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Abstract. The complexity of embedded controllers is steadily increasing. This 
trend, stimulated by the continuous improvement of the computational power of 
hardware, demands for a corresponding increase in the capability of design and 
safety engineers to maintain adequate safety levels. The use of formal methods 
during system design has proved to be effective in several practical 
applications. However, the development of certain classes of applications, like, 
for instance, avionics systems, also requires the behaviour of a system to be 
analysed under certain degraded situations (e.g., when some components are 
not working as expected). The integration of system design activities with 
safety assessment and the use of formal methods, although not new, are still at 
an early stage. These goals are addressed by the ESACS project, a European-
Union-sponsored project grouping several industrial companies from the 
aeronautic field. The ESACS project is developing a methodology and a 
platform �  the ESACS platform �  that helps safety engineers automating 
certain phases of their work. This paper reports on the application of the 
ESACS methodology and on the use of the ESACS platform to a case study, 
namely, the Secondary Power System of the Eurofighter Typhoon aircraft. 

Keywords: Formal Verification and Safety Assessment of Complex Systems, 
Automated Fault Tree Computation, ESACS 

1. Introduction 

In the development cycle of a complex system, it is possible to identify a certain 
number of steps each involving different processes and tasks that the system 
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development team has to carry out. In the classic waterfall model, the principal phases 
are: requirements analysis and specification, design, implementation, testing, analyses 
and maintenance. In the last decades, many variations of this model were proposed. 
Some of these are based on virtual prototyping and simulation, incremental 
development, reusable software and automated synthesis. As specification errors and 
misconceptions found in later phases of the system development cycle are extremely 
expensive to fix, it is evident that meticulous comprehension of the system and of its 
behaviour should be carried out as early as possible in the development cycle. 
Dedicated languages are therefore used in the requirements capturing phase to build a 
model of the system, and model checking techniques are used to analyse it in detail. 
The availability of a model is important for all participants in the system 
development; for example, if an unambiguous and executable model is available early 
on, customers and subcontractors can become aware with it, and can approve or 
improve the functionality and behaviour of the system before investing heavily in the 
implementation stages. Precise and detailed models are also in the best interest of the 
designers, analysers and testers of the system. 

 
 If the system under development is a safety critical system, in parallel to the 
standard development process described above, it is necessary to carry out a set of 
activities - safety assessment activities - whose goal is assessing the robustness of the 
system in degraded situations, that is, when some of the components are not working 
as expected. The phases, activities, and outputs of the safety assessment process are 
coded by various standards (e.g., ARP4754). The first step is defining the safety 
requirements of the system, that is, the minimum safety levels that the system must 
achieve. As an example, a safety requirement may be something like: “no single 
failure shall yield to a loss of a given output” . The next step is assessing the safety of 
the architecture, by determining what are the combinations of failures of components 
that may cause a safety requirement to be violated. During this activity, safety 
engineers produce, e.g., fault trees, that are compact representations of the 
combination of failures leading to the violation of a given safety requirement 
[VGRH81]. System certification typically requires the probability of such 
combination of failures to be below a given threshold. The traditional safety 
verification process, that relies on the ability of the safety engineer to understand and 
to foresee the system’s behaviour, is very difficult to carry out and error prone when 
dealing with highly complex systems. Moreover, even when formal methods are used 
during system development, the information passed to the safety engineer is still 
transmitted by means of informal specifications and the communication between 
system design and safety assessment activities can be seen as an “over the wall 
process”  [FMPN94]. 

 
 A solution to these issues is to perform the safety assessment analysis in some 
automated way, directly from the formal system model coming from the design 
engineer. This approach is being developed and investigated in ESACS (Enhanced 
Safety Assessment for Complex Systems), a European-Union-sponsored project in the 
area of safety analysis, involving several research institutions and leading avionics 
and aerospace industrial companies. The methodology developed within the ESACS 
project is supported by state-of-the-art and commercial tools for system modelling 
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and safety analysis. Furthermore, the effectiveness of the ESACS methodology is 
being tested against a set of real-world industrial case studies. In this paper we report 
on the application of the ESACS methodology to one of such industrial case studies, 
namely the Secondary Power System (SPS, for short) of the Eurofighter Typhoon and 
we report on the obtained results. 
 
Outline of the paper   The paper is structured as follows: in the next section we 
present the ESACS methodology and platform; in Section 3 we present the SPS case 
study and discuss our experience. In Section 4 we report on related work and in 
Section 5 we draw some conclusions and discuss future work. 

2. The ESACS Methodology &  the ESACS Platform 

The main goal of the ESACS project is the definition of a methodology, that is 
compliant with the design and safety assessment processes of the industrial partners 
involved in the project. The methodology must also be supported by tools, that can be 
gently integrated with the other tools already in use by the industrial partners. 
In order to achieve the above-mentioned goals, within ESACS we defined a 
methodology based on a set of key steps, that can be adapted by the various industrial 
partners according to their needs, and we set up a platform, called the ESACS 
platform, which is shipped in different configurations. The configurations of the 
ESACS platform are based on different tools, sharing the same architecture and 
providing the same basic functionalities. The use of different tools, although has lead 
to configurations that are not interoperable, has considerably eased the issue of 
integrating the platform within the development processes of the industrial partners. 
 The following two subsections describe in more details the methodology and the 
platform. 

2.1 The ESACS Methodology 

The main characteristic of the ESACS methodology is the capability of integrating the 
system design and the system safety assessment processes by providing an 
environment in which formal notations are the common and shared language to be 
used both during system design and safety assessment. 
 The methodology, sketched in Figure 1, is based on the following steps. 

 
Model Captur ing The starting point of the ESACS methodology is a formal model, 
that is, a model written in some formal language. The formal model can be either 
written by the design engineer or by the safety engineer. This alternative gives rise to 
two different scenarios. 
In the first scenario, that is, when the formal model is written by the design engineer, 
the model, that we call system model (SM), includes only the nominal behaviour of 
the system. The SM is used by the design engineer to verify the functional 
requirements and it is then passed to the safety engineer, to assess its safety. In order 
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to validate the system with respect to the safety requirements, the safety engineers 
will enrich the behaviour of the SM by automatically injecting failure modes on the 
SM, according to what described in more details below. 
 
 

 

Figure 1 – ESACS methodology steps 

 
In the second scenario, the formal model is built directly by the safety engineer and 
we call it FoSaM (Formal Safety Model). This model represents a formal view of the 
system highlighting its safety characteristics. To write a FoSAM, the safety engineer 
can browse a library of system components (that include both nominal and faulty 
behaviours) and a library of architectural safety patterns (containing typical structures 
of components to build a safety architecture, like, for instance, primary/backup of N-
version systems). This second scenario is followed during the early phases of the 
system life cycle, when there are still no design models available, but only some 
system specification. In this second scenario, the main goal is assessing the system 
architecture. 
 
Failure Mode Captur ing, Model Extension The second step of the methodology 
includes the failure modes (FMs) capturing, the model extension, and the safety 
requirements capturing phases. When the SM is written by the design engineer, in 
order to use it for safety analyses, the safety engineer must first extend it by injecting 
with failure modes, that is, with a specification of how the various components of the 
system can fail. This step yields to a model, that we call extended system model 
(ESM), in which all the components of the SM can fail according to the specified 
failure modes. The typologies of failure modes to inject into a SM can be stored and 
retrieved from a library of generic failure modes, the so-called Generic Failure Modes 
Library (GFML) and then automatically injected into the formal system model 
through an extension facility. 
 
Safety Requirements Captur ing As long as a SM/ESM or a FoSaM is available, it is 
possible to verify its behaviour with respect to the desired functional (nominal 
behaviour) and safety requirements (degraded behaviour). During the safety 
requirements capturing phase, therefore, design and safety engineers define functional 
and safety requirements, that will be used at a later stage to assess the behaviour of 
the system. In particular the design engineer and/or the safety engineer will verify the 
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system either by writing directly the system requirements using some formal notation 
(e.g., temporal logic [Eme90]) or by loading the basic safety requirements of a safety 
critical system from a so-called Generic Safety Requirement Library (GSRL). 
 
Model Analysis This is the phase in which the behaviour of a system is assessed 
against functional and safety requirements. The model analysis phase is performed by 
running formal verification tools (e.g., model checkers) on the given system 
properties. In particular, model analysis includes two possible verification tasks. In 
case of a system property, the model checking engine can test validity of the property, 
and generate a counterexample in case the system property is not verified (e.g., 
assuming the property is required to hold for every possible path of the system, the 
model checking engine generates a counterexample showing one particular path along 
which the property is falsified). In case of a safety requirement, the model checking 
engine generates all possible minimal combinations of components failures, called 
Minimal Cut Sets (MCS), that violate the safety requirements. Minimal cut sets can 
be arranged in the so-called Fault Tree representation [VGRH81]. Fault trees provide 
a convenient representation of the combination of events resulting in the violation of a 
given top level event, and are usually represented in a graphical way, as a parallel or 
sequential combination of AND/OR logical gates. 
 
Result Extraction. During this phase the results produced by the model analysis 
phase are processed to be presented in human-readable format. In particular, the result 
extraction phase is responsible for conveniently displaying all the outputs 
automatically generated by the model checking engine, e.g., simulation traces and 
minimal cut sets, and to present results of safety analyses in formats that are 
compatible with traditional fault tree analysis tools used by safety engineers. 

2.2 The ESACS Platform 

The ESACS platform supports and automates the application of the methodology 
described in the previous subsection. 
 The ESACS platform is shipped in four possible configurations, namely the 
Altarica configuration [AGPR00], based on the Cecilia-OCAS tool, the 
FSAP/NuSMV-SA configuration (http://sra.itc.it/tools/FSAP), based on the NuSMV2 
model checker [CCG+02], the SCADE configuration, based on the SCADE tool 
(http://www.esterel-technologies.com) and on the PROVER plug-in [SS00], and the 
Statemate configuration, based on the Statemate tool (http://www.ilogix.com) and on 
the VIS model checker [BHS+96]. 
 All the configurations of the ESACS platform share the same architectural 
principles and functional requirements. The delivery in four different configurations 
has guaranteed a more flexible integration of the platform within the industrial 
partners’  processes, by allowing, for instance, choice on the formal notation to use for 
writing SM/FoSAM. The general architecture of the ESACS platform is shown in 
Figure 2.  
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Figure 2 – ESACS Platform Architecture 

 
 The core of the ESACS platform is the so-called Safety Analysis Task (SAT). 
This block provides the core of the interaction with the system and allows users to 
access the libraries and to store and manage all the information relevant to the 
assessment of a system (SAT Repository). In particular, the SAT repository can store 
the following information: system models (i.e., SM, ESM or FoSaM), failure modes, 
system requirements (i.e., system properties and safety requirements), and the 
specifications and results of the analyses to perform.  
 The other blocks of the ESACS platform include facilities for system design, for 
automated system verification, and for automated safety assessment. The architecture 
is composed of both commercial off-the-shelf tools (i.e., for model capturing, for the 
verification of system properties, and for the presentation of safety analysis results) 
and components (both libraries and algorithms) specifically developed for the ESACS 
project (e.g., for system requirements capturing, failure mode capturing and system 
model extension, model analysis – for the generation of MCS starting from a safety 
requirement, and safety result extraction). 
 The commercial tools provided for the different ESACS platform configurations 
are the following. For the model capturing block, which is used by the design 
engineer to define the system formal model, the following different modelling tools 
are used: Altarica, NuSMV, Statemate and Scade. The model analysis block, used to 
verify the SM/ESM or FoSaM with respect a specific system property, is based on 
one of the following model checking engines: VIS, Prover Plug-In, NuSMV-SA (an 
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extension of NuSMV2, with safety analysis algorithms), and Altarica. Finally the 
safety analysis result presentation block is used to display the output of the automated 
fault tree generation in the traditional safety analysis tools, namely Isograph FT+, 
Aralia, ORA and SARAA. 
 The components specifically defined for ESACS include facilities for failure mode 
capturing and model extension, system requirement capturing, model analysis (in 
particular automated fault tree generation) and result extraction.  The failure mode 
capturing block allows the user retrieve the specification of the failure modes from a 
specifically developed library of failure modes (GFML) and to instantiate them to a 
specific system model. When all the failure modes have been retrieved and 
instantiated, the model extension facility allows for the automatic extension of the SM 
into a ESM.  The safety requirements capturing block allows to write functional and 
safety requirements; these can either be extracted from a library of generic properties 
(GSRL) or directly written using some standard logic formalism (e.g., temporal 
logic).  Finally the model analysis and the result extraction blocks implement the 
most important facility of the ESACS approach, e.g., the computation algorithm for 
the automated generation of fault trees, based on formal methods techniques, and the 
necessary conversion algorithms to present the result of safety analysis using standard 
commercial tools (e.g., for analysing fault trees). 
 As a final remark, we stress that the basic functions provided by the ESACS 
platform may be combined in different ways, in order to comply with various 
development and safety assessment processes. For instance, it is possible to support 
an incremental approach, based on iterative releases of a given system model at 
different levels of detail (e.g., model refinement, addition of further failure modes 
and/or safety requirements). Furthermore, it is possible to have iterations in the 
execution of the different phases (design and safety assessment), e.g., it is possible to 
let the model refinement process be driven by the safety assessment phase outcome 
(e.g., disclosure of system flaws requires fixing the physical system and/or correcting 
the formal model). 

3. A Case Study: the Secondary Power System 

One of the case studies investigated in the ESACS project is the Secondary Power 
System (SPS hereafter) of the Eurofighter Typhoon aircraft. The case study has been 
chosen for the following reasons: it is of industrial interest, it is a heterogeneous 
system comprising various types of components like electromechanical components 
(e.g., control valves, relays), mechanical components (e.g., shafts, gearboxes, 
freewheels), electronic transducers (e.g., speed sensors, pressure sensors) and 
electronic controllers (SPS computers), and it has been judged of the right 
(medium/high) complexity to be analysed within the project. The case study has been 
conducted in collaboration among Alenia Aeronautica, Società Italiana Avionica, and 
ITC-IRST. The aims were twofold: on the one hand we wanted to investigate the 
behaviour of the SPS, on the other we wished to use the case study as a way to test 
two configurations of the ESACS platform. 
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The Secondary Power System drives the hydraulic and the electrical utilities of 
both the left and right hand side of the aircraft and therefore it can be considered as a 
“critical”  system from the safety point of view. To satisfy the basic safety 
requirement, i.e. “no single failures shall cause the total loss of the SPS utilities” , the 
architecture of the system includes two basic redundancies: there are two independent 
and perfectly symmetric lines, whose purpose is to drive the left and the right hand 
side utilities, respectively; for each side, the mechanical drive of the relevant utilities 
(normal mode) is redounded by a pneumatic drive (cross-bleed mode) in case of 
failure of one of the components in the mechanical line. 

Figure 3 shows a schematic view of the SPS. The SPS normal operation consists 
in transmitting the mechanical power from the engines to the relevant hydraulic and 
electrical generators. In case of an engine failure, the SPS computers automatically 
initiate a cross-bleed procedure consisting in driving the hydraulic and electrical 
generators by means of an air turbine motor, using bled air from the opposite engine. 
Correct functioning of this procedure is an example of one safety requirement of the 
SPS system.  

 

 

Figure 3 – SPS schematic view 

 
In order to investigate the behaviour of the SPS, a set of formal models, described at 
different level of details, has been set up, using two configurations of the ESACS 
platform, namely the Statemate-based configuration and FSAP/NuSMV-SA. This 
hierarchy of models can be summarised as follows (in increasing order of 
complexity): 

 
1. the simplest model, which – in the standard development process – is also 

representative of the first specification that the safety engineer receives from the 
design engineer - is a sort of block diagram. In our case, this simple model includes 
both the left and right hand side of the SPS and a very simplified model of the SPS 
computer. The variables used are all Boolean and the components are blocks which 
may be either working or not working; Figure 4 highlights the various components 
and the data flow among them;  

 



Improving Safety Assessment of Complex Systems: 
An industrial case study      9 

2. in the second model, the behaviour of the components of the SPS is more realistic, 
even if the SPS computer is still very simplified. Using a discretization approach, 
variables representing physical quantities have been encoded by means of integer 
variables ranged between 0 and 20. Moreover, by exploiting the functional 
symmetry of the system, we removed some of the components, and we limited 
reasoning on just one side of the system; 

3. the third model is as the previous one  but with both sides of the system included; 
4. the fourth model is derived from the previous one by enriching the SPS computer 

model; in the Statemate-based configuration we used real-valued variables, 
whereas in FSAP/NuSMV-SA we used discretized integer variables with ranges 
closer to the real values provided by the system; 

5. finally, we realised two very detailed models in which both the nominal and the 
faulty behaviour of each component is modelled in detail. Variables are encoded 
like in the previous model. Graphs obtained by simulating these detailed models 
are in accordance with the graphs obtained from the telemetry on the real system.    

 
 

 

Figure 4 – SPS block diagram model 
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4. Results 

The industrial partners involved in the SPS case study (Alenia Aeronautica and 
Società Italiana Avionica) performed a cycle of application, as end-users of the 
ESACS methodology and tool-set, in which the various SPS models were tested, in 
order to highlight pros and cons of the ESACS approach and to devise possible 
methodology and tool platform improvements. The main criteria of the evaluation 
were the following: 

 
1. effectiveness of the methodology to improve the integration of  the “design”  and 

“safety”  activities on the complex system; 
2. effectiveness of the tool-set in the implementation of the different steps defined by 

the methodology (i.e., failure mode definition and injection in the system model, 
system property definition, system verification with respect to the functional and 
safety requirements, fault tree generation). 

 
In the following we briefly summarise the results of our evaluation. 
 
Representational Issues: one interesting aspect of the case study concerned the 
modelling of the various components of the SPS. In particular, one of the most 
challenging modelling issue has been the modelling of hydraulic and mechanical 
components. For such systems, in fact, when reasoning about degraded situations, the 
standard input/output modelling with functional blocks may be particularly difficult. 
(For instance, a leakage in a pipe may cause loss of pressure in the whole pipe. As a 
second example, in certain situations, e.g. grippage, mechanical forces may need to 
be propagated in “reverse”  - e.g., by affecting functional blocks that are further “up”  
in the functional chain). To address these issues, particular care had to be taken in 
modelling such kind of aspects. More in general, we think that the use of hybrid 
systems modelling tools may be extremely effective for such kind of models. 

 
Integration of the “design”  and “safety”  activities: we experienced that the ESACS 
approach effectively improves and encourages the interaction between design and 
safety engineers as they, for instance, can “speak”  the same unambiguous language, 
sharing the same formal system model. Moreover, the safety evaluation of the 
proposed system architecture, thanks to the possibility to simulate and verify the 
system model, can be performed in the very early phases of system design. However, 
an important issue concerns the possible “semantic gap”  between the model provided 
and the actual design/system. In fact, while existing modelling and simulation tools 
(e,g., the ones provided by the Statemate-based configuration) support very rich input 
languages, often, in order to be able to formally verify properties it is necessary to 
scale the model down, e.g., by abstracting away certain characteristics of the design 
model. This leads to models whose accuracy with respect to the real models has to be 
agreed upon by specialists. On the other hand, future improvements of current model 
checking tools can help to ameliorate this problem. We will come back to this point in 
the next section. 
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Failure mode definition and injection: within the ESACS approach, as already 
discussed, there are two possibilities to include the failure modes of system 
components in the system model: the definition of user-defined failure modes as a 
particular class of variables included in the system model, and/or the injection of 
typical failure modes (such as stuck-at, ramp-down, delay, ...) to take into account all 
the possible faulty behaviours of system components. The facility for failure mode 
injection and system model extension experimented during the different test cycles of 
the ESACS platform works well but it is based on a library of generic failure modes 
specifically created for the ESACS purpose. As a consequence, the library needs to be 
enriched in the next future to include the failure modes typical of the main types of 
complex system components (e.g., electronic, electric, mechanical, pneumatic 
components and so on). 

 
System property definition: the ESACS approach allows the definition of different 
types of verification tasks on system models, like, for instance, reachability of a given 
state  (e.g., gearbox failure) or the fulfilment of a given condition (e.g., output from 
one utility a certain percentage under its nominal value). In any case, in order to write 
the system property, it is necessary to use some particular formalism (e.g., LTL or 
CTL temporal logics), that are often difficult to understand, especially by people who 
are not expert in formal verification. As a consequence, a future improvement of the 
ESACS platform concerns the inclusion of different classes of system properties to 
instantiate the main formalisms to be used for performing the different verification 
tasks. 

 
System property verification: performing model checking of functional requirements 
on the system model often leads to the “state explosion”  problem. In order to mitigate 
this problem, the definition of a set of different models has helped, as it has been 
possible to define “specialised”  models to be used for certain properties. 
From an industrial point of view, the possibility of using simulation and exhaustive 
techniques to “drive”  the system into a state has been proven particularly useful, for 
example, to show that a safety critical state cannot be reachable when failure modes 
are disabled. 
 
Fault tree generation: automatic generation of fault trees has been possible with 
satisfactory results only for the first two types of formal model, whereas with the 
more complex models we encountered difficulties due to the “state explosion”  
problem. Nonetheless, the generated fault trees can still be very informative for the 
safety engineers (see, for instance, the example of generated fault tree in Figure 5). 
The possibility for the safety engineer to have more complex system models, which, 
at least, can be used to perform simulations, remains also a valuable aspect.  
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Figure 5 – An example of generated Fault Tree 

 

5. Related Work 

ESACS Project and Platform The work described in this paper has been developed 
within the ESACS project. For more details about the project we refer the reader to 
the URL http://www.esacs.org���The different configurations of the platform have 
been tested on various case studies, among which we would like to mention: 

 
1. Air inlet control system APU (Auxiliary Power Unit) JAS39 Gripen, related to a 

critical subsystem of an airplane. The work has been carried out using the SCADE 
based configuration. 

2. Wheel Steering System, related to a critical subsystem of a family of Airbus 
airplanes. 

3. A controller of the Airbus A340 High Lift System. 
4. Hydraulic System A320, related to the hydraulic system of the Airbus A320. The 

work carried out using the Altarica and (partly, FSAP-NuSMV-SA), is described in 
[BCS02]. 

 
FSAP/NuSMV-SA Configuration Concerning the NuSMV-based configuration, the 
safety analysis capabilities provided by this platform include traditional fault tree 
generation [VGRH81] together with formal verification capabilities typical of model 
checking [CGP00, CCG+02]. The algorithms for cut set and prime implicant 
computation mentioned in Section 2.1 are based on classical procedures for 
minimization of boolean functions, specifically on the implicit-search procedure 
described in [CM92, CM93], which is based on Binary Decision Diagrams (BDDs) 
[Bry92]. This choice was quite natural, given that the NuSMV model checker 
[CCG+02] makes a pervasive use of BDD data structures. The ordering analysis 
procedure mentioned in Section 2.1 also makes use of these algorithms [BV03]. 
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Fault Tree Computation The ESACS Platform can compute fault trees using 
algorithms based on formal methods techniques. Related work includes, e.g., [LR98, 
Rae00]. The implemented algorithms support both monotonic and non-monotonic 
systems. We also mention [MDCS98, SDC99], which describe DIFTree, a 
methodology supporting (however, still at the manual level) fault tree construction 
and allowing for different kinds of analyses of sub-trees (e.g., Markovian or Monte 
Carlo simulation for dynamic ones, and BDD-based evaluation for static ones). The 
notation for non-logical (dynamic) gates of fault trees and the support for sample 
probabilistic distributions could be nice features to be integrated in our framework.  
 
Probabilistic Safety Assessment A large amount of work has been done in the area 
of probabilistic safety assessment (PSA) and in particular on dynamic reliability 
[Siu94]. Dynamic reliability is concerned with extending the classical event or fault 
tree approaches to PSA by taking into consideration the mutual interactions between 
the hardware components of a plant and the physical evolution of its process variables 
[MZDL98].  Examples of scenarios taken into consideration are, e.g., human 
intervention, expert judgment, the role of control/protection systems, the so-called 
failures on demand (i.e., failure of a component to intervene), and also the ordering of 
events during accident propagation. Different approaches to dynamic reliability 
include, e.g., state transitions or Markov models [Ald87, Pap94 ], the dynamic event 
tree methodology [CIMP92], and direct simulation via Monte Carlo analysis [SD92, 
MZDL98]. 

6. Conclusions and Future Work 

In this paper we have presented the ESACS safety analysis platform and 
methodology.  The ESACS platform can be used as a tool to assist the safety analysis 
process from the early phases of system design to the formal verification and safety 
assessment phases. The goal is to provide an environment that can be used both by 
design engineers to formally verify a system and by safety engineers to automate 
certain phases of safety assessments. To achieve these goals, the platform provides a 
set of basic functions which can be combined in arbitrary ways to realize different 
process development methodologies.  The functionality includes traditional analysis 
methodologies like fault tree generation, together with exhaustive property 
verification capabilities typical of model checking, plus model construction facilities 
(e.g., automatic failure injection based on a library of predefined failure modes) and 
traceability capabilities, which improve exchange of information and make system 
maintenance easier. The major benefits provided by the use of the ESACS platform 
and methodology are a tight integration between the design and the safety teams, 
mechanisation of (some of) the activities related both to the verification and to the 
safety analysis of systems in a uniform environment, and support for the realization of 
different development methodologies (e.g., incremental development approach, based 
on iterative releases of a given system model at different levels of detail). 
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Concerning the works on dynamic reliability cited in Section 5, the most notable 
difference between our approach and the works mentioned there is that we present 
automatic techniques, based on model checking, for both fault tree generation and 
ordering analysis, whereas traditional works on dynamic reliability rely on manual 
analysis (e.g., Markovian analysis [Pap94]) or simulation (e.g., Monte Carlo 
simulation [MZDL98], the TRETA package of [CIMP92]). Current work is focusing 
on some improvements and extensions in order to make the methodology competitive 
with existing approaches. In particular, we need to extend our framework in order to 
deal with probabilistic assessment. Although not illustrated in this paper, associating 
probabilistic estimates to basic events and evaluating the resulting fault trees is 
straightforward. However, more work needs to be done in order to support more 
complex probabilistic dynamics (see, e.g., [DS94]). We also want to overcome the 
current limitation to permanent failures.  

As far as FSAP/NuSMV-SA is concerned, the models used so far are discrete, 
finite-state transition models.  In order to allow for more realistic models, we are 
considering an extension of NuSMV with hybrid dynamics, along the lines of [Hen96, 
HHW97]. This would allow both to model more complex variable dynamics, and also 
a more realistic modelling of time (which, currently, is modelled by an abstract 
transition step).  Furthermore, this would ameliorate the problem of state explosion, 
which is partly due to the current use of discretized integer variables. Another 
direction of research that we are investigating is the use of SAT-based model-
checking verification techniques [BCCZ99], which have been shown to be extremely 
efficient for model debugging and bug hunting [ABC+02, ACKS02]. In the near 
future, we plan to use these techniques both for interactive fault tree generation and 
for formal specification debugging. 

7. Acknowledgements 

Several other people contributed to the work presented in this paper. We wish in 
particular to thank: Ove Akerlund (Prover), Pierre Bieber (ONERA), Christian 
Bougnol (AIRBUS), E. Boede (OFFIS), Matthias Bretschneider (AIRBUS-D), 
Charles Castel (ONERA), Alain Griffault (LaBri, Universit´e de Bordeaux), C. 
Kehren (ONERA), Benita Lawrence (AIRBUS-UK), Andreas Luedtke (University of 
Oldenburg), Silvayn Metge (AIRBUS-F), Chris Papadopoulos (AIRBUS-UK), 
Renata Passarello (SIA), Thomas Peikenkamp (OFFIS), Per Persson (Saab), Christel 
Seguin (ONERA), and Luigi Trotta (Alenia Aeronautica). 
 
Finally, FSAP/NuSMV-SA would have not been possible without the help of  Paolo 
Traverso, Alessandro Cimatti, and Gabriele Zacco. 

8. References 

[ABC+02] Audemard, G. & Bertoli, P. & Cimatti, A. & Kornilowicz, A. & Sebastiani 
R. A SAT Based Approach for Solving Formulas over Boolean and Linear 



Improving Safety Assessment of Complex Systems: 
An industrial case study      15 

Mathematical Propositions. In A. Voronkov (Ed.), Proc. Conference on Automated 
Deduction (CADE-18), volume 2392 of LNAI, pages 195-210, Springer-Verlag, 
2002. 
 
[ACKS02] Audemard, G. & Cimatti, A. & Kornilowicz, A. & Sebastiani R. Model 
Checking for Timed Systems. In D. Peled, M.Y. Vardi (Eds.), Proc. Conference on 
Formal Techniques for Networked and Distributed Systems (FORTE 2002), volume 
2529 of LNCS, pages 243-259, Springer-Verlag, 2002. 
 
[AGPR00] Arnold, A. & Griffault, A. & Point, G.  & Rauzy, A. The AltaRica 
formalism for describing concurrent systems. Fundamenta Informaticae, 40:109-124, 
2000. 
 
[Ald87] Aldemir, Y. Computer-assisted Markov Failure Modeling of Process Control 
Systems. IEEE Transactions on Reliability, R-36:133-144, 1987. 
 
[BCCZ99] Biere, A. & Cimatti, A & Clarke, E.M. & Zhu, Y. Symbolic Model 
Checking without BDDs. In R. Cleaveland (Ed.) Proc. 5th International Conference 
on Tools and Algorithms for Construction and Analysis of Systems (TACAS'99), 
volume 1579 of LNCS, pages 193-207, Springer-Verlag, 1999.  
 
[BCS02] Bieber, P. & Castel, C. & Seguin, C. Combination of Fault Tree Analysis 
and Model Checking for Safety Assessment of Complex System. In Proc. 4th 
European Dependable Computing Conference, volume 2485 of LNCS, page 19-31, 
Springer-Verlag, 2002. 
 
 [BHS+96] Brayton R.K. & Hachtel G.D. & Sangiovanni-Vincentelli A.L. & Somenzi 
F. & Aziz A. & Cheng S.-T. & Edwards S.A. & Khatri S.P. & Kukimoto Y. & Pardo 
A. & Qadeer A. & Ranjan R.K. & Sarwary S. & Shiple T.R. &  Swamy G. & Villa T. 
VIS: A System for Verification and Synthesis. In R. Alur and T.A. Henzinger (Eds.), 
Proc.8th International Conference on Computer Aided Verification (CAV’96), 
Volume 1102 of LNCS, pages 428-432, Springer-Verlag, 1996. 
 
[Bry92] Bryant, R.E. Symbolic Boolean Manipulation with Ordered Binary Decision 
Diagrams. ACM Computing Surveys, 24(3):293-318, 1992. 
 
 [BV03] Bozzano, M. & Villafiorita, A. Integrating Fault Tree Analysis with Event 
Ordering Information. In Proc. European Safety and Reliability Conference (ESREL 
2003), Maastricht, The Netherlands, 2003. 
 
[CCG+02] Cimatti A. & Clarke, E.M. & Giunchiglia, E. & Giunchiglia, F. &  Pistore, 
M. & Roveri, M. & Sebastiani, R. & Tacchella, A. NuSMV2: An OpenSource Tool 
for Symbolic Model Checking. In Proc. International Conference on Computer-Aided 
Verification (CAV 2002), Copenhagen, Denmark, 2002. 
 
[CGP00] Clarke, E.  & Grumberg, O. & Peled, D. Model Checking. MIT Press, 1999. 
 



16      Marco Bozzano, Antonella Cavallo, Massimo Cifaldi, Laura Valacca, Adolfo Villafiorita 

[CIMP92] Cojazzi, G. & Izquierdo, J.M. & Meléndez, E. & Perea, M.S. The 
Reliability and Safety Assessment of Protection Systems by the Use of Dynamic 
Event Trees. The DYLAM-TRETA Package. In Proc. XVIII Annual Meeting Spanish 
Nucl. Soc., 1992. 
 
[CM92] Coudert, O. & Madre, J. Implicit and Incremental Computation of Primes 
and Essential Primes of Boolean Functions. In Proc. 29th Design Automation 
Conference (DAC'98), pages 36-39, IEEE Computer Society Press, 1992. 
 
[CM93] Coudert, O. & Madre, J. Fault Tree Analysis: 1020 Prime Implicants and 
Beyond. In Proc. Annual Reliability and Maintainability Symposium, 1993. 
 
[DS94] Devooght, J. & Smidts, C. Probabilistic Dynamics; The Mathematical and 
Computing Problems Ahead. In T. Aldemir, N.O. Siu, A. Mosleh, P.C. Cacciabue and 
B.G. Göktepe (Eds.), Reliability and Safety Assessment of Dynamic Process Systems, 
NATO ASI Series F, 120:85-100, Springer-Verlag, 1994. 
 
 [Eme90] Emerson, E. Temporal and Modal Logic. In J. van Leeuwen (Ed.), 
Handbook of Theoretical Computer Science, Volume B, pp. 995-1072. Elsevier 
Science, 1990. 
 
[FMPN94] Fenelon, P. & McDermid, J.A. & Pumfrey D.J. & Nicholson. M. Towards 
Integrated Safety Analysis and Design. ACM Applied Computing Review, 2(1):21-32, 
ACM Press, 1994. 
 
 [Hen96] Henzinger, T.A. The Theory of Hybrid Automata. In Proc. 11th Annual 
International Symposium on Logic in Computer Science (LICS'96), pages 278-292, 
IEEE Computer Society Press, 1996. 
 
[HHW97] Henzinger, T.A. & Ho, P.-H. & Wong-Toi, H. Hytech: : A Model Checker 
for Hybrid Systems. Software Tools for Technology Transfer, 1:110-122, 1997. 
 
 [LR98] Liggesmeyer, P. & Rothfelder, M. Improving System Reliability with 
Automatic Fault Tree Generation. In Proc. 28th International Symposium on Fault 
Tolerant Computing (FTCS’98), Munich, Germany, pp. 90-99. IEEE Computer 
Society Press, 1998. 
 
[MDCS98] Manian, R. & Dugan, J.B., & Coppit, D. & Sullivan, K.J. Combining 
Various Solution Techniques for Dynamic Fault Tree Analysis of Computer Systems. 
In Proc. 3rd International High-Assurance Systems Engineering Symposium 
(HASE'98), pages 21-28, IEEE Computer Society Press, 1998. 
 
[MZDL98] Marseguerra, M., & Zio, E. & Devooght, J. & Labeau, P.E. A concept 
paper on dynamic reliability via Monte Carlo simulation. Mathematics and 
Computers in Simulation, 47:371-382, 1998. 
 
[Pap94] Papazoglou, I.A. Markovian Reliability Analysis of Dynamic Systems. In T. 
Aldemir, N.O. Siu, A. Mosleh, P.C. Cacciabue and B.G. Göktepe (Eds.), Reliability 



Improving Safety Assessment of Complex Systems: 
An industrial case study      17 

and Safety Assessment of Dynamic Process Systems, NATO ASI Series F, 120:24-43, 
Springer-Verlag, 1994. 
 
[Rae00] Rae, A. 2000. Automatic Fault Tree Generation – Missile Defence System 
Case Study. Technical Report 00-36, Software Verification Research Centre, 
University of Queensland, 2000. 
 
[SD92] Smidts, C. & Devooght, J. Probabilistic Reactor Dynamics II. A Monte-Carlo 
Study of a Fast Reactor Transient. Nuclear Science and Engineering, 111(3):241-256, 
1992. 
 
[SDC99] Sullivan, K.J., & Dugan, J.B., & Coppit, D. The Galileo Fault Tree Analysis 
Tool. In Proc. 29th Annual International Symposium on Fault-Tolerant Computing 
(FTCS’99), pages 232-235, IEEE Computer Society Press, 1999. 
 
[Siu94] Siu, N.O. Risk Assessment for Dynamic Systems: An Overview. Reliability 
Engineering ans System Safety, 43:43-74, 1994. 
  
[SS00] Sheeran M. & and Stalmarck G. A tutorial on Stalmarck’s proof procedure for 
propositional logic, Formal Methods in System Design, vol. 16(1):23–58, 2000. 
 
 [VGRH81] Vesely, W. & Goldberg, F. & Roberts, N. & Haasl D. 1981. Fault Tree 
Handbook, Technical Report NUREG-0492, Systems and Reliability Research Office 
of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission. 
 


