. 13 (pp. 1061–1067). MIT Press.

Mosteller, F., & Tukey, J. W. (1968). Data analysis, including statistics. In G. Lindzey,
& E. Aronson (Eds.), Handbook of social psychology, vol. 2. Addison-Wesley.

Mozer, M. C. (1989). A focused back-propagation algorithm for temporal sequence
recognition. Complex Systems, 3, 349–381.

Mozer, M. C. (1991). Discovering discrete distributed representationswith iterative
competitive learning. In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.),
Advances in neural information processing systems, vol. 3 (pp. 627–634). Morgan
Kaufmann.

Mozer, M. C. (1992). Induction of multiscale temporal structure. In D. S. Lippman,
J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural information processing
systems (NIPS), vol. 4 (pp. 275–282). Morgan Kaufmann.

Mozer,M. C., & Smolensky, P. (1989). Skeletonization: A technique for trimming the
fat from a network via relevance assessment. In D. S. Touretzky (Ed.), Advances
in neural information processing systems (NIPS), vol. 1 (pp. 107–115). Morgan
Kaufmann.

Muller, U. A., Gunzinger, A., & Guggenbühl, W. (1995). Fast neural net simulation
with aDSP processor array. IEEE Transactions onNeural Networks, 6(1), 203–213.

Munro, P. W. (1987). A dual back-propagation scheme for scalar reinforcement
learning. In Proceedings of the ninth annual conference of the cognitive science
society (pp. 165–176).

Murray, A. F., & Edwards, P. J. (1993). Synaptic weight noise during MLP learning
enhances fault-tolerance, generalisation and learning trajectory. In S. J. Hanson,
J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing systems
(NIPS), vol. 5 (pp. 491–498). San Mateo, CA: Morgan Kaufmann.

Nadal, J.-P., & Parga, N. (1994). Non-linear neurons in the low noise limit: a factorial
code maximises information transfer. Networks, 5, 565–581.

Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line
simulating nerve axon. Proceedings of the IRE, 50(10), 2061–2070.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann
machines. In International conference on machine learning.

Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynamical
systems using neural networks. IEEE Transactions on Neural Networks, 1(1),
4–27.

Narendra, K. S., & Thathatchar, M. A. L. (1974). Learning automata—a survey. IEEE
Transactions on Systems, Man and Cybernetics, 4, 323–334.

Neal, R. M. (1995). Bayesian learning for neural networks (Ph.D. thesis), University of
Toronto.

Neal, R. M. (2006). Classification with Bayesian neural networks. In J. Quinonero-
Candela, B. Magnini, I. Dagan, & F. D’Alche-Buc (Eds.), Lecture notes in computer
science: Vol. 3944.Machine learning challenges. Evaluating predictive uncertainty,
visual object classification, and recognising textual entailment (pp. 28–32).
Springer.

Neal, R. M., & Zhang, J. (2006). High dimensional classificationwith Bayesian neural
networks and Dirichlet diffusion trees. In I. Guyon, S. Gunn, M. Nikravesh, &
L. A. Zadeh (Eds.), Studies in fuzziness and soft computing , Feature extraction:
foundations and applications (pp. 265–295). Springer.

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., & Cauwenberghs, G. (2014). Event-
driven contrastive divergence for spiking neuromorphic systems. Frontiers in
Neuroscience, 7(272).

Neil, D., & Liu, S.-C. (2014). Minitaur, an event-driven FPGA-based spiking network
accelerator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
PP(99), 1–8.

Nessler, B., Pfeiffer, M., Buesing, L., & Maass, W. (2013). Bayesian computation
emerges in generic cortical microcircuits through spike-timing-dependent
plasticity. PLoS Computational Biology, 9(4), e1003037.

Neti, C., Schneider, M. H., & Young, E. D. (1992). Maximally fault tolerant neural
networks. IEEE Transactions on Neural Networks, 3, 14–23.

Neuneier, R., & Zimmermann, H.-G. (1996). How to train neural networks. In G. B.
Orr, & K.-R. Müller (Eds.), Lecture notes in computer science: Vol. 1524. Neural
networks: tricks of the trade (pp. 373–423). Springer.
Newton, I. (1687). Philosophiae naturalis principia mathematica. London: William
Dawson & Sons Ltd.

Nguyen, N., & Widrow, B. (1989). The truck backer-upper: An example of self
learning in neural networks. In Proceedings of the international joint conference
on neural networks (pp. 357–363). IEEE Press.

Nilsson, N. J. (1980). Principles of artificial intelligence. San Francisco, CA, USA:
Morgan Kaufmann.

Nolfi, S., Floreano, D., Miglino, O., &Mondada, F. (1994). How to evolve autonomous
robots: Different approaches in evolutionary robotics. In R. A. Brooks, & P. Maes
(Eds.), Fourth international workshop on the synthesis and simulation of living
systems (artificial life IV) (pp. 190–197). MIT.

Nolfi, S., Parisi, D., & Elman, J. L. (1994). Learning and evolution in neural networks.
Adaptive Behavior , 3(1), 5–28.

Nowak, E., Jurie, F., & Triggs, B. (2006). Sampling strategies for bag-of-features
image classification. In Proc. ECCV 2006 (pp. 490–503). Springer.

Nowlan, S. J., & Hinton, G. E. (1992). Simplifying neural networks by soft weight
sharing. Neural Computation, 4, 173–193.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., & Pfeiffer, M. (2013). Real-time
classification and sensor fusion with a spiking deep belief network. Frontiers
in Neuroscience, 7(178).

Oh, K.-S., & Jung, K. (2004). GPU implementation of neural networks. Pattern
Recognition, 37(6), 1311–1314.

Oja, E. (1989). Neural networks, principal components, and subspaces. International
Journal of Neural Systems, 1(1), 61–68.

Oja, E. (1991). Data compression, feature extraction, and autoassociation in
feedforward neural networks. In T. Kohonen, K. Mäkisara, O. Simula, & J. Kangas
(Eds.), Artificial neural networks, vol. 1 (pp. 737–745). North-Holland: Elsevier
Science Publishers BV.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381(6583),
607–609.

Omlin, C., & Giles, C. L. (1996). Extraction of rules from discrete-time recurrent
neural networks. Neural Networks, 9(1), 41–52.

Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2013). Learning and transferring mid-level
image representations using convolutional neural networks. Technical report hal-
00911179.

O’Reilly, R. C. (1996). Biologically plausible error-driven learning using local activa-
tion differences: The generalized recirculation algorithm. Neural Computation,
8(5), 895–938.

O’Reilly, R. (2003).Making working memory work: A computational model of learning
in the prefrontal cortex and basal ganglia. Technical report ICS-03-03. ICS.

O’Reilly, R. C., Wyatte, D., Herd, S., Mingus, B., & Jilk, D. J. (2013). Recurrent
processing during object recognition. Frontiers in Psychology, 4, 124.

Orr, G., &Müller, K. (1998). Lecture Notes in Computer Science Series. LNCS: Vol. 1524.
Neural networks: tricks of the trade. Springer Verlag.

Ostrovskii, G. M., Volin, Y. M., & Borisov, W. W. (1971). Über die Berechnung von
Ableitungen.Wissenschaftliche Zeitschrift der TechnischenHochschule für Chemie,
13, 382–384.

Otsuka, M. (2010). Goal-oriented representation of the external world: a free-energy-
based approach (Ph.D. thesis), Nara Institute of Science and Technology.

Otsuka, M., Yoshimoto, J., & Doya, K. (2010). Free-energy-based reinforcement
learning in a partially observable environment. In Proc. ESANN.

Otte, S., Krechel, D., Liwicki, M., & Dengel, A. (2012). Local feature based online
mode detection with recurrent neural networks. In Proceedings of the 2012
international conference on Frontiers in handwriting recognition (pp. 533–537).
IEEE Computer Society.

Oudeyer, P.-Y., Baranes, A., & Kaplan, F. (2013). Intrinsically motivated learning
of real world sensorimotor skills with developmental constraints. In G.
Baldassarre, & M. Mirolli (Eds.), Intrinsically motivated learning in natural and
artificial systems. Springer.

Pachitariu, M., & Sahani, M. (2013). Regularization and nonlinearities for neural
language models: when are they needed? arXiv Preprint arXiv:1301.5650.

Palm, G. (1980). On associative memory. Biological Cybernetics, 36.
Palm, G. (1992). On the information storage capacity of local learning rules. Neural

Computation, 4(2), 703–711.
Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. The IEEE Transactions on

Knowledge and Data Engineering , 22(10), 1345–1359.
Parekh, R., Yang, J., & Honavar, V. (2000). Constructive neural network learning

algorithms formulti-category pattern classification. IEEE Transactions on Neural
Networks, 11(2), 436–451.

Parker, D. B. (1985). Learning-logic. Technical report TR-47. Center for Comp.
Research in Economics and Management Sci., MIT.

Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2013). How to construct deep
recurrent neural networks. arXiv Preprint arXiv:1312.6026.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. In ICML’13: JMLR: W&CP, vol. 28.

Pasemann, F., Steinmetz, U., & Dieckman, U. (1999). Evolving structure and function
of neurocontrollers. In P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, &
A. Zalzala (Eds.), Proceedings of the congress on evolutionary computation, vol. 3
(pp. 1973–1978). Mayflower Hotel, Washington, DC, USA: IEEE Press.

Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural
networks. Neural Computation, 1(2), 263–269.

Pearlmutter, B. A. (1994). Fast exact multiplication by the Hessian. Neural
Computation, 6(1), 147–160.

Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural
networks: A survey. IEEE Transactions on Neural Networks, 6(5), 1212–1228.

http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref528
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref529
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref530
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref531
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref532
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref533
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref534
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref535
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref536
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref537
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref538
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref539
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref540
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref541
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref542
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref543
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref545
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref546
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref547
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref549
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref550
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref551
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref552
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref553
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref554
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref555
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref556
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref557
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref558
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref559
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref560
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref561
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref562
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref563
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref564
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref565
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref566
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref567
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref568
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref569
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref570
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref571
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref572
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref573
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref574
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref575
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref576
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref577
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref578
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref580
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref581
http://arxiv.org/1301.5650
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref583
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref584
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref585
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref586
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref587
http://arxiv.org/1312.6026
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref590
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref591
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref592
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref593

J. Schmidhuber / Neural Networks 61 (2015) 85–117 113
Pearlmutter, B. A., &Hinton, G. E. (1986).G-maximization: Anunsupervised learning
procedure for discovering regularities. In Denker, J.S., (Ed.), Neural networks for
computing: American institute of physics conference proceedings 151, vol. 2 (pp.
333–338).

Peng, J., & Williams, R. J. (1996). Incremental multi-step Q-learning. Machine
Learning , 22, 283–290.

Pérez-Ortiz, J. A., Gers, F. A., Eck, D., & Schmidhuber, J. (2003). Kalman filters
improve LSTM network performance in problems unsolvable by traditional
recurrent nets. Neural Networks, (16), 241–250.

Perrett, D., Hietanen, J., Oram, M., Benson, P., & Rolls, E. (1992). Organization and
functions of cells responsive to faces in the temporal cortex [and discussion].
Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences, 335(1273), 23–30.

Perrett, D., Rolls, E., & Caan, W. (1982). Visual neurones responsive to faces in the
monkey temporal cortex. Experimental Brain Research, 47(3), 329–342.

Peters, J. (2010). Policy gradient methods. Scholarpedia, 5(11), 3698.
Peters, J., & Schaal, S. (2008a). Natural actor-critic.Neurocomputing , 71, 1180–1190.
Peters, J., & Schaal, S. (2008b). Reinforcement learning of motor skills with policy

gradients. Neural Networks, 21(4), 682–697.
Pham, V., Kermorvant, C., & Louradour, J. (2013). Dropout improves recurrent neural

networks for handwriting recognition. arXiv Preprint arXiv:1312.4569.
Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural

networks. Physical Review Letters, 19(59), 2229–2232.
Plate, T. A. (1993). Holographic recurrent networks. In S. J. Hanson, J. D. Cowan, &

C. L. Giles (Eds.), Advances in neural information processing systems (NIPS), vol. 5
(pp. 34–41). Morgan Kaufmann.

Plumbley, M. D. (1991). On information theory and unsupervised neural networks.
Dissertation, published as Technical report CUED/F-INFENG/TR.78. Engineering
Department, Cambridge University.

Pollack, J. B. (1988). Implications of recursive distributed representations. In Proc.
NIPS (pp. 527–536).

Pollack, J. B. (1990). Recursive distributed representation. Artificial Intelligence, 46,
77–105.

Pontryagin, L. S., Boltyanskii, V. G., Gamrelidze, R. V., &Mishchenko, E. F. (1961). The
mathematical theory of optimal processes.

Poon, H., & Domingos, P. (2011). Sum–product networks: A new deep architecture.
In IEEE International conference on computer vision workshops (pp. 689–690).
IEEE.

Post, E. L. (1936). Finite combinatory processes-formulation 1. The Journal of
Symbolic Logic , 1(3), 103–105.

Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., & Nielsen, M. (2013). Voxel
classification based on triplanar convolutional neural networks applied to
cartilage segmentation in kneeMRI. In LNCS:Vol. 8150.Medical image computing
and computer assisted intervention (MICCAI) (pp. 246–253). Springer.

Precup, D., Sutton, R. S., & Singh, S. (1998). Multi-time models for temporally
abstract planning. In Advances in neural information processing systems (NIPS)
(pp. 1050–1056). Morgan Kaufmann.

Prokhorov, D. (2010). A convolutional learning system for object classification in
3-D LIDAR data. IEEE Transactions on Neural Networks, 21(5), 858–863.

Prokhorov, D. V., Feldkamp, L. A., & Tyukin, I. Y. (2002). Adaptive behavior with
fixed weights in RNN: an overview. In Proceedings of the IEEE international joint
conference on neural networks (pp. 2018–2023).

Prokhorov, D., Puskorius, G., & Feldkamp, L. (2001). Dynamical neural networks
for control. In J. Kolen, & S. Kremer (Eds.), A field guide to dynamical recurrent
networks (pp. 23–78). IEEE Press.

Prokhorov, D., & Wunsch, D. (1997). Adaptive critic design. IEEE Transactions on
Neural Networks, 8(5), 997–1007.

Puskorius, G. V., & Feldkamp, L. A. (1994). Neurocontrol of nonlinear dynamical
systems with Kalman filter trained recurrent networks. IEEE Transactions on
Neural Networks, 5(2), 279–297.

Raiko, T., Valpola, H., & LeCun, Y. (2012). Deep learning made easier by
linear transformations in perceptrons. In International conference on artificial
intelligence and statistics (pp. 924–932).

Raina, R., Madhavan, A., & Ng, A. (2009). Large-scale deep unsupervised learning
using graphics processors. In Proceedings of the 26th annual International
conference on machine learning (pp. 873–880). ACM.

Ramacher, U., Raab,W., Anlauf, J., Hachmann, U., Beichter, J., Bruels, N., et al. (1993).
Multiprocessor and memory architecture of the neurocomputer SYNAPSE-1.
International Journal of Neural Systems, 4(4), 333–336.

Ranzato, M. A., Huang, F., Boureau, Y., & LeCun, Y. (2007). Unsupervised learning
of invariant feature hierarchies with applications to object recognition. In Proc.
computer vision and pattern recognition conference (pp. 1–8). IEEE Press.

Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2006). Efficient learning of sparse
representations with an energy-based model. In J. Platt, et al. (Eds.), Advances
in neural information processing systems (NIPS 2006). MIT Press.

Rauber, A., Merkl, D., & Dittenbach, M. (2002). The growing hierarchical
self-organizing map: exploratory analysis of high-dimensional data. IEEE
Transactions on Neural Networks, 13(6), 1331–1341.

Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-
shelf: an astounding baseline for recognition. ArXiv Preprint arXiv:1403.6382.

Rechenberg, I. (1971). Evolutionsstrategie—optimierung technischer systeme
nach prinzipien der biologischen evolution (Dissertation), Published 1973
by Fromman-Holzboog.

Redlich, A. N. (1993). Redundancy reduction as a strategy for unsupervised learning.
Neural Computation, 5, 289–304.

Refenes, N. A., Zapranis, A., & Francis, G. (1994). Stock performance modeling
using neural networks: a comparative study with regression models. Neural
Networks, 7(2), 375–388.
Rezende, D. J., & Gerstner, W. (2014). Stochastic variational learning in recurrent
spiking networks. Frontiers in Computational Neuroscience, 8, 38.

Riedmiller, M. (2005). Neural fitted Q iteration—first experiences with a
data efficient neural reinforcement learning method. In Proc. ECML-2005
(pp. 317–328). Berlin, Heidelberg: Springer-Verlag.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster
backpropagation learning: The Rprop algorithm. In Proc. IJCNN (pp. 586–591).
IEEE Press.

Riedmiller, M., Lange, S., & Voigtlaender, A. (2012). Autonomous reinforcement
learning on raw visual input data in a real world application. In International
joint conference on neural networks (pp. 1–8).

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nature Neuroscience, 2(11), 1019–1025.

Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-
encoders: Explicit invariance during feature extraction. In Proceedings of the
28th international conference on machine learning (pp. 833–840).

Ring, M. B. (1991). Incremental development of complex behaviors through
automatic construction of sensory-motor hierarchies. In L. Birnbaum, & G.
Collins (Eds.),Machine learning: proceedings of the eighth international workshop
(pp. 343–347). Morgan Kaufmann.

Ring,M. B. (1993). Learning sequential tasks by incrementally adding higher orders.
In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information
processing systems, vol. 5 (pp. 115–122). Morgan Kaufmann.

Ring, M. B. (1994). Continual learning in reinforcement environments (Ph.D. thesis),
Austin, Texas 78712: University of Texas at Austin.

Ring, M., Schaul, T., & Schmidhuber, J. (2011). The two-dimensional organization of
behavior. In Proceedings of the first joint conference on development learning and
on epigenetic robotics.

Risi, S., & Stanley, K. O. (2012). A unified approach to evolving plasticity and neural
geometry. In International joint conference on neural networks (pp. 1–8). IEEE.

Rissanen, J. (1986). Stochastic complexity and modeling. The Annals of Statistics,
14(3), 1080–1100.

Ritter, H., & Kohonen, T. (1989). Self-organizing semantic maps. Biological
Cybernetics, 61(4), 241–254.

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation net-
work. Technical report CUED/F-INFENG/TR.1. Cambridge University Engineering
Department.

Robinson, T., & Fallside, F. (1989). Dynamic reinforcement driven error propagation
networkswith application to game playing. In Proceedings of the 11th conference
of the cognitive science society (pp. 836–843).

Rodriguez, P., &Wiles, J. (1998). Recurrent neural networks can learn to implement
symbol-sensitive counting. In Advances in neural information processing systems
(NIPS), vol. 10 (pp. 87–93). The MIT Press.

Rodriguez, P., Wiles, J., & Elman, J. (1999). A recurrent neural network that learns
to count. Connection Science, 11(1), 5–40.

Roggen, D., Hofmann, S., Thoma, Y., & Floreano, D. (2003). Hardware spiking neural
network with run-time reconfigurable connectivity in an autonomous robot.
In Proc. NASA/DoD conference on evolvable hardware (pp. 189–198). IEEE.

Rohwer, R. (1989). The ‘moving targets’ training method. In J. Kindermann, & A.
Linden (Eds.), Proceedings of ‘distributed adaptive neural information processing’ .
Oldenbourg.

Rosenblatt, F. (1958). The perceptron: a probabilisticmodel for information storage
and organization in the brain. Psychological Review, 65(6), 386.

Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan.
Roux, L., Racoceanu, D., Lomenie, N., Kulikova, M., Irshad, H., Klossa, J., et al. (2013).

Mitosis detection in breast cancer histological images—an ICPR 2012 contest.
Journal of Pathology Informatics, 4, 8.

Rubner, J., & Schulten, K. (1990). Development of feature detectors by self-
organization: A network model. Biological Cybernetics, 62, 193–199.

Rückstieß, T., Felder, M., & Schmidhuber, J. (2008). State-dependent exploration
for policy gradient methods. In W. Daelemans, et al. (Eds.), LNAI: Vol. 5212.
European conference on machine learning (ECML) and principles and practice of
knowledge discovery in databases 2008, part II (pp. 234–249).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal
representations by error propagation. In D. E. Rumelhart, & J. L. McClelland
(Eds.), Parallel distributed processing, vol. 1 (pp. 318–362). MIT Press.

Rumelhart, D. E., & Zipser, D. (1986). Feature discovery by competitive learning.
In Parallel distributed processing (pp. 151–193). MIT Press.

Rummery, G., & Niranjan, M. (1994). On-line Q-learning using connectionist sytems.
Technical report CUED/F-INFENG-TR 166. UK: Cambridge University.

Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M., & Edwards, D. D. (1995). Artificial
intelligence: a modern approach, vol. 2. Englewood Cliffs: Prentice Hall.

Saito, K., & Nakano, R. (1997). Partial BFGS update and efficient step-length
calculation for three-layer neural networks.Neural Computation, 9(1), 123–141.

Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In Proc. interspeech.

Sak, H., Vinyals, O., Heigold, G., Senior, A., McDermott, E., & Monga, R., et
al. (2014). Sequence discriminative distributed training of long short-term
memory recurrent neural networks. In Proc. Interspeech.

Salakhutdinov, R., & Hinton, G. (2009). Semantic hashing. International Journal of
Approximate Reasoning , 50(7), 969–978.

Sallans, B., & Hinton, G. (2004). Reinforcement learning with factored states and
actions. Journal of Machine Learning Research, 5, 1063–1088.

Sałustowicz, R. P., & Schmidhuber, J. (1997). Probabilistic incremental program
evolution. Evolutionary Computation, 5(2), 123–141.

Samejima, K., Doya, K., & Kawato, M. (2003). Inter-module credit assignment in
modular reinforcement learning. Neural Networks, 16(7), 985–994.

http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref595
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref596
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref597
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref598
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref599
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref600
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref601
http://arxiv.org/1312.4569
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref603
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref604
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref605
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref607
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref608
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref609
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref610
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref611
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref612
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref613
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref615
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref616
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref617
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref619
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref620
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref621
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref622
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref623
http://arxiv.org/1403.6382
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref625
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref626
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref627
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref628
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref629
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref630
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref632
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref634
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref635
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref636
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref638
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref639
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref640
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref641
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref643
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref644
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref645
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref646
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref647
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref648
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref649
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref650
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref651
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref652
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref653
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref654
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref655
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref656
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref659
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref660
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref661
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref662

114 J. Schmidhuber / Neural Networks 61 (2015) 85–117
Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development , 3, 210–229.

Sanger, T. D. (1989). An optimality principle for unsupervised learning. In D. S.
Touretzky (Ed.), Advances in neural information processing systems (NIPS), vol.
1 (pp. 11–19). Morgan Kaufmann.

Santamaría, J. C., Sutton, R. S., & Ram, A. (1997). Experiments with reinforcement
learning in problems with continuous state and action spaces. Adaptive
Behavior , 6(2), 163–217.

Saravanan, N., & Fogel, D. B. (1995). Evolving neural control systems. IEEE Expert ,
23–27.

Saund, E. (1994). Unsupervised learning of mixtures of multiple causes in binary
data. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural
information processing systems (NIPS), vol. 6 (pp. 27–34). Morgan Kaufmann.

Schaback, R., & Werner, H. (1992). Numerische mathematik, vol. 4. Springer.
Schäfer, A. M., Udluft, S., & Zimmermann, H.-G. (2006). Learning long term

dependencies with recurrent neural networks. In S. D. Kollias, A. Stafylopatis,
W. Duch, & E. Oja (Eds.), Lecture notes in computer science: Vol. 4131. ICANN (1)
(pp. 71–80). Springer.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning , 5,
197–227.

Schaul, T., & Schmidhuber, J. (2010). Metalearning. Scholarpedia, 6(5), 4650.
Schaul, T., Zhang, S., & LeCun, Y. (2013). No more pesky learning rates. In Proc. 30th

International conference on machine learning.
Schemmel, J., Grubl, A., Meier, K., & Mueller, E. (2006). Implementing synaptic

plasticity in a VLSI spiking neural network model. In International joint
conference on neural networks (pp. 1–6). IEEE.

Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations
in convolutional architectures for object recognition. In Proc. International
conference on artificial neural networks (pp. 92–101).

Schmidhuber, J. (1987). Evolutionary principles in self-referential learning, or on
learning how to learn: the meta-meta-... hook (Diploma thesis), Inst. f. Inf., Tech.
Univ. Munich, http://www.idsia.ch/~juergen/diploma.html.

Schmidhuber, J. (1989a). Accelerated learning in back-propagation nets. In R.
Pfeifer, Z. Schreter, Z. Fogelman, & L. Steels (Eds.), Connectionism in perspective
(pp. 429–438). Amsterdam: Elsevier, North-Holland.

Schmidhuber, J. (1989b). A local learning algorithm for dynamic feedforward and
recurrent networks. Connection Science, 1(4), 403–412.

Schmidhuber, J. (1990a). Dynamische neuronale Netze und das fundamentale
raumzeitliche Lernproblem. (Dynamic neural nets and the fundamental spatio-
temporal credit assignment problem.) (Dissertation), Inst. f. Inf., Tech. Univ.
Munich.

Schmidhuber, J. (1990b). Learning algorithms for networks with internal and
external feedback. In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, & G. E. Hinton
(Eds.), Proc. of the 1990 connectionist models summer school (pp. 52–61). Morgan
Kaufmann.

Schmidhuber, J. (1990c). The neural heat exchanger. Talks at TU Munich (1990),
University of Colorado at Boulder (1992), and Z. Li’s NIPS*94 workshop
on unsupervised learning. Also published at the Intl. conference on neural
information processing, vol. 1 (pp. 194–197), 1996.

Schmidhuber, J. (1990d). An on-line algorithm for dynamic reinforcement learning
and planning in reactive environments. In Proc. IEEE/INNS international joint
conference on neural networks, vol. 2 (pp. 253–258).

Schmidhuber, J. (1991a). Curious model-building control systems. In Proceedings of
the international joint conference on neural networks, vol. 2 (pp. 1458–1463). IEEE
Press.

Schmidhuber, J. (1991b). Learning to generate sub-goals for action sequences. In T.
Kohonen, K. Mäkisara, O. Simula, & J. Kangas (Eds.), Artificial neural networks
(pp. 967–972). North-Holland: Elsevier Science Publishers BV.

Schmidhuber, J. (1991c). Reinforcement learning inMarkovian and non-Markovian
environments. In D. S. Lippman, J. E. Moody, & D. S. Touretzky (Eds.), Advances
in neural information processing systems, vol. 3 (NIPS 3) (pp. 500–506). Morgan
Kaufmann.

Schmidhuber, J. (1992a). A fixed size storage O(n3) time complexity learning al-
gorithm for fully recurrent continually running networks. Neural Computation,
4(2), 243–248.

Schmidhuber, J. (1992b). Learning complex, extended sequences using the principle
of history compression. Neural Computation, 4(2), 234–242. Based on TR FKI-
148-91, TUM, 1991.

Schmidhuber, J. (1992c). Learning factorial codes by predictability minimization.
Neural Computation, 4(6), 863–879.

Schmidhuber, J. (1993a). An introspective network that can learn to run its own
weight change algorithm. In Proc. of the intl. conf. on artificial neural networks,
Brighton (pp. 191–195). IEE.

Schmidhuber, J. (1993b). Netzwerkarchitekturen, Zielfunktionen und Kettenregel.
(Network architectures, objective functions, and chain rule.) (Habilitation thesis),
Inst. f. Inf., Tech. Univ. Munich.

Schmidhuber, J. (1997). Discovering neural nets with low Kolmogorov complexity
and high generalization capability. Neural Networks, 10(5), 857–873.

Schmidhuber, J. (2002). The speed prior: a new simplicity measure yielding near-
optimal computable predictions. In J. Kivinen, & R. H. Sloan (Eds.), Lecture
notes in artificial intelligence, Proceedings of the 15th annual conference on
computational learning theory (pp. 216–228). Sydney, Australia: Springer.

Schmidhuber, J. (2004). Optimal ordered problem solver. Machine Learning , 54,
211–254.

Schmidhuber, J. (2006a). Developmental robotics, optimal artificial curiosity,
creativity, music, and the fine arts. Connection Science, 18(2), 173–187.
Schmidhuber, J. (2006b). Gödel machines: Fully self-referential optimal universal
self-improvers. In B. Goertzel, & C. Pennachin (Eds.), Artificial general intelligence
(pp. 199–226). Springer Verlag. Variant available as arXiv:cs.LO/0309048.

Schmidhuber, J. (2007). Prototype resilient, self-modeling robots. Science,
316(5825), 688.

Schmidhuber, J. (2012). Self-delimiting neural networks. Technical report IDSIA-08-12.
The Swiss AI Lab IDSIA, arXiv:1210.0118v1 [cs.NE].

Schmidhuber, J. (2013a). My first deep learning system of 1991 + deep learning
timeline 1962–2013. Technical report. The Swiss AI Lab IDSIA, arXiv:1312.5548v1
[cs.NE].

Schmidhuber, J. (2013b). PowerPlay: training an increasingly general problem
solver by continually searching for the simplest still unsolvable problem.
Frontiers in Psychology.

Schmidhuber, J., Ciresan, D., Meier, U., Masci, J., & Graves, A. (2011). On fast deep
nets for AGI vision. In Proc. fourth conference on artificial general intelligence (pp.
243–246).

Schmidhuber, J., Eldracher, M., & Foltin, B. (1996). Semilinear predictability
minimization produces well-known feature detectors. Neural Computation,
8(4), 773–786.

Schmidhuber, J., & Huber, R. (1991). Learning to generate artificial fovea trajectories
for target detection. International Journal of Neural Systems, 2(1 and 2), 135–141.

Schmidhuber, J., Mozer, M. C., & Prelinger, D. (1993). Continuous history
compression. In H. Hüning, S. Neuhauser, M. Raus, & W. Ritschel (Eds.), Proc.
of intl. workshop on neural networks (pp. 87–95). Augustinus: RWTH Aachen.

Schmidhuber, J., & Prelinger, D. (1992). Discovering predictable classifications.
Technical report CU-CS-626-92. Dept. of Comp. Sci., University of Colorado at
Boulder. Published in Neural Computation 5 (4) (1993) 625–635.

Schmidhuber, J., &Wahnsiedler, R. (1992). Planning simple trajectories using neural
subgoal generators. In J. A.Meyer, H. L. Roitblat, & S.W.Wilson (Eds.), Proc. of the
2nd international conference on simulation of adaptive behavior (pp. 196–202).
MIT Press.

Schmidhuber, J., Wierstra, D., Gagliolo, M., & Gomez, F. J. (2007). Training recurrent
networks by Evolino. Neural Computation, 19(3), 757–779.

Schmidhuber, J., Zhao, J., & Schraudolph, N. (1997). Reinforcement learning
with self-modifying policies. In S. Thrun, & L. Pratt (Eds.), Learning to learn
(pp. 293–309). Kluwer.

Schmidhuber, J., Zhao, J., &Wiering, M. (1997). Shifting inductive bias with success-
story algorithm, adaptive Levin search, and incremental self-improvement.
Machine Learning , 28, 105–130.

Schölkopf, B., Burges, C. J. C., & Smola, A. J. (Eds.) (1998).Advances in kernelmethods—
support vector learning . Cambridge, MA: MIT Press.

Schraudolph, N. N. (2002). Fast curvature matrix–vector products for second-order
gradient descent. Neural Computation, 14(7), 1723–1738.

Schraudolph, N., & Sejnowski, T. J. (1993). Unsupervised discrimination of clustered
data via optimization of binary information gain. In S. J. Hanson, J. D. Cowan,
& C. L. Giles (Eds.), Advances in neural information processing systems, vol. 5
(pp. 499–506). San Mateo: Morgan Kaufmann.

Schraudolph, N. N., & Sejnowski, T. J. (1996). Tempering backpropagation networks:
not all weights are created equal. In D. S. Touretzky, M. C. Mozer, & M. E.
Hasselmo (Eds.), Advances in neural information processing systems (NIPS), vol.
8 (pp. 563–569). Cambridge, MA: The MIT Press.

Schrauwen, B., Verstraeten, D., & Van Campenhout, J. (2007). An overview of
reservoir computing: theory, applications and implementations. In Proceedings
of the 15th European symposium on artificial neural networks (pp. 471–482).

Schuster, H. G. (1992). Learning by maximization the information transfer through
nonlinear noisy neurons and ‘‘noise breakdown’’. Physical Review A, 46(4),
2131–2138.

Schuster, M. (1999). On supervised learning from sequential data with applications
for speech recognition (Ph.D. thesis), Kyoto, Japan: Nara Institute of Science and
Technolog.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing , 45, 2673–2681.

Schwartz, A. (1993). A reinforcement learning method for maximizing undis-
counted rewards. In Proc. ICML (pp. 298–305).

Schwefel, H. P. (1974). Numerische optimierung von computer-modellen (Disserta-
tion), Published 1977 by Birkhäuser, Basel.

Segmentation of Neuronal Structures in EM Stacks Challenge, (2012). IEEE
International symposium on biomedical imaging. http://tinyurl.com/d2fgh7g.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., & Schmidhuber, J.
(2010). Parameter-exploring policy gradients.Neural Networks, 23(4), 551–559.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). Over-
Feat: integrated recognition, localization anddetection using convolutional net-
works. ArXiv Preprint arXiv:1312.6229.

Sermanet, P., & LeCun, Y. (2011). Traffic sign recognition with multi-scale
convolutional networks. In Proceedings of international joint conference on neural
networks (pp. 2809–2813).

Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco,
A., Paz-Vicente, R., Gómez-Rodríguez, F., et al. (2009). Caviar: A
45 k neuron, 5 m synapse, 12 g connects/s AER hardware sen-
sory–processing–learning–actuating system for high-speed visual object
recognition and tracking. IEEE Transactions on Neural Networks, 20(9),
1417–1438.

Serre, T., Riesenhuber, M., Louie, J., & Poggio, T. (2002). On the role of object-specific
features for real world object recognition in biological vision. In Biologically
motivated computer vision (pp. 387–397).

Seung, H. S. (2003). Learning in spiking neural networks by reinforcement of
stochastic synaptic transmission. Neuron, 40(6), 1063–1073.

http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref663
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref664
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref665
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref666
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref667
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref668
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref669
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref670
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref671
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref673
http://www.idsia.ch/~juergen/diploma.html
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref676
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref677
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref678
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref679
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref682
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref683
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref684
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref685
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref686
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref687
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref688
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref689
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref690
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref691
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref692
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref693
http://arxiv.org/cs.LO/0309048
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref695
http://arxiv.org/1210.0118v1
http://arxiv.org/1312.5548v1
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref698
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref700
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref701
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref702
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref703
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref704
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref705
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref706
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref707
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref708
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref709
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref710
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref711
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref713
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref714
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref715
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref717
http://tinyurl.com/d2fgh7g
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref719
http://arxiv.org/1312.6229
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref722
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref723
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref724

J. Schmidhuber / Neural Networks 61 (2015) 85–117 115
Shan, H., & Cottrell, G. (2014). Efficient visual coding: From retina to V2.
In Proc. international conference on learning representations. ArXiv Preprint
arXiv:1312.6077.

Shan, H., Zhang, L., & Cottrell, G. W. (2007). Recursive ICA. In Advances in neural
information processing systems (NIPS), vol. 19 (p. 1273).

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function
minimization.Mathematics of Computation, 24(111), 647–656.

Shannon, C. E. (1948). Amathematical theory of communication (parts I and II). Bell
System Technical Journal, XXVII , 379–423.

Shao, L., Wu, D., & Li, X. (2014). Learning deep and wide: A spectral method for
learning deep networks. IEEE Transactions on Neural Networks and Learning
Systems.

Shavlik, J. W. (1994). Combining symbolic and neural learning. Machine Learning ,
14(3), 321–331.

Shavlik, J. W., & Towell, G. G. (1989). Combining explanation-based and neural
learning: An algorithm and empirical results. Connection Science, 1(3), 233–255.

Siegelmann, H. (1992). Theoretical foundations of recurrent neural networks (Ph.D.
thesis), New Brunswick Rutgers, The State of New Jersey: Rutgers.

Siegelmann, H. T., & Sontag, E. D. (1991). Turing computability with neural nets.
Applied Mathematics Letters, 4(6), 77–80.

Silva, F. M., & Almeida, L. B. (1990). Speeding up back-propagation. In R. Eckmiller
(Ed.), Advanced neural computers (pp. 151–158). Amsterdam: Elsevier.

Síma, J. (1994). Loading deep networks is hard. Neural Computation, 6(5), 842–850.
Síma, J. (2002). Training a single sigmoidal neuron is hard. Neural Computation,

14(11), 2709–2728.
Simard, P., Steinkraus, D., & Platt, J. (2003). Best practices for convolutional

neural networks applied to visual document analysis. In Seventh international
conference on document analysis and recognition (pp. 958–963).

Sims, K. (1994). Evolving virtual creatures. In A. Glassner (Ed.), ACM SIGGRAPH ,
Proceedings of SIGGRAPH ’94, computer graphics proceedings, annual conference
(pp. 15–22). ACM Press, ISBN: 0-89791-667-0.

Simsek, Ö., & Barto, A. G. (2008). Skill characterization based on betweenness. In
NIPS’08 (pp. 1497–1504).

Singh, S. P. (1994). Reinforcement learning algorithms for average-payoff Marko-
vian decision processes. In National conference on artificial intelligence (pp.
700–705).

Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrinsicallymotivated reinforcement
learning. In Advances in neural information processing systems, vol. 17 (NIPS).
Cambridge, MA: MIT Press.

Smith, S. F. (1980). A learning system based on genetic adaptive algorithms (Ph.D.
thesis), Univ. Pittsburgh.

Smolensky, P. (1986). Parallel distributed processing: Explorations in the mi-
crostructure of cognition. In Information processing in dynamical systems: foun-
dations of harmony theory, vol. 1 (pp. 194–281). Cambridge, MA, USA:MIT Press,
(Chapter).

Solla, S. A. (1988). Accelerated learning in layered neural networks. Complex
Systems, 2, 625–640.

Solomonoff, R. J. (1964). A formal theory of inductive inference. Part I. Information
and Control, 7, 1–22.

Solomonoff, R. J. (1978). Complexity-based induction systems. IEEE Transactions on
Information Theory, IT-24(5), 422–432.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and
explanations. Communications of the ACM , 29(9), 850–858.

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9),
919–926.

Speelpenning, B. (1980). Compiling fast partial derivatives of functions given
by algorithms (Ph.D. thesis), Urbana-Champaign: Department of Computer
Science, University of Illinois.

Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F., & Schmidhuber, J. (2013).
Compete to compute. InAdvances in neural information processing systems (NIPS)
(pp. 2310–2318).

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2011). The German traffic sign
recognition benchmark: A multi-class classification competition. In Interna-
tional joint conference on neural networks (pp. 1453–1460). IEEE Press.

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012). Man vs. computer:
benchmarking machine learning algorithms for traffic sign recognition. Neural
Networks, 32, 323–332.

Stanley, K. O., D’Ambrosio, D. B., & Gauci, J. (2009). A hypercube-based encoding for
evolving large-scale neural networks. Artificial Life, 15(2), 185–212.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10, 99–127.

Steijvers, M., & Grunwald, P. (1996). A recurrent network that performs a
contextsensitive prediction task. In Proceedings of the 18th annual conference
of the cognitive science society. Erlbaum.

Steil, J. J. (2007). Online reservoir adaptation by intrinsic plasticity for backpropa-
gation–decorrelation and echo state learning. Neural Networks, 20(3), 353–364.

Stemmler, M. (1996). A single spike suffices: the simplest form of stochastic
resonance in model neurons. Network: Computation in Neural Systems, 7(4),
687–716.

Stoianov, I., & Zorzi, M. (2012). Emergence of a ‘visual number sense’ in hierarchical
generative models. Nature Neuroscience, 15(2), 194–196.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society B, 36, 111–147.

Stoop, R., Schindler, K., & Bunimovich, L. (2000). When pyramidal neurons
lock, when they respond chaotically, and when they like to synchronize.
Neuroscience Research, 36(1), 81–91.
Stratonovich, R. (1960). Conditional Markov processes. Theory of Probability and Its
Applications, 5(2), 156–178.

Sun, G., Chen, H., & Lee, Y. (1993). Time warping invariant neural networks. In S. J.
Hanson, J. D. Cowan, &C. L. Giles (Eds.),Advances in neural information processing
systems (NIPS), vol. 5 (pp. 180–187). Morgan Kaufmann.

Sun, G. Z., Giles, C. L., Chen, H. H., & Lee, Y. C. (1993). The neural network pushdown
automaton: Model, stack and learning simulations. Technical report CS-TR-3118.
University of Maryland, College Park.

Sun, Y., Gomez, F., Schaul, T., & Schmidhuber, J. (2013). A linear time natural
evolution strategy for non-separable functions. In Proceedings of the genetic and
evolutionary computation conference (p. 61). Amsterdam, NL: ACM.

Sun, Y., Wierstra, D., Schaul, T., & Schmidhuber, J. (2009). Efficient natural evolution
strategies. In Proc. 11th genetic and evolutionary computation conference (pp.
539–546).

Sutskever, I., Hinton, G. E., & Taylor, G. W. (2008). The recurrent temporal restricted
Boltzmann machine. In NIPS, vol. 21 (p. 2008).

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural
networks. Technical report. arXiv:1409.3215 [cs.CL] Google. NIPS’2014.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press.

Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (1999). Policy gradient
methods for reinforcement learning with function approximation. In Advances
in neural information processing systems (NIPS), vol. 12 (pp. 1057–1063).

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112(1–2), 181–211.

Sutton, R. S., Szepesvári, C., & Maei, H. R. (2008). A convergent O(n) algorithm
for off-policy temporal-difference learningwith linear function approximation.
In Advances in neural information processing systems (NIPS’08), vol. 21
(pp. 1609–1616).

Szabó, Z., Póczos, B., & Lőrincz, A. (2006). Cross-entropy optimization for
independent process analysis. In Independent component analysis and blind
signal separation (pp. 909–916). Springer.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2014). Going
deeper with convolutions. Technical report. arXiv:1409.4842 [cs.CV], Google.

Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object
detection (pp. 2553–2561).

Taylor, G. W., Spiro, I., Bregler, C., & Fergus, R. (2011). Learning invariance
through imitation. In Conference on computer vision and pattern recognition
(pp. 2729–2736). IEEE.

Tegge, A. N., Wang, Z., Eickholt, J., & Cheng, J. (2009). NNcon: improved protein
contact map prediction using 2D-recursive neural networks. Nucleic Acids
Research, 37(Suppl 2), W515–W518.

Teichmann, M., Wiltschut, J., & Hamker, F. (2012). Learning invariance from
natural images inspired by observations in the primary visual cortex. Neural
Computation, 24(5), 1271–1296.

Teller, A. (1994). The evolution of mental models. In E. Kenneth, & J. Kinnear (Eds.),
Advances in genetic programming (pp. 199–219). MIT Press.

Tenenberg, J., Karlsson, J., &Whitehead, S. (1993). Learning via task decomposition.
In J. A. Meyer, H. Roitblat, & S. Wilson (Eds.), From animals to animats 2:
proceedings of the second international conference on simulation of adaptive
behavior (pp. 337–343). MIT Press.

Tesauro, G. (1994). TD-gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation, 6(2), 215–219.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5—RmsProp: Divide the gradient by
a running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning .

Tikhonov, A. N., Arsenin, V. I., & John, F. (1977). Solutions of ill-posed problems.
Winston.

Ting, K. M., & Witten, I. H. (1997). Stacked generalization: when does it work? In
Proc. international joint conference on artificial intelligence.

Tiňo, P., & Hammer, B. (2004). Architectural bias in recurrent neural networks:
Fractal analysis. Neural Computation, 15(8), 1931–1957.

Tonkes, B., & Wiles, J. (1997). Learning a context-free task with a recurrent neural
network: An analysis of stability. In Proceedings of the fourth Biennial conference
of the Australasian cognitive science society.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based artificial neural networks.
Artificial Intelligence, 70(1), 119–165.

Tsitsiklis, J. N., & van Roy, B. (1996). Feature-basedmethods for large scale dynamic
programming. Machine Learning , 22(1–3), 59–94.

Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic
synapses. Neural Computation, 10(4), 821–835.

Tsodyks,M. V., Skaggs,W. E., Sejnowski, T. J., &McNaughton, B. L. (1996). Population
dynamics and theta rhythm phase precession of hippocampal place cell firing:
a spiking neuron model. Hippocampus, 6(3), 271–280.

Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K., et al.
(2010). Convolutional networks can learn to generate affinity graphs for image
segmentation. Neural Computation, 22(2), 511–538.

Turing, A. M. (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, Series
2, 41, 230–267.

Turner, A. J., & Miller, J. F. (2013). Cartesian genetic programming encoded artificial
neural networks: A comparison using three benchmarks. In Proceedings of the
conference on genetic and evolutionary computation, GECCO (pp. 1005–1012).

Ueda, N. (2000). Optimal linear combination of neural networks for improving
classification performance. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(2), 207–215.

http://arxiv.org/1312.6077
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref726
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref727
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref728
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref729
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref730
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref731
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref732
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref733
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref734
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref735
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref736
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref738
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref741
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref742
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref743
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref744
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref745
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref746
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref747
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref748
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref749
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref750
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref751
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref752
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref753
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref754
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref755
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref756
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref757
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref758
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref759
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref760
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref761
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref762
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref763
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref764
http://arxiv.org/1409.3215
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref768
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref769
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref770
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref771
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref772
http://arxiv.org/1409.4842
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref775
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref776
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref777
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref778
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref779
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref780
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref781
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref782
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref784
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref786
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref787
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref788
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref789
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref790
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref791
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref793

116 J. Schmidhuber / Neural Networks 61 (2015) 85–117
Urlbe, A. P. (1999). Structure-adaptable digital neural networks (Ph.D. thesis),
Universidad del Valle.

Utgoff, P. E., & Stracuzzi, D. J. (2002). Many-layered learning. Neural Computation,
14(10), 2497–2529.

Vahed, A., & Omlin, C. W. (2004). A machine learning method for extracting
symbolic knowledge from recurrent neural networks. Neural Computation,
16(1), 59–71.

Vaillant, R., Monrocq, C., & LeCun, Y. (1994). Original approach for the localisation
of objects in images. IEE Proceedings Vision, Image, and Signal Processing , 141(4),
245–250.

van den Berg, T., & Whiteson, S. (2013). Critical factors in the performance
of HyperNEAT. In GECCO 2013: proceedings of the genetic and evolutionary
computation conference (pp. 759–766).

van Hasselt, H. (2012). Reinforcement learning in continuous state and action
spaces. In M. Wiering, & M. van Otterlo (Eds.), Reinforcement learning
(pp. 207–251). Springer.

Vapnik, V. (1992). Principles of risk minimization for learning theory. In D. S.
Lippman, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural information
processing systems (NIPS), vol. 4 (pp. 831–838). Morgan Kaufmann.

Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
Versino, C., & Gambardella, L. M. (1996). Learning fine motion by using the

hierarchical extended Kohonen map. In Proc. intl. conf. on artificial neural
networks (pp. 221–226). Springer.

Veta, M., Viergever, M., Pluim, J., Stathonikos, N., & van Diest, P. J. (2013). MICCAI
2013 grand challenge on mitosis detection.

Vieira, A., & Barradas, N. (2003). A training algorithm for classification of high-
dimensional data. Neurocomputing , 50, 461–472.

Viglione, S. (1970). Applications of pattern recognition technology. In J. M. Mendel,
& K. S. Fu (Eds.), Adaptive, learning, and pattern recognition systems. Academic
Press.

Vincent, P., Hugo, L., Bengio, Y., &Manzagol, P.-A. (2008). Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th
international conference on Machine learning (pp. 1096–1103). New York, NY,
USA: ACM.

Vlassis, N., Littman, M. L., & Barber, D. (2012). On the computational complexity
of stochastic controller optimization in POMDPs. ACM Transactions on
Computation Theory, 4(4), 12.

Vogl, T., Mangis, J., Rigler, A., Zink, W., & Alkon, D. (1988). Accelerating the
convergence of the back-propagation method. Biological Cybernetics, 59,
257–263.

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the
striate cortex. Kybernetik, 14(2), 85–100.

Waldinger, R. J., & Lee, R. C. T. (1969). PROW: a step toward automatic program
writing. In D. E.Walker, & L. M. Norton (Eds.), Proceedings of the 1st international
joint conference on artificial intelligence (pp. 241–252). Morgan Kaufmann.

Wallace, C. S., & Boulton, D. M. (1968). An information theoretic measure for
classification. The Computer Journal, 11(2), 185–194.

Wan, E. A. (1994). Time series prediction by using a connectionist network with
internal delay lines. In A. S. Weigend, & N. A. Gershenfeld (Eds.), Time series
prediction: forecasting the future and understanding the past (pp. 265–295).
Addison-Wesley.

Wang, S., & Manning, C. (2013). Fast dropout training. In Proceedings of the 30th
international conference on machine learning (pp. 118–126).

Wang, C., Venkatesh, S. S., & Judd, J. S. (1994). Optimal stopping and effective
machine complexity in learning. In Advances in neural information processing
systems (NIPS’6) (pp. 303–310). Morgan Kaufmann.

Watanabe, S. (1985). Pattern recognition: human and mechanical. New York: Wiley.
Watanabe, O. (1992). Kolmogorov complexity and computational complexity.

In EATCS monographs on theoretical computer science. Springer.
Watkins, C. J. C. H. (1989). Learning from delayed rewards (Ph.D. thesis), Oxford:

King’s College.
Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning.Machine Learning , 8, 279–292.
Watrous, R. L., & Kuhn, G. M. (1992). Induction of finite-state automata using

second-order recurrent networks. In J. E. Moody, S. J. Hanson, & R. P. Lippman
(Eds.), Advances in neural information processing systems, vol. 4 (pp. 309–316).
Morgan Kaufmann.

Waydo, S., & Koch, C. (2008). Unsupervised learning of individuals and categories
from images. Neural Computation, 20(5), 1165–1178.

Weigend, A. S., & Gershenfeld, N. A. (1993). Results of the time series prediction
competition at the Santa Fe Institute. In Neural networks, 1993., IEEE
international conference on (pp. 1786–1793). IEEE.

Weigend, A. S., Rumelhart, D. E., & Huberman, B. A. (1991). Generalization by
weight-elimination with application to forecasting. In R. P. Lippmann, J. E.
Moody, & D. S. Touretzky (Eds.), Advances in neural information processing
systems (NIPS), vol. 3 (pp. 875–882). San Mateo, CA: Morgan Kaufmann.

Weiss, G. (1994). Hierarchical chunking in classifier systems. In Proceedings of the
12th national conference on artificial intelligence, vol. 2 (pp. 1335–1340). AAAI
Press/The MIT Press.

Weng, J., Ahuja, N., & Huang, T. S. (1992). Cresceptron: a self-organizing neural
network which grows adaptively. In International joint conference on neural
networks, vol. 1 (pp. 576–581). IEEE.

Weng, J. J., Ahuja, N., & Huang, T. S. (1997). Learning recognition and segmentation
using the cresceptron. International Journal of Computer Vision, 25(2), 109–143.

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis in the
behavioral sciences (Ph.D. thesis), Harvard University.

Werbos, P. J. (1981). Applications of advances in nonlinear sensitivity analysis. In
Proceedings of the 10th IFIP conference, 31.8-4.9, NYC (pp. 762–770).
Werbos, P. J. (1987). Building and understanding adaptive systems: A statisti-
cal/numerical approach to factory automation and brain research. IEEE Trans-
actions on Systems, Man and Cybernetics, 17.

Werbos, P. J. (1988). Generalization of backpropagation with application to a
recurrent gas market model. Neural Networks, 1.

Werbos, P. J. (1989a). Backpropagation and neurocontrol: A review and prospectus.
In IEEE/INNS International joint conference on neural networks, vol. 1 (pp.
209–216).

Werbos, P. J. (1989b). Neural networks for control and system identification. In
Proceedings of IEEE/CDC Tampa.

Werbos, P. J. (1992). Neural networks, system identification, and control in
the chemical industries. In D. A. White, & D. A. Sofge (Eds.), Handbook
of intelligent control: neural, fuzzy, and adaptive approaches (pp. 283–356).
Thomson Learning.

Werbos, P. J. (2006). Backwards differentiation in AD and neural nets: Past links
and new opportunities. In Automatic differentiation: applications, theory, and
implementations (pp. 15–34). Springer.

West, A. H. L., & Saad, D. (1995). Adaptive back-propagation in on-line learning of
multilayer networks. In D. S. Touretzky, M.Mozer, &M. E. Hasselmo (Eds.),NIPS
(pp. 323–329). MIT Press.

White, H. (1989). Learning in artificial neural networks: A statistical perspective.
Neural Computation, 1(4), 425–464.

Whitehead, S. (1992). Reinforcement learning for the adaptive control of perception
and action (Ph.D. thesis), University of Rochester.

Whiteson, S. (2012). Evolutionary computation for reinforcement learning. In M.
Wiering, & M. van Otterlo (Eds.), Reinforcement learning (pp. 325–355). Berlin,
Germany: Springer.

Whiteson, S., Kohl, N., Miikkulainen, R., & Stone, P. (2005). Evolving keepaway
soccer players through task decomposition.Machine Learning , 59(1), 5–30.

Whiteson, S., & Stone, P. (2006). Evolutionary function approximation for
reinforcement learning. Journal of Machine Learning Research, 7, 877–917.

Widrow, B., & Hoff, M. (1962). Associative storage and retrieval of digital
information in networks of adaptive neurons. Biological Prototypes and Synthetic
Systems, 1, 160.

Widrow, B., Rumelhart, D. E., & Lehr, M. A. (1994). Neural networks: Applications
in industry, business and science. Communications of the ACM , 37(3), 93–105.

Wieland, A. P. (1991). Evolving neural network controllers for unstable systems.
In International joint conference on neural networks, vol. 2 (pp. 667–673). IEEE.

Wiering, M., & Schmidhuber, J. (1996). Solving POMDPswith Levin search and EIRA.
In L. Saitta (Ed.), Machine learning: proceedings of the thirteenth international
conference (pp. 534–542). San Francisco, CA: Morgan Kaufmann Publishers.

Wiering, M., & Schmidhuber, J. (1998a). HQ-learning. Adaptive Behavior , 6(2),
219–246.

Wiering,M. A., & Schmidhuber, J. (1998b). Fast online Q(λ).Machine Learning , 33(1),
105–116.

Wiering, M., & van Otterlo, M. (2012). Reinforcement learning. Springer.
Wierstra, D., Foerster, A., Peters, J., & Schmidhuber, J. (2010). Recurrent policy

gradients. Logic Journal of IGPL, 18(2), 620–634.
Wierstra, D., Schaul, T., Peters, J., & Schmidhuber, J. (2008). Natural evolution

strategies. In Congress of evolutionary computation.
Wiesel, D. H., & Hubel, T. N. (1959). Receptive fields of single neurones in the cat’s

striate cortex. Journal of Physiology, 148, 574–591.
Wiles, J., & Elman, J. (1995). Learning to count without a counter: A case study of

dynamics and activation landscapes in recurrent networks. In Proceedings of the
seventeenth annual conference of the cognitive science society (pp. 482–487). MIT
Press: Cambridge, MA.

Wilkinson, J. H. (Ed.) (1965). The algebraic eigenvalue problem. New York, NY, USA:
Oxford University Press, Inc.

Williams, R. J. (1986).Reinforcement-learning in connectionist networks: Amathemat-
ical analysis. Technical report 8605. San Diego: Institute for Cognitive Science,
University of California.

Williams, R. J. (1988). Toward a theory of reinforcement-learning connectionist
systems. Technical report NU-CCS-88-3. Boston, MA: College of Comp. Sci.,
Northeastern University.

Williams, R. J. (1989). Complexity of exact gradient computation algorithms for
recurrent neural networks. Technical report NU-CCS-89-27. Boston: Northeastern
University, College of Computer Science.

Williams, R. J. (1992a). Simple statistical gradient-following algorithms for
connectionist reinforcement learning.Machine Learning , 8, 229–256.

Williams, R. J. (1992b). Training recurrent networks using the extended Kalman
filter. In International joint conference on neural networks, vol. 4 (pp. 241–246).
IEEE.

Williams, R. J., & Peng, J. (1990). An efficient gradient-based algorithm for on-line
training of recurrent network trajectories. Neural Computation, 4, 491–501.

Williams, R. J., & Zipser, D. (1988). A learning algorithm for continually running fully
recurrent networks. Technical report ICS report 8805. San Diego, La Jolla: Univ. of
California.

Williams, R. J., & Zipser, D. (1989a). Experimental analysis of the real-time recurrent
learning algorithm. Connection Science, 1(1), 87–111.

Williams, R. J., & Zipser, D. (1989b). A learning algorithm for continually running
fully recurrent networks. Neural Computation, 1(2), 270–280.

Willshaw, D. J., & von der Malsburg, C. (1976). How patterned neural connections
can be set up by self-organization. Proceedings of the Royal Society of London.
Series B, 194, 431–445.

Windisch, D. (2005). Loading deep networks is hard: The pyramidal case. Neural
Computation, 17(2), 487–502.

Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of
invariances. Neural Computation, 14(4), 715–770.

http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref794
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref795
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref796
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref797
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref799
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref800
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref801
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref802
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref804
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref805
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref806
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref807
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref808
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref809
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref810
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref811
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref812
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref814
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref815
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref816
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref817
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref818
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref819
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref820
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref821
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref822
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref823
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref824
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref825
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref826
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref828
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref829
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref832
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref833
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref834
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref835
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref836
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref837
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref838
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref839
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref840
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref841
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref842
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref843
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref844
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref845
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref846
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref847
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref849
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref850
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref851
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref852
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref853
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref854
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref855
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref856
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref857
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref858
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref859
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref860
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref861
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref862
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref863

J. Schmidhuber / Neural Networks 61 (2015) 85–117 117
Witczak, M., Korbicz, J., Mrugalski, M., & Patton, R. J. (2006). A GMDH
neural network-based approach to robust fault diagnosis: Application to the
DAMADICS benchmark problem. Control Engineering Practice, 14(6), 671–683.

Wöllmer, M., Blaschke, C., Schindl, T., Schuller, B., Färber, B., Mayer, S., et al.
(2011). On-line driver distraction detection using long short-term memory.
IEEE Transactions on Intelligent Transportation Systems (TITS), 12(2), 574–582.

Wöllmer, M., Schuller, B., & Rigoll, G. (2013). Keyword spotting exploiting long
short-term memory. Speech Communication, 55(2), 252–265.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
Wolpert, D. H. (1994). Bayesian backpropagation over i-o functions rather than

weights. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural
information processing systems (NIPS), vol. 6 (pp. 200–207). Morgan Kaufmann.

Wu, L., & Baldi, P. (2008). Learning to play go using recursive neural networks.
Neural Networks, 21(9), 1392–1400.

Wu, D., & Shao, L. (2014). Leveraging hierarchical parametric networks for skeletal
joints based action segmentation and recognition. In Proc. conference on
computer vision and pattern recognition.

Wyatte, D., Curran, T., & O’Reilly, R. (2012). The limits of feedforward vision:
Recurrent processing promotes robust object recognition when objects are
degraded. Journal of Cognitive Neuroscience, 24(11), 2248–2261.

Wysoski, S. G., Benuskova, L., & Kasabov, N. (2010). Evolving spiking neural
networks for audiovisual information processing. Neural Networks, 23(7),
819–835.

Yamauchi, B. M., & Beer, R. D. (1994). Sequential behavior and learning in evolved
dynamical neural networks. Adaptive Behavior , 2(3), 219–246.

Yamins, D., Hong, H., Cadieu, C., & DiCarlo, J. J. (2013). Hierarchical modular
optimization of convolutional networks achieves representations similar to
macaque IT and human ventral stream. In Advances in neural information
processing systems (NIPS) (pp. 1–9).

Yang, M., Ji, S., Xu,W.,Wang, J., Lv, F., & Yu, K., et al. (2009). Detecting human actions
in surveillance videos. In TREC video retrieval evaluation workshop.

Yao, X. (1993). A review of evolutionary artificial neural networks. International
Journal of Intelligent Systems, 4, 203–222.
Yin, J., Meng, Y., & Jin, Y. (2012). A developmental approach to structural self-
organization in reservoir computing. IEEE Transactions on Autonomous Mental
Development , 4(4), 273–289.

Yin, F.,Wang, Q.-F., Zhang, X.-Y., & Liu, C.-L. (2013). ICDAR2013Chinese handwriting
recognition competition. In 12th international conference on document analysis
and recognition (pp. 1464–1470).

Young, S., Davis, A., Mishtal, A., & Arel, I. (2014). Hierarchical spatiotemporal feature
extraction using recurrent online clustering. Pattern Recognition Letters, 37,
115–123.

Yu, X.-H., Chen, G.-A., & Cheng, S.-X. (1995). Dynamic learning rate optimization
of the backpropagation algorithm. IEEE Transactions on Neural Networks, 6(3),
669–677.

Zamora-Martínez, F., Frinken, V., España-Boquera, S., Castro-Bleda, M., Fischer, A.,
& Bunke, H. (2014). Neural network language models for off-line handwriting
recognition. Pattern Recognition, 47(4), 1642–1652.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701.

Zeiler, M. D., & Fergus, R. (2013). Visualizing and understanding convolutional
networks. Technical report. NYU, arXiv:1311.2901 [cs.CV].

Zemel, R. S. (1993). A minimum description length framework for unsupervised
learning (Ph.D. thesis), University of Toronto.

Zemel, R. S., & Hinton, G. E. (1994). Developing population codes by minimizing
description length. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in
neural information processing systems vol. 6 (pp. 11–18). Morgan Kaufmann.

Zeng, Z., Goodman, R., & Smyth, P. (1994). Discrete recurrent neural networks for
grammatical inference. IEEE Transactions on Neural Networks, 5(2).

Zimmermann, H.-G., Tietz, C., & Grothmann, R. (2012). Forecasting with recurrent
neural networks: 12 tricks. In G. Montavon, G. B. Orr, & K.-R. Müller (Eds.),
Lecture notes in computer science: Vol. 7700. Neural networks: tricks of the trade
(2nd ed.) (pp. 687–707). Springer.

Zipser, D., Kehoe, B., Littlewort, G., & Fuster, J. (1993). A spiking network model of
short-term active memory. The Journal of Neuroscience, 13(8), 3406–3420.

http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref864
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref865
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref866
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref867
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref868
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref869
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref871
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref872
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref873
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref874
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref876
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref877
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref879
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref880
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref881
http://arxiv.org/1311.2901
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref884
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref885
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref886
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref887
http://refhub.elsevier.com/S0893-6080(14)00213-5/sbref888

	Deep learning in neural networks: An overview
	Introduction to Deep Learning (DL) in Neural Networks (NNs)
	Event-oriented notation for activation spreading in NNs
	Depth of Credit Assignment Paths (CAPs) and of problems
	Recurring themes of Deep Learning
	Dynamic programming for Supervised/Reinforcement Learning (SL/RL)
	Unsupervised Learning (UL) facilitating SL and RL
	Learning hierarchical representations through deep SL, UL, RL
	Occam's razor: compression and Minimum Description Length (MDL)
	Fast Graphics Processing Units (GPUs) for DL in NNs

	Supervised NNs, some helped by unsupervised NNs
	Early NNs since the 1940s (and the 1800s)
	Around 1960: visual cortex provides inspiration for DL (Sections 5.4, 5.11)
	1965: deep networks based on the Group Method of Data Handling
	1979: convolution + weight replication + subsampling (Neocognitron)
	1960--1981 and beyond: development of backpropagation (BP) for NNs
	BP for weight-sharing feedforward NNs (FNNs) and recurrent NNs (RNNs)

	Late 1980s--2000 and beyond: numerous improvements of NNs
	Ideas for dealing with long time lags and deep CAPs
	Better BP through advanced gradient descent (compare Section 5.24)
	Searching for simple, low-complexity, problem-solving NNs (Section 5.24)
	Potential benefits of UL for SL (compare Sections 5.7, 5.10, 5.15)

	1987: UL through Autoencoder (AE) hierarchies (compare Section 5.15)
	1989: BP for convolutional NNs (CNNs, Section 5.4)
	1991: Fundamental Deep Learning Problem of gradient descent
	1991: UL-based history compression through a deep stack of RNNs
	1992: Max-Pooling (MP): towards MPCNNs (compare Sections 5.16, 5.19)
	1994: early contest-winning NNs
	1995: supervised recurrent very Deep Learner (LSTM RNN)
	2003: more contest-winning/record-setting NNs; successful deep NNs
	2006/7: UL for deep belief networks/AE stacks fine-tuned by BP
	2006/7: improved CNNs/GPU-CNNs/BP for MPCNNs/LSTM stacks
	2009: first official competitions won by RNNs, and with MPCNNs
	2010: plain backprop (+ distortions) on GPU breaks MNIST record
	2011: MPCNNs on GPU achieve superhuman vision performance
	2011: Hessian-free optimization for RNNs
	2012: first contests won on ImageNet, object detection, segmentation
	2013-: more contests and benchmark records
	Currently successful techniques: LSTM RNNs and GPU-MPCNNs
	Recent tricks for improving SL deep NNs (compare Sections 5.6.2, 5.6.3)
	Consequences for neuroscience
	DL with spiking neurons?

	DL in FNNs and RNNs for Reinforcement Learning (RL)
	RL through NN world models yields RNNs with deep CAPs
	Deep FNNs for traditional RL and Markov Decision Processes (MDPs)
	Deep RL RNNs for partially observable MDPs (POMDPs)
	RL facilitated by deep UL in FNNs and RNNs
	Deep hierarchical RL (HRL) and subgoal learning with FNNs and RNNs
	Deep RL by direct NN search/policy gradients/evolution
	Deep RL by indirect policy search/compressed NN search
	Universal RL

	Conclusion and outlook
	Acknowledgments
	References

