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1 INTRODUCTION 

At present, the best practical method of structural reliability verification of standards is according to 
the limit state methods. Standard procedures utilize characteristic and design values, which guaran-
tee design reliability. Design values are obtained with the aid of partial safety factors, which are the 
basic indicators of reliability of structural design. EUROCODE 3 considers partial safety factors γM 
for resistance. A number of methods exist for the analysis of reliability. Probabilistic methods are 
frequently used. These methods are based on the assumption that input variables are of random 
character. This can be clearly demonstrated for e.g. on the strength characteristics of steel, whose 
histograms have been monitored over a long period and measured data are statistically evaluated 
and compared within the framework of individual EU countries (Melcher et al. 2004). The funda-
mental measured characteristic is the yield strength. Other random characteristics include the geo-
metric characteristics for which relatively complete information is available in mass manufactured 
products. These information prove however insufficient in the elaboration of the probabilistic as-
sessment of reliability of systems of structures comprising of more elements, where the influence of 
uncertainty of stiffness of external and internal bonds, eccentricity of force action and other imper-
fections must be taken into consideration. The sensitivity analysis and fuzzy analysis of sensitivity 
indices of system imperfections are presented in the article. The analysis of the influence of epis-
temic uncertainty of statistical characteristics of system imperfections is performed. 

ABSTRACT: The verification of the design reliability of a steel element according to the 
concepts of standards EUROCODE 3 and EN1990 is presented in the article. Reliability is as-
sessed by determining the failure probability, which is evaluated employing the Monte Carlo 
methodology. Reliability analysis enables the verification of reliability indices of the fore 
mentioned standards, generalization of obtained results and further development of design 
methods of structures according to the limit state theories. An overview of input random im-
perfections of steel structures whose histograms and statistical characteristics have been 
measured and monitored over a long time period is presented. The completeness of statistical 
information on input data for utilization in probabilistic studies is discussed. The quantifica-
tion of uncertainty of statistical characteristics of hard to measure imperfections utilizing the 
fuzzy set theory is illustrated on a numerical example. The analysis of the influence of fuzzy 
uncertainty of input random variables on the fuzzy uncertainty of failure probability is pre-
sented. Uncertainty of computational models is discussed and modern instruments employable 
in the analysis of these uncertainties are listed. The analysis of the load carrying capacity of a 
steel plane frame with compression members is presented. Sobol’s sensitivity analysis was 
applied for the identification of the dominant imperfections.  
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2 VERIFICATION OF STRUCTURAL STABILITY DESIGN PROCEDURES 

2.1 Reliability conditions of EUROCODES 
A simplified problem of a compression member loaded by permanent load action G combined with 
single variable load action Q is considered for the elaboration of a parametric study. The reliability 
condition of design according to EC3 and EN1990 can be written in the form: 

 
MykAkQkG fRQG γγγ χ /⋅≤⋅+⋅        (1) 

 
where RAχ = χ A is the product of buckling coefficient χ and nominal cross-section area A, Mγ  is the 
material partial safety factor, and values Gk, Qk, fyk are characteristic values of load actions and 
yield strength respectively. Design reliability is ensured by partial safety factors γ. The design reli-
ability condition (6) can be rewritten as the inequality of design load action Fd and design load car-
rying capacity Rd. It is assumed in the numerical reliability study that the design load action is equal 
to the design load-carrying capacity,  
 

Fd = Rd,  (2) 
 
i.e., that the structure is designed for economic design with maximum load carrying capacity. Char-
acteristic values Gk, Qk are expressed by the ratio δ of load action Qk to the total load action Gk+Qk: 
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Characteristic values Gk and Qk are calculated according to the relation: 
 

kN 3.3825.135.1 =⋅+⋅ kk QG        (4) 
   
Equation (4) is derived from (1) for partial safety factors γG= 1.35; γQ= 1.5 (EN1990) and γM= 1.0 
(EC3). The value Rd = 382.3 kN on the right side of the equation is the design load carrying capac-
ity of IPE 200 strut of length 2.1m (non-dimensional slenderness 0.1=λ ) calculated acc. to EC3: 
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where bχ  is buckling coefficient for the buckling strength curve b, An is the nominal cross-section 
area (evaluated from the nominal values of the cross section composed of rectangular segments), 
and fyk is the characteristic value of yield strength. 

2.2 Probabilistic verification of structural stability design procedures 
The random characteristics of load action G and Q are calculated from characteristic values accord-
ing to Tab. 1. It may be assumed for the dead load that the characteristic value Gk is also the mean 
value of the normal distribution. The variation coefficient of 0.1 was presumed according to (Hol-
ický et al. 2002, Kala 2007). Gumbel distribution with mean value mQ = 0.6 Qk and standard devia-
tion SQ = 0.21 Qk was considered for the variable load in accordance with (Holický et al. 2002, Kala 
2007). Failure probability of a strut designed according to (Kala 2007) occurs when the reliability 
condition (6), in which R is the random load-carrying capacity, and G, Q are random load action ef-
fects, is not satisfied. 

 
G + Q < R     (6) 

 
The variable quantifying reliability or unreliability is the probability that condition (6) isn’t fulfilled 
during the life span of the structure with regard to structural, aesthetical, service, energetic, eco-
nomic and ecological aspects. Attainment of the limit state (or in the more general sense, occur-
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rence of failure) cannot be absolutely eliminated (due to technical and economical reasons) and so 
we try to design the structure so that the probability Pf that failure occurs is very small. The failure 
probability Pf is the most important and objective indicator of reliability and is commonly related to 
a certain reference time (usually 50 to 100 years), i.e. to a time interval within which the given de-
gree of reliability should be maintained. The load carrying capacity R in (6) may be obtained from 
the response function. Load-carrying capacity R in (6) can be evaluated from the response function: 
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where e0 is the amplitude of initial strut curvature formatively identical to a half-wave of the sine 
function,  A is cross-section area, Fcr is Euler’s critical force of a bilaterally hinged steel strut, Wz is 
the sectional modulus to axis Z (axis perpendicular to the flange around which the section bends 
during buckling), and fy is the yield strength. 

2.3 Input random quantities 
Statistical characteristics h, b, t1, t2, fy were considered as histograms of obtained results of experi-
mental research (Melcher et al. 2004). Gaussian probability distribution with statistical characteris-
tics given acc. to (Fukumoto et al. 1976, Soares 1988) was considered for Young’s modulus. 

 
Table 1. Input random quantities 
 Symbol Distribution Mean value St. deviation Skewness Kurtosis 
1. h Gauss 200 mm 0.89 mm 0 3 
2. b Gauss 100 mm 1 mm 0 3 
3. t1 Gauss 5.6 mm 0.234 mm 0 3 
4. t2 Gauss 8.5 mm 0.41 mm 0 3 
5. fy Gauss 297.3 MPa 16.8 MPa 0 3 
6. E Gauss 210 GPa 10 GPa 0 3 
7. e0 Hermite 0 Fuzzy 0 Fuzzy 

 
The mass was not weighed. The mass variance can be obtained from measured geometrical charac-
teristics. According to results of experimental research (Fukumoto et al. 1976), the dominant shape 
of initial curvature is given as a half-wave of the sine function. A Hermite four-parametric probabil-
ity distribution, which makes provision for skewness and kurtosis was considered for the amplitude 
of initial imperfection e0, see Figure 1. We know with certainty that the mean value and skewness 
for symmetrical elements comprised of IPE profiles is equal to zero. Standard deviation of the Her-
mite density function is designated based on the assumption that 95 % of the realizations of the am-
plitude of initial imperfection e0 are found within the tolerance limits 〈-3.15; 3.15〉 mm of the stan-
dard EN 10034. Kurtosis is given as a fuzzy number, see Figure 1. The support of the membership 
function is 〈1.816; 4.184〉 and the kernel = 3. Input random variables are lucidly listed in Tab. 1. 

 

 
Figure 1. Hermite density distribution function and fuzzy number of kurtosis 
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The parameters of the four-parametric Hermite density function include: the mean value, standard 
deviation, skewness and kurtosis. The limit case arises for the kurtosis of 1.816, which corresponds 
to a rectangular density function. The kurtosis of the Gaussian density function has a value of 3.0. 
The maximum kurtosis was considered as 4.184, i.e. 3.0 + 3.0 - 1.816 leading to symmetrical mini-
mal and maximal support values around the kernel. An example of a set of density functions is de-
picted in left part of Figure 1. The functions vary in values of kurtosis, which is listed for each func-
tion. The standard deviation of the amplitude of initial imperfection e0 is also a fuzzy number, see 
Figure 2. The fuzzy number was evaluated utilizing the general extension principle (Zadeh 1965). 
Twenty cuts of the so-called α-cut method were utilized. The support of the fuzzy number of the 
standard deviation is given by the interval ( )565.1;915.1 mm. The standard deviation of the Gaus-
sian density function is given by the kernel value of 1.607. Even though the input fuzzy number of 
kurtosis is symmetrical, the fuzzy number of standard deviation is very asymmetrical. 

2.4 Fuzzy random analysis of load-carrying capacity 
The load-carrying capacity was evaluated utilizing equation (8) in which the axial stress was placed 
equal to the yield strength. The fuzzy analysis was performed utilizing the general extension princi-
ple (Dubois 1980). The statistical analysis of the load-carrying capacity was evaluated by means of 
the Monte Carlo method with 100 000 simulation runs. The histogram of load-carrying capacity 
was approximated by a Hermite polynomial, see Figure 2. The figure on the right represents the set 
of density functions of load carrying capacity corresponding to the set of density functions in Fig. 1.  

 

 
Figure 2. Fuzzy numbers of standard deviation and load-carrying capacity 

2.5 Fuzzy random analysis of failure probability 
 

The fuzzy analysis of the misalignment of failure probability is performed. Fuzzy analysis is em-
ployed for the analysis of fuzzy uncertainty of the shape of the density distribution function of im-
perfection e0. Input density functions and degrees of membership are depicted in Figure 1. The fail-
ure probability was evaluated for { }0.1...;;2.0;1.0;0∈δ . Sufficient runs of the Monte Carlo method 
were employed in the probabilistic analysis to ensure that equation (6) was not fulfilled at least 200 
times. This guarantees a balanced probability estimation error of 7 %. The procedure is as follows: 
− A value of δ (e.g. δ=0) was selected and 11 values of failure probability for the kurtosis value 

with input degree of membership from Figure 1 were evaluated. 
− The functional dependence between kurtosis and failure probability was approximated by a 

linear spline, i.e., the so-called response surface method. 
− The membership function of the failure probability was evaluated according to the general ex-

tension principle. 
The membership function of failure probability was evaluated for each values of δ in this manner. 
The discrete values were approximated by the Hermite approximation polynomial.  
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Figure 3. Fuzzy random analysis of misalignment of failure probability 

 
 

The support and kernel of the failure probability distribution is depicted in Figure 4. The support is 
indicated by the dot-and-dash curves, and the kernel is depicted by a red solid curve. The main out-
put of the study is the dashed curve, which was obtained utilizing the COG (centre of gravity) de-
fuzzification method. 
 

 
Figure 4. Support, kernel and greatest crisp control output of the fuzzy analysis of failure probability 
 

2.6 Conclusion remarks 
The presented study illustrates the fuzzy uncertainty of failure probability resulting from the vague 
(fuzzy) uncertainty of kurtosis of the random amplitude of initial member curvature e0. Discrepan-
cies between results are considerable and advert to the necessity of fuzzy analysis whenever the in-
put random variables are assigned subjectively. It is evident that the defuzzified values (centroids) 
represented graphically by the dashed curves were higher than the values evaluated by means of 
purely stochastic analysis (kernels) represented by the full curves in all cases. The non-linear mem-
bership functions despite the symmetric input membership function of kurtosis are apparent from 
Figure 3. Results of the application of probabilistic analysis point out the significant discrepancies 
of design reliability of steel structures acc. to the EUROCODE concept, from which the need for 
further calibration of reliability indices arises. 
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3 ULTIMATE LIMIT STATE AND SENSITIVITY ANALYSIS OF A STEEL PLANE FRAME 

3.1 Computational model 
The second study is aimed at the analysis of the ultimate limit state of a steel plane frame, see Fig-
ure 5. The analysis of the limit state requires utilization of the geometrical non-linear solution. The 
frame geometry was modelled using beam elements with initial curvature in the form of a parabola 
of the 3rd degree. The geometrical non-linear Euler incremental method combined with the New-
ton-Raphson method was employed (Kala 2005). 
 

 
Figure 5. Frame geometry and shape of the first eigen mode of buckling 

3.2 Input random quantities 
Experimentally obtained material and geometrical characteristics of steel products of a dominant 
Czech producer, see (Melcher et al. 2004) were utilized for the analysis of the problem. For non-
measured quantities (e.g., Young’s modulus), the study was based on data obtained from technical 
literature; for e.g. statistical characteristics of Young’s modulus are listed in (Fukumoto et al. 1976, 
Soares 1988). The statistical characteristics of input quantities are listed in Tab. 1. All input random 
quantities are considered statistically independent. 
 
Table 1. Input random quantities 
Sym-
bol 

Meaning Probability  
distribution 

Mean  
Value 

Standard  
deviation 

h1 Cross-sectional height Histogram 270.27 mm 1.196 mm 
b1 Cross-sectional width Histogram 136.81 mm 1.341 mm 
tw1 Web thickness Histogram 6.963 mm 0.277 mm 
tf1 Flange thickness Histogram 10.126 mm 0.466 mm 
fy1 Yield strength Histogram 297.3 MPa 16.8 MPa 
E1 Le

ft 
C

ol
um

n 

Young’s modulus Gauss 210 GPa 12.6 GPa 
h0 Cross-sectional height Histogram 360.36 mm 1.595 mm 
b0 Cross-sectional width Histogram 172.3 mm 1.689 mm 
tw0 Web thickness Histogram 8.44 mm 0.335 mm 
tf0 Flange thickness Histogram 12.611mm 0.582 mm 
fy0 Yield strength Histogram 297.3 MPa 16.8 MPa 
E0 

C
ro

ss
 b

ea
m

 

Young’s modulus Gauss 210 GPa 12.6 GPa 
h2 Cross-sectional height Histogram 270.27 mm 1.196 mm 
b2 Cross-sectional width Histogram 136.81 mm 1.341 mm 
tw2 Web thickness Histogram 6.963 mm 0.277 mm 
tf2 Flange thickness Histogram 10.126 mm 0.466 mm 
fy2 Yield strength Histogram 297.3 MPa 16.8 MPa 
E2 R

ig
ht

 C
ol

um
n 

Young’s modulus Gauss 210 GPa 12.6 GPa 
e0 System imperfection Gauss 0 3.5 mm 
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3.3 Sensitivity analysis results 
The Sobol’s sensitivity analysis belongs among the variance based methods, which provide more 
complex information on the sensitivity of an output quantity to an input quantity than, for e.g., the 
correlation analysis between the input and output (Sobol 1990). The Monte Carlo method was em-
ployed for the calculation of sensitivity indices (Saltelli 2004). The model output Y is the load car-
rying capacity calculated in each simulation run of the Monte Carlo method. 5000 simulation runs 
were applied in our study. Results of sensitivity analysis depicted in Figure 6 illustrate that the in-
teraction of higher orders are very small and that the dominant variable is that of the system imper-
fection e0.  

 

 
Figure 6. Sobol sensitivity analysis results 
 
 
Acquired results of the sensitivity analysis illustrate that the statistical characteristic of system im-
perfections should be determined with increased accuracy, which is however difficult or practically 
impossible in heavy service conditions. The uncertainty occurring in this case is not of stochastic 
character. Detailed statistical information on system imperfection would require information on the 
verticality of each column and also information on the initial axial curvature of each column. 
 

 
Figure 7. Sobol sensitivity analysis results with used fuzzy logic 
 

 
The fuzzy logic was applied (Zadeh 1965). The fuzzy uncertainty of initial system imperfection of 
the frame modelled using the first eigen mode buckling shape is in the variance of e0. The mean 
value is with certainty equal to zero for a symmetrical frame, i.e. it can be considered as a singleton 
of value zero. Due to the fact that the frame is symmetrical, the skewness is also equal to zero. For 
the fuzzy analysis, we shall consider that the initial system imperfection e0 has a Gaussian density 
probability function and that the variance of e0 is a fuzzy number with symmetrical membership 
function, See Figure 7. The fuzzy numbers of sensitivity indices were determined using the general 
extension principle (Dubois 1980). The fuzzy number of the first order sensitivity coefficient of im-
perfections e0 is shown in Figure 7. 
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3.4 Conclusion remarks 
It is clear from obtained sensitivity analysis results that system imperfections have a dominant in-
fluence on the variability of the load carrying capacity of the analysed frame. Since this variable is 
burdened with relatively high epistemic uncertainty, the variance of imperfection e0 was considered 
as a fuzzy number with triangular membership function. The result of the fuzzy analysis is a nonlin-
ear and asymmetrical membership function of the sensitivity index of system imperfection despite 
the linear and symmetric membership function of the variance of the imperfection e0. 

4 GENERAL CONCLUSION 

Results of the application of probabilistic analysis point out the significant discrepancies of design 
reliability of steel structures acc. to the EUROCODE concept, from which the need for further cali-
bration of reliability indices arises. Fuzzy analysis of failure probability illustrates that the discrep-
ancies of failure probability may be significantly covered by the fuzzy uncertainty of input data and 
computational procedures, which may significantly prevail over stochastic uncertainty in complex 
structures. It is necessary to continue monitoring material and geometrical characteristics of indus-
trially produced structures and aim at r a wider cooperation and collaboration of specialists of indi-
vidual fields. In the future it is necessary to continue in theoretical studies of reliability of com-
monly produced bearing structures and in perfecting methods of reliability analysis. 
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