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Clustering sensor nodes is an effective topology control method to reduce energy consumption of the
sensor nodes for maximizing lifetime of Wireless Sensor Networks (WSNs). However, in a cluster based
WSN, the leaders (cluster heads) bear some extra load for various activities such as data collection, data
aggregation and communication of the aggregated data to the base station. Therefore, balancing the load
of the cluster heads is a challenging issue for the long run operation of the WSNs. Load balanced
clustering is known to be an NP-hard problem for a WSN with unequal load of the sensor nodes. Genetic
Algorithm (GA) is one of the most popular evolutionary approach that can be applied for finding the fast
and efficient solution of such problem. In this paper, we propose a novel GA based load balanced
clustering algorithm for WSN. The proposed algorithm is shown to performwell for both equal as well as
unequal load of the sensor nodes. We perform extensive simulation of the proposed method and
compare the results with some evolutionary based approaches and other related clustering algorithms.
The results demonstrate that the proposed algorithm performs better than all such algorithms in terms
of various performance metrics such as load balancing, execution time, energy consumption, number of
active sensor nodes, number of active cluster heads and the rate of convergence.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks (WSNs) have attracted many
researchers for their potential uses in various fields including
disaster warning systems, environment monitoring, health care,
safety, surveillance, intruder detection and so on [1,2]. A WSN is
composed of a large number of tiny sensor nodes, which are
randomly or manually deployed in a target area. The sensor nodes
consist of sensing, data processing, and communicating compo-
nents along with a power unit. The sensor nodes sense the target
area to collect local information, process them and send it to a
remote base station called sink. The sink is connected to the
Internet for the public notification of the phenomena. The main
bottleneck of the WSNs is the limited and irreplaceable power
sources of the sensor nodes as they are operated on small
batteries. Moreover, in many applications, it is almost impossible
to replace the sensor nodes when their energy is exhausted.
Therefore, energy consumption for the sensor nodes is the most
challenging issue for the long run operation of WSNs [3–5].

Clustering is one of the most efficient techniques, which has
been well researched for energy saving WSN. In a cluster based
architecture (refer Fig. 1), the sensor nodes are grouped into
ll rights reserved.
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distinct clusters with a leader, known as cluster head (CH) for
each. Each sensor node belongs to only one cluster. The CHs collect
and process the local data from their member sensor nodes and
send it to the sink directly or via other CHs. A cluster based WSN
has many advantages [6] as follows:
(1)
 It can reduce energy consumption significantly as only one
representative (i.e., CH) per cluster needs to be involved in
data aggregation and routing process.
(2)
 It can considerably conserve communication bandwidth as the
sensor nodes need to communicate with their CHs only and
can avoid exchange of redundant messages among them.
(3)
 The clusters can be more easily managed as they can localize
the route set up and require small routing tables for the sensor
nodes. This in turn improves the scalability of the network
significantly.
However, in a cluster based WSN, CHs bear some extra work load
contributed by their member sensor nodes as follows: (1) CHs
communicate with all the sensor nodes within their cluster; (2) they
perform data fusion to discard redundant and uncorrelated data sent
by their member sensor nodes and finally (3) they send the
processed data to the sink. Moreover, in many WSNs the CHs are
usually selected amongst the normal sensor nodes which can die
quickly owing to this extra work load. In this context, many
researchers [7–11] have proposed the use of some special nodes
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Fig. 1. A model of cluster based WSN with gateways; an arrow from a sensor node
towards a gateway indicates that the sensor node has been assigned to the gateway.
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called gateways or relay nodes, which are provisioned with extra
energy. These gateways are treated as the cluster heads and
responsible for the same functionality of the CHs. But the gateways
are also battery operated and hence power constrained. Life time of
the gateways is very crucial for the long run operation of the
network. Therefore, improper cluster formation may cause some
CHs overloaded. Such overload may increase latency in communica-
tion, consumes high energy of the CH and degrade the overall
performance of the WSN. Therefore, load balancing of the CHs is
the most important issue for clustering sensor nodes. Particularly,
this is a pressing issue when the sensor nodes are not distributed
uniformly. It is noteworthy that for a WSN, with n sensor nodes and
m gateways, the number of possible clusters is mn. This implies that
the computational complexity of finding the optimal load balanced
clustering for a large WSN seems to be very high by a brute force
approach. In fact, load balanced clustering with unequal load of
sensor nodes is a NP-hard problem [9]. Genetic Algorithm (GA) is one
of the most suitable heuristics that can be applied for efficient load
balanced clustering from such a large solution space.

In this paper, we propose a new GA based clustering algorithm
to solve the above load balancing problem. The algorithm forms
clusters in such way that the maximum load of each gateway is
minimized. The proposed algorithm differs from the traditional GA
with the following respects:
�
 In the phase of initial population generation, we restrict the
generation of initial population by considering the connectivity
between the sensor nodes and their CHs. This is in contrast to
fully randomized generation of chromosomes as used in the
traditional GA.
�
 In the mutation phase, the mutation point is selected in such a
way that it generates children chromosomes that ensures
better load balancing. This is in contrast to traditional GA in
which mutation point is selected randomly.
�
 The above two strategies of initial population generation
and mutation make the proposed algorithm faster than the
traditional GA.

Our proposed GA canwork for both of the equal and unequal load
of the sensor nodes. We perform extensive simulation of our
algorithm and compare the results with those of a GA based
clustering algorithm [12], simple GA and another evolutionary
approach, i.e., Differential Evolution (DE) [13,14]. We also compare
the results with two well known algorithms namely Load Balanced
Clustering (LBC) [11] and Least Distance Clustering (LDC) [15]. The
experimental results are measured with respect to various perfor-
mance metrics such as load balancing, execution time, energy
consumption, number of active sensor nodes, number of active CHs
and the rate of convergence. The comparison clearly demonstrates
that the proposed algorithm performs better than all such algo-
rithms. Here onwards, we use gateways and CHs interchangeably.

The paper is organized as follows. The related work is pre-
sented in Section 2. The energy model is described in Section 3.
The WSN model and problem formulation are described in Section 4.
An overview of GA is given in Section 5. The proposed algorithm and
the experimental results are presented in Sections 6 and 7 respec-
tively and we conclude our paper in Section 8.
2. Related work

A number of clustering algorithms [6,16–18] have been developed
for WSN. LEACH [19] is a well known clustering technique that forms
clusters by using a distributed approach. However, the method has
certain disadvantages. Firstly, a node with very low energy may be
selected as a CH; secondly, the CHs use single-hop communication to
send the data directly to the base station. As a result, they consume
more energy. Therefore, a large number of improved algorithms have
been developed over LEACH such as PEGASIS [20], HEED [21], TEEN
[22], TL-LEACH [23], etc. Compared to LEACH, PEGASIS promotes
network lifetime, but it requires dynamic topology adjustment and
the data delay is significantly high which is unsuitable for large-size
networks. On the other hand, the HEED periodically selects CHs
based on the node's residual energy and proximity measure of the
neighbor nodes or node degree. Bandyopadhyay and Coyle [24]
presented a multi-hop hierarchical clustering algorithm, but their
approach does not take into account the residual energy of the
sensor nodes and the CH selection may result in faster death of some
sensor nodes. To form cluster, Low et al. [9] have considered a BFS of
the sensor nodes to find out the least loaded gateway for assigning
a sensor node to a CH. The algorithm has the time complexity of
O (mn2) for n sensor nodes andm CHs. For a large scale WSN, it seems
that execution time is very high. Their algorithm also takes substantial
amount of memory space for building a breadth-first search (BFS) tree
for individual sensor node. In [10], we have proposed an algorithm
that runs in O (n log n) which is an improvement over [9]. Gupta and
Younis [11] have proposed a load balanced clustering algorithm called
LBC, which takes O(mn log n) time in worst case. In [25], an energy
efficient load-balanced clustering algorithm (EELBCA) have been
proposed with O(n log m) time. EELBCA addresses energy efficiency
as well as load balancing. EELBCA is a min-heap based clustering
algorithm. A min-heap is build using cluster heads (CHs) on the
number of sensor nodes allotted to the CHs. Other clustering algo-
rithms developed for WSN can be seen in [26–28].

A few evolutionary based algorithms have been reported. Hur-
uiala et al. [29] have presented a GA based clustering and routing
algorithm by choosing the optimal cluster-head and minimizing the
transmission distance. Chakraborty et al. [30] have developed a
protocol called GROUP in which a chain is formed to communicate
with the base station. In this work, the network lifetime is increased
by allowing individual sensor nodes to transmit the message to the
base station in non-periodical manner depending on their residual
energy and location. Thus, the approach avoids forming greedy
chains. In [7], Ataul Bari et al. have proposed a GA based algorithm
for data routing using relay nodes in a two-tire wireless sensor
network. Selection of individuals is carried out using the Roulette-
wheel selection method and the fitness function is defined by
network lifetime in terms of rounds. For mutation operation, they
select a critical node from the relay nodes, which dissipates the
maximum energy due to receiving and/or transmitting data. Muta-
tion is done by either replacing the next-hop node of this critical
node by a new next-hop relay node or by diverting some incoming
flow towards that critical node to other relay node. In [31], we have
also proposed GA based routing algorithm called GAR where the
overall communication distance from the gateways to the BS is
minimized. However, it is different from [7] in respect of the
following issues. For selection of individuals, tournament selection
is used in contrast to Roulette-wheel selection. Fitness function is
defined in terms of total distance covered in a round rather than
network life time in terms of number of rounds. In the mutation
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phase, we select relay node that uses maximum distance to transmit
the data to its neighbor in contrast to a critical node defined in [7].
However, both the algorithms as presented in [7] and [31] consider
only routing of aggregated data from the gateways to the BS without
considering data communication from the sensor nodes to the
gateways within each cluster. In [12], Hussain et al. have presented
a GA based hierarchical clustering algorithm to choose a set of
cluster-heads from the normal sensor nodes. For the fitness para-
meter they have used (i) direct distance, (ii) cluster distance, (iii)
cluster distance—standard deviation, (iv) transfer energy and
(v) number of transmission. However, their method selects CHs from
normal sensor nodes and form clusters without any load balancing.
As a result, some CHs may quickly die and requires frequent re-
clustering. In [32], Enan et al. have presented an evolutionary aware
routing protocol (EARP) for dynamic clustering of wireless sensor
networks. The objective is defined as the minimization of the total
dissipated energy in the network, measured as the sum of the total
energy dissipated from the non-CHs to send data signals to their CHs,
and the total energy spent by CH nodes to aggregate the data signals
and send the aggregated signals to the base station. EARP only elects
CHs using the fitness function and each non-CH determines the
cluster to which it belongs by choosing the CH that requires the
minimum energy consumption. EARP suffers same problem as
LEACH, as some sensor node may became a CH which may not have
sufficient energy. In [33], Jin et al. have presented a method to find
the CHs based on a fitness function which minimizes the total
transmission distance in network. Here, GA is used to select only
cluster-heads. Each non-CH node uses a deterministic method to find
its nearest cluster-head. All the methods presented in [34] and [35]
also consider only the Euclidian distance between the cluster heads
or BS and they did not attend any other parameters like residual
energy, load balancing, standard deviation. In [34], Mudundi and Ali
have proposed a genetic clustering algorithm (GCA) for dynamic
formation of clusters in WSN with the goal of increasing lifetime of
network by minimizing the energy dissipation. The fitness function is
developed by using the number of CH nodes and the Euclidian
distance between all the nodes in each cluster to their CH with some
weight value. In [35] Yang et al. have presented a method called
harmony search algorithm (HAS) for increasing the life time and
reducing the energy consumption in a cluster based WSN. In the
fitness function, they have used the maximum Euclidean distance of
the nodes and the ratio of the energy of all the sensor nodes with the
total current energy of the CH in the current round. In [36], authors
have presented a clustering method to optimize the energy con-
sumption of the sensor nodes. Their method of CH selection is based
on several parameters such as residual energy, communication
energy, number of CHs and the distance between CHs and their
member sensor nodes. However, they do not consider any load
balancing of CHs. Other evolutionary based approaches applied for
WSNs can be found in [37], [38] and their references inside them.

But all of the above algorithms use GA only for CH selection. To
the best of our knowledge, there is no evolutionary based cluster-
ing algorithm which considers load balancing of the CHs. Our GA
based clustering algorithm presented in this paper, incorporates
load balancing of the CHs and has the following advantages: (1) it
works for both the equal and unequal loads of the sensor nodes
and (2) it converges very fast in producing efficient results.

 

3. Energy model

We use the same radio model for energy as [19]. In this model,
both the free space and multi-path fading channels are used,
depending on the distance between the transmitter and receiver. If
the distance is less than a threshold d0, the free space (fs) model is
used; otherwise, the multipath (mp) model is used. Thus, the
energy required by the radio to transmit an l-bit message over a
distance d is given as follows.

ET ðl; dÞ ¼
lEelec þ lεf sd

2 for dod0

lEelec þ lεmpd
4 for d≥d0

8<
: ð3:1Þ

where, Eelec is the energy required by the electronics circuit, εfs and
εmp are the energy required by amplifier in free space and multi-
path respectively. The radio also expends energy to receive an l-bit
message given by [19].

ERðlÞ ¼ lEelec ð3:2Þ
The Eelec depends on several factors such as the digital coding,

modulation, filtering, and spreading of the signal, whereas the
amplifier energy, εfsd2 or εmpd

4, depends on the distance between
the transmitter and to the receiver and the acceptable bit-
error rate.
4. WSN model and problem formulation

We assume a WSN model where all the sensor nodes are
randomly deployed along with a few gateways and once they are
deployed, they become stationary. A sensor node can be assigned
to any gateway if it is within the communication range of the
sensor node. Therefore, there are some pre-specified gateways
onto which a particular sensor node can be assigned. Thus each
sensor node has a list of gateways and it can be assigned to only
one gateway amongst them. The sensor nodes collect the local
data and send it to their corresponding gateways. On receiving the
data, the gateways aggregate them to reduce the redundant data
within their cluster. All communication is over wireless link. A
wireless link is established between two nodes only if they are
within the communication range of each other. We use the
following terminologies in the proposed algorithm:
(1)
 The set of sensor nodes is denoted by S¼{s1, s2…, sn}.

(2)
 The set of gateways is denoted by G¼{g1, g2…, gm}, n4m.

(3)
 The traffic load contributed by each sensor node is estimated

prior the cluster formation.

(4)
 di denotes the traffic load contributed by a sensor node si, si∈S,

di∈ℚ where ℚ is the set of rational numbers.

(5)
 Gj denotes the set of gateways to which sensor node sj may be

assigned, where sj∈S and GjDG. For example, Gr¼{g1, g3, g7}
means that sr can be assigned to any one of the gateways, g1,
g3, g7.
(6)
 Let Li be the load of the cluster head gi. Then the overall
maximum load of each cluster head isL¼max Lij∀gi∈G

� �
.

Now, we address the problem of clustering, where our main
objective is to minimize the overall maximum load of the gate-
ways. Let aij be a Boolean variable such that aij¼1, if the sensor
node si is assigned to the cluster head gj and aij¼0, if it is not. Then
the optimization problem of load balanced clustering in terms of
Integer Linear Programming (ILP) can be formulized as follows
[10]:

Minimize L¼max Lij∀gi∈G
� �

Subject to

∑
gj∈Gi

aij ¼ 1j∀si∈S ð4:1Þ

and

∑
si∈S

di � aij ≤Lj∀gj∈Gi ð4:2Þ

The constraint (4.1) states that a sensor node can be assigned to
one and only one gateway and (4.2) indicates that the total load of
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all the sensor nodes assigned to a gateway must not exceed the
overall maximum load of the gateway.

 

5. An overview of Genetic Algorithm

Genetic Algorithm (GA) [39] is an adaptive heuristic method
that is widely applied in solving many optimization problems
[40,41]. It begins with a set of randomly generated possible
solutions known as initial population. An individual solution is
represented by a simple string or an array of genes called
chromosome/individual. The length of each chromosome in a
population is equal. Each individual is evaluated by a fitness
function to judge its performance. The fitness function is chosen
in such a way that an individual provides the result close to the
optimal solution.

Once the initial population is generated, two randomly selected
chromosomes (parents) are used to produce two child chromosomes
by a process called crossover in which the parent chromosomes
exchange their genetic information. To produce a better solution, the
child chromosomes undergo mutation operation in which their lost
genetic values are restored. Whenever the crossover and mutation are
over, the fitness function of the child chromosomes is evaluated and
their fitness values are compared with that of all the chromosomes of
the previous generation. To ensure that the current generation
produces better result, two chromosomes of the previous generation
with poorest fitness values are replaced with the newly generated
child chromosomes. The various steps of a simple GA are depicted in
the flowchart as shown in Fig. 2. It is noteworthy that generation of
initial population and mutation in the proposed algorithm differs from
that of the traditional GA as discussed in Section 1.
6. Proposed algorithm

We first present our methodologies for chromosome represen-
tation, initial population generation and determination of fitness
function followed by selection, crossover and mutation (that are
repeatedly invoked) in the subsections as follows.

6.1. Chromosome representation

We represent the chromosome as a string of gateways which
indicates the assignment of all the sensor nodes to their corre-
sponding gateway as follows. The length of each chromosome is
kept same as the number of sensor nodes. For a chromosome, if ith
gene value is say j, then it implies that the sensor node si is
assigned to the gateway gj. Note that for any other gene position
the same value j can be repeated as more than one sensor nodes
can be assigned to the same gateway gj. We illustrate it with the
following example.
Crossover

Selection
Mutation

Terminate? End

Check 
Fitness

Initial 
Population

Parent

Children

Yes

No

Modified 
Children

Fit 
Children

Unfit 
Children Discard

New 
Population

Fig. 2. Flowchart of genetic algorithm.
Example 1. Consider a WSN of 15 sensor nodes and 4 gateways,
i.e., S¼{s1, s2,…, s15} and G¼{g1, g2, g3, g4}. So, the length of the
chromosome of this network is 15. Fig. 3 shows a chromosome
representation, where the gene value at position 7 is 2 and it
implies that the sensor node s7 is assigned to the gateway g2.
Similarly, s8, s9 and s10 are assigned to g4, g3 and g2 respectively in
this representation.

This is important to note that the above chromosome representa-
tion is a part of the clustering algorithm. As mentioned above that
the length of each chromosome is equal to the number of the sensor
nodes, therefore, addition/deletion of any sensor nodes would
change the chromosome size and it would require re-clustering.

6.2. Initial population

The initial population is a randomly generated set of chromo-
somes. Each chromosome is a sequence of gateways. The valid
chromosomes are generated in such a way that the value say j of
the ith position gene is randomly selected such that gj∈Gi. It can be
noticed that our GA based approach does not depend on any
particular algorithm for generating the initial population. It also
does not attempt to find a solution which can give a reasonable
load balancing. It should also be noted that in the initial popula-
tion, all of the generated chromosomes represent a complete
clustering solution. We illustrate the idea of generation of an
initial population with the following example.

Example 2. Consider a WSN of 12 sensor nodes and 4 gateways,
i.e., S¼{s1, s2…, s12} and G¼{g1, g2, g3, g4}. Table 1 shows all the
sensor nodes and their possible gateways to which the sensor
nodes can be assigned.

Here, the length of the chromosome is twelve. For the 8th gene
position, a number is generated randomly amongst 1, 2 or 4. This is
because s8 can be assigned to any one of the gateways g1, g2 or g4
(refer Table 1). In the same way, the 4th gene position can be a
randomly generated number amongst 1, 2, 3 or 4 and the 3rd gene
position can be any of 2 or 3.

In this example, suppose s8 selects the gateway g4 amongst g1,
g2 and g4. Similarly, s4 selects g3, s3 selects g2 and so on. Then with
this selection, an individual of the initial population is generated
which is shown in Fig. 4. It should be note that the chromosome
shown in this figure represents a complete clustering solution.
This is because, the entire twelve sensor nodes are assigned to
their corresponding gateway and also a sensor node is assigned to
only one gateway.

Remark 6.1. The above strategy of generating initial population
makes the proposed algorithm converge faster than the traditional
GA. The rationale behind it is that in case of traditional GA, initial
population is generated randomly and this may lead generation of
S 

G   3  1 2   3  4 2 1  4  3 4 2  4

1 2 3  4 5 6 7  8  9 10  11 12

Fig. 4. Generated chromosome from Table 1.

S

G 3      1     2      4      4      1     2     4      3      2     2     3      3     1     1

1     2     3      4      5     6      7     8      9     10   11   12    13   14   15

Fig. 3. Chromosome representation.



Table 1
Sensors with the list of possible gateways.

Sensor(si) Possible
gateways
(Gi)

s1 G1¼{g1, g2, g3, g4}
s2 G2¼{g1, g2}
s3 G3¼{g2, g3}
s4 G4¼{g1, g2, g3, g4}
s5 G5¼{g2, g3, g4}
s6 G6¼{g1, g2, g3, g4}
s7 G7¼{g1, g2, g3}
s8 G8¼{g1, g2, g4}
s9 G9¼{g1, g3}
s10 G10¼{g2, g3, g4}
s11 G11¼{g1, g2, g3, g4}
s12 G12¼{g1, g2, g3, g4}

P. Kuila et al. / Swarm and Evolutionary Computation 12 (2013) 48–5652

 

many invalid chromosomes which are discarded. This results the
process of selection slower.
S

G

S

2      3     2      1      3             3     4      1       4     2     2

1     2     3      4      5     6      7     8      9     10   11   12 

2

1     2     3      4      5     6      7     8      9     10   11  12 
6.3. Fitness function

We build a fitness function to evaluate the individual chromo-
somes of the initial population as follows. We note that the load
balancing of the gateway not only minimizes the maximum load of
a gateway but also concentrates on the load distribution among all
the gateways. Therefore, we construct the fitness function on the
basis of the standard deviation (s) of the gateway load which gives
even distribution of the load per cluster. If there are m gateways
and n sensor nodes, the standard deviation of gateway load is
given by

s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

j ¼ 1ðμ−WjÞ2
m

s

where, μðaverage loadÞ ¼∑n
i ¼ 1di=m, di is the load of the sensor

node si and Wj is the overall load of the gateway gj. The smaller the
standard deviation, the higher is the fitness value. Therefore, the
fitness function is chosen as the reciprocal of the standard
deviation of the gateway load, i.e. Fitness¼ 1=s.
G 2      3     2      1      3             3     4      1       4     2     21

Fig. 6. Chromosome representation: (a) before mutation; (b) after mutation.

Table 2
Parameters of simulation.

Parameter Value

Area 200�200 m2

Base station location (215, 100)
Sensor nodes 100–400
Gateways 15–30
6.4. Selection

The selection process determines which of the chromosomes
from the current population will mate (crossover) to create new
chromosomes. For the selection process, we select some valid
chromosomes with higher fitness value. The individuals with
better fitness values have better chances of selection. There are
several selection methods, such as Roulette-wheel selection, rank
selection, tournament selection and so on. We use tournament
selection in our method for selecting the chromosomes with best
fitness values from the population. The selected chromosomes are
applied to produce new child chromosomes (offspring) by the
crossover operation as described in the following section.
Child 1:

Child 2:

3  2  1  4  5

6  5  2  7  1 4  6  8 

2  8  1 Parent 1:

Parent 2:

3  2  1  4  5

6  5  2  7  1

4  6  8 

2  8  1 

Crossover Point

Fig. 5. Crossover operation.
6.5. Crossover

The crossover operation takes place between two randomly
selected chromosomes. To produce the new offspring from the
selected parent chromosomes, we use 1-point crossover whereby
a point is chosen at random, and the two parent chromosomes
exchange their information after that point. The whole process is
shown in Fig. 5.

Lemma 6.1. The two child chromosomes produced by the above
crossover operation is valid.

Proof. A valid chromosome is the one which corresponds to a
cluster of the sensor nodes such that for each sensor node the
assigned gateway is selected from their gateway list. As mentioned
in Section 6.2, the chromosomes are generated in such a way that
the value j of the gene position i is randomly selected so that gj∈Gi.
Therefore, for each sensor node the corresponding gateway is valid.

6.6. Mutation

The mutation is applied at a selected gene rather than ran-
domly selected gene. Here, our main purpose is to balance the load
of the gateways. We select that gateway from the chromosome
that has maximum load. As more than one sensor nodes are
assigned to the maximum loaded gateway, therefore its number
appears in several positions of the chromosome. From all of these
gene positions, we randomly select a gene and replace another
gateway number to that gene. It means that we just replace a
randomly selected sensor node from that maximum loaded gate-
way to other less loaded gateway. It can be noted that the replaced
number at this gene position must be such that the sensor node is
Initial energy of sensor nodes 2.0 J
Number of simulation iterations 100
Communication range 150 m
Eelec 50 nJ/bit
εfs 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

d0 87.0 m
EDA 5 nJ/bit
Packet size 4000 bits
Message size 200 bits
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Fig. 7. Comparison of the proposed method with DE approach, simple GA, LBC and LDC in terms of load balancing for equal load of the sensor nodes: for (a) 15 gateways and
(b) 30 gateways.
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replaced to another gateway from the sensor's gateway list. We
illustrate the idea with the figurative example as follows.

Example 3. Consider the chromosome representation after cross-
over operation as shown in Fig. 6(a) for the same network scenario
as Example 2. It is shown in Fig. 6(a) that the gateway g2 is
assigned with five sensor nodes and it is maximum. In mutation
operation, the proposed method randomly selects a gene position,
which is occupied by the gateway g2 and replaces it by another
gateway number. Note that the replaced gateway must be from the
gateway list of the corresponding sensor node. Let a randomly
selected gene position be 6 and it is occupied by the gateway
number 2. Now, 2 is replaced by another gateway number from G6

(refer Table 1). In this case, a randomly selected gateway number is
1, which is randomly selected amongst 1, 3 and 4 as per the
gateway list G6. The number 2 is not taken as it is the number
which has to be replaced. Fig. 6(b) shows the resultant chromo-
some after mutation operation.

Lemma 6.2. The new chromosome produced by the above muta-
tion process is valid.

Proof. According to the chromosome representation, the max-
imum loaded gateway lies in more than one gene position of the
chromosome. At the time of mutation, the algorithm randomly
selects the gene position which is occupied by the maximum
loaded gateway number and replaces a new gateway number
which is also randomly selected from the gateway list of the
corresponding sensor node. Since all valid offspring are generated
in crossover operation, the mutation operation cannot hamper the
validity of these offspring by replacing a new gateway.

Remark 6.2. This can be noted that the above strategy of mutation
makes our GA based approach to converge faster than the tradi-
tional GA. This is because, in case of traditional GA, mutation point
is selected randomly. This may lead generation of poor chromo-
somes and slower convergence rate.

7. Experimental results

The proposed algorithms were experimented extensively using
MATLAB (version 7.5) on an Intel Core 2 Duo processor with T9400
chipset, 2.53 GHz CPU and 2 GB RAM running on the platform
Microsoft Windows Vista. For the experiments, we assumed a
WSN scenario in which the sensor nodes were deployed along
with the gateways in a 200�200 m2 area. We ran the algorithms
by varying the sensor nodes from 100 to 400 and the number of
gateways from 15 to 30. Each sensor node is assumed to have an
initial energy of 2 J and gateways have 10 J. In the simulation run,
the typical parameter values were set same as [19] as shown in
Table 2.

To execute our proposed algorithm, we considered an initial
population of 200 chromosomes. For crossover operation, we



0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

No. of Rounds

A
ct

iv
e 

Se
ns

or
 N

od
es

For 300 Sensor Nodes and 30 Gateways.

Proposed
Diff. Evol.
Simple GA
Sajid GA
LBC
LDC

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

No. of Rounds

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

).

For 300 Sensor Nodes and 30 Gateways.

Proposed

Diff. Evol.

Simple GA

Sajid GA

LBC

LDC

Fig. 9. Comparison of the proposed method with DE approach, simple GA, LBC, LDC and GA based clustering algorithm by Sajid in terms of (a) active sensor nodes and (b)
energy consumption.
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selected the best 10% chromosomes using tournament selection. In
our simulation, crossover rate was taken as 0.7 and mutation rate as
0.05. The algorithm was run for 75–500 iterations. For the compar-
ison purpose, we also ran three evolutionary based approaches, i.e.,
Sajid GA [12], Simple GA, Differential Evolution (DE) [13], [14]. We
also ran two other related clustering algorithms, i.e., LBC [11] and LDC
[15]. In the experiment using DE, we created the donor vector by
selecting the best chromosome from the population and used the
same mutation operation as applied in our proposed method. The
crossover rate (CR) of the DE was taken 70%. In the simple GA, the
fitness function, population size, crossover rate, mutation rate and all
other assumptions were taken same as that of the proposed GA.



P. Kuila et al. / Swarm and Evolutionary Computation 12 (2013) 48–56 55
In order to judge the quality of the load balancing, we
calculated the standard deviation of the gateway loads and plotted
against the number of sensor nodes. The standard deviation of the
gateway load gives even distribution of the load per gateway. First,
we ran the algorithms for equal load of the sensor nodes by
varying the sensor nodes from 100 to 350 and the number of
gateways for 15 and 30. It can be observed that our proposed
method produces better load balancing for equal load of the
sensor nodes than others as shown in Fig. 7(a) and (b). As the
algorithm by Hussain et al. [12] does not consider any load
balancing of the CHs, we have not compared its results in these
figures.

We next ran the algorithms for unequal load of the sensor
nodes, the comparison results of which are depicted in Fig. 8
(a) and (b). The proposed method performs well for unequal load
for this case too.

Fig. 9(a) shows comparison of number of active sensor nodes
per round. A sensor node is considered as active if its existing
energy is not zero and also there must be at least one gateway
within its communication range. Sometimes few CHs die quickly
for improper load balancing. As a result, few sensor nodes are
unable to find any CH within their range, though the sensor nodes
still may have some existing energy. In our scenario, this type of
sensor nodes is also considered as inactive. It is observed that our
proposed algorithm outperforms simple GA, LDC and the GA based
clustering algorithm [12] in terms of number of active sensor
nodes. It also performs better than DE and LBC in terms of number
of active sensor nodes as shown in Fig. 9(a). Fig. 9(b) shows the
energy consumption of the network per round. As LDC assign the
sensor nodes to their nearest CH, it consumes less energy than
other algorithms but all high loaded CHs die quickly and many
sensor nodes became inactive. It can be noted from Fig. 9(b) that
our proposed algorithm performs better than simple GA, DE, LBC
and the GA based clustering [12] in terms of energy consumption.

Fig. 10(a) shows the comparison of the gateways which die first.
It can be observed that our method always performs better than
the others. In this case LDC always performs very poorly. This is
due to the fact that LDC does not consider load balancing of the
gateways. Therefore, the high loaded gateway dies very quickly in
LDC. We also obtained the execution time of the algorithms in
which the proposed algorithm is better than DE, simple GA and
LBC in terms of execution time as clear from Fig. 10(b). LDC always
shows better execution time than all the methods. This is due to
simply assigning a sensor node to the gateway which is nearest to
it. Thus LDC requires less computation time than others.

Fig. 11 shows the comparison of the convergence rate of our
proposed GA, simple GA and the DE approach. We ran our
algorithm for 300 sensor nodes and 30 gateways. Fig. 11(a) and
(b) shows the convergence rate for equal and unequal load of the
sensor nodes respectively which clearly shows the faster conver-
gence of our algorithm.

 

8. Conclusions

In this paper, we have presented a GA based load balanced
clustering algorithm for WSN. The algorithm has been described
with proper chromosome representation, generation of initial
population, selection process, followed by the crossover and
mutation operations. The experimental results have shown that
the performance of the algorithm is better than the GA based
clustering algorithm, simple GA, Differential Evolutionary
approach, Load Balanced Clustering (LBC) and the Least Distance
Clustering (LDC) algorithm in terms of load balancing of the
gateways for equal as well as unequal load of the sensor nodes.
It is observed that the proposed algorithm provides superior
performance in terms of energy consumption, number of active
sensor nodes, rate of convergence and the execution time.
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