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Abstract. The complexity of embedded controllers is steadily increasing. This
trend, stimulated by the continuous improvement of the computational power of
hardware, demands for a corresponding increase in the capability of design and
safety engineers to maintain adequate safety levels. The use of forma methods
during system design has proved to be effective in severa practica
applications. However, the development of certain classes of applications, like,
for instance, avionics systems, also requires the behaviour of a system to be
analysed under certain degraded situations (e.g., when some components are
not working as expected). The integration of system design activities with
safety assessment and the use of formal methods, although not new, are still at
an early stage. These goals are addressed by the ESACS project, a European-
Union-sponsored project grouping several industrial companies from the
aeronautic field. The ESACS project is developing a methodology and a
platform — the ESACS platform — that helps safety engineers automating
certain phases of their work. This paper reports on the application of the
ESACS methodology and on the use of the ESACS platform to a case study,
namely, the Secondary Power System of the Eurofighter Typhoon aircraft.

Keywords: Formal Verification and Safety Assessment of Complex Systems,
Automated Fault Tree Computation, ESACS

1. Introduction

In the development cycle of a complex system, it is possible to identify a certain
number of steps each involving different processes and tasks that the system
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development team hasto carry out. In the classic waterfall model, the principal phases
are: requirements analysis and specification, design, implementation, testing, analyses
and maintenance. In the last decades, many variations of this model were proposed.
Some of these are based on virtua prototyping and simulation, incremental
development, reusable software and automated synthesis. As specification errors and
misconceptions found in later phases of the system development cycle are extremely
expensive to fix, it is evident that meticulous comprehension of the system and of its
behaviour should be carried out as early as possible in the development cycle.
Dedicated languages are therefore used in the requirements capturing phase to build a
model of the system, and model checking techniques are used to analyse it in detail.
The availability of a model is important for al participants in the system
development; for example, if an unambiguous and executable model is available early
on, customers and subcontractors can become aware with it, and can approve or
improve the functionality and behaviour of the system before investing heavily in the
implementation stages. Precise and detailed models are aso in the best interest of the
designers, analysers and testers of the system.

If the system under development is a safety critical system, in parallel to the
standard development process described above, it is necessary to carry out a set of
activities - safety assessment activities - whose goal is assessing the robustness of the
system in degraded situations, that is, when some of the components are not working
as expected. The phases, activities, and outputs of the safety assessment process are
coded by various standards (e.g., ARP4754). The first step is defining the safety
requirements of the system, that is, the minimum safety levels that the system must
achieve. As an example, a safety requirement may be something like: “no single
failure shall yield to a loss of a given output”. The next step is assessing the safety of
the architecture, by determining what are the combinations of failures of components
that may cause a safety requirement to be violated. During this activity, safety
engineers produce, eg., fault trees, that are compact representations of the
combination of failures leading to the violation of a given safety requirement
[VGRH81]. System certification typically requires the probability of such
combination of failures to be below a given threshold. The traditional safety
verification process, that relies on the ability of the safety engineer to understand and
to foresee the system’s behaviour, is very difficult to carry out and error prone when
dealing with highly complex systems. Moreover, even when formal methods are used
during system development, the information passed to the safety engineer is still
transmitted by means of informal specifications and the communication between
system design and safety assessment activities can be seen as an “over the wall
process’ [FMPN94].

A solution to these issues is to perform the safety assessment analysis in some
automated way, directly from the formal system model coming from the design
engineer. This approach is being developed and investigated in ESACS (Enhanced
Safety Assessment for Complex Systems), a European-Union-sponsored project in the
area of safety analysis, involving several research institutions and leading avionics
and aerospace industrial companies. The methodology developed within the ESACS
project is supported by state-of-the-art and commercia tools for system modelling
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and safety analysis. Furthermore, the effectiveness of the ESACS methodology is
being tested against a set of real-world industrial case studies. In this paper we report
on the application of the ESACS methodology to one of such industrial case studies,
namely the Secondary Power System (SPS, for short) of the Eurofighter Typhoon and
we report on the obtained results.

Outline of the paper The paper is structured as follows: in the next section we
present the ESACS methodology and platform; in Section 3 we present the SPS case
study and discuss our experience. In Section 4 we report on related work and in
Section 5 we draw some conclusions and discuss future work.

2. The ESACS Methodology & the ESACS Platform

The main goal of the ESACS project is the definition of a methodology, that is
compliant with the design and safety assessment processes of the industrial partners
involved in the project. The methodology must also be supported by tools, that can be
gently integrated with the other tools aready in use by the industrial partners.
In order to achieve the above-mentioned goals, within ESACS we defined a
methodology based on a set of key steps, that can be adapted by the various industrial
partners according to their needs, and we set up a platform, called the ESACS
platform, which is shipped in different configurations. The configurations of the
ESACS platform are based on different tools, sharing the same architecture and
providing the same basic functionalities. The use of different tools, although has lead
to configurations that are not interoperable, has considerably eased the issue of
integrating the platform within the development processes of the industrial partners.
The following two subsections describe in more details the methodology and the
platform.

2.1 The ESACS M ethodology

The main characterigtic of the ESACS methodology is the capability of integrating the
system design and the system safety assessment processes by providing an
environment in which formal notations are the common and shared language to be
used both during system design and safety assessment.

The methodology, sketched in Figure 1, is based on the following steps.

Model Capturing The starting point of the ESACS methodology is a formal model,
that is, a model written in some formal language. The formal model can be either
written by the design engineer or by the safety engineer. This aternative gives rise to
two different scenarios.

In the first scenario, that is, when the formal model is written by the design engineer,
the model, that we call system model (SM), includes only the nominal behaviour of
the system. The SM is used by the design engineer to verify the functional
requirements and it is then passed to the safety engineer, to assess its safety. In order
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to validate the system with respect to the safety requirements, the safety engineers
will enrich the behaviour of the SM by automatically injecting failure modes on the
SM, according to what described in more details below.

‘ Model capturing (SM or FoSaM) ‘

FM capturing ‘ } Extended model (ESM) ‘
@ Model analysis
SR capruring verification tool

Safety result Safety analysis
extraction tools

Figure 1 — ESACS methodology steps

In the second scenario, the formal model is built directly by the safety engineer and
we call it FoSaM (Formal Safety Model). This model represents a formal view of the
system highlighting its safety characteristics. To write a FOSAM, the safety engineer
can browse a library of system components (that include both nominal and faulty
behaviours) and a library of architectural safety patterns (containing typical structures
of components to build a safety architecture, like, for instance, primary/backup of N-
version systems). This second scenario is followed during the early phases of the
system life cycle, when there are still no design models available, but only some
system specification. In this second scenario, the main goal is assessing the system
architecture.

Failure Mode Capturing, Model Extension The second step of the methodology
includes the failure modes (FMs) capturing, the model extension, and the safety
requirements capturing phases. When the SM is written by the design engineer, in
order to use it for safety analyses, the safety engineer must first extend it by injecting
with failure modes, that is, with a specification of how the various components of the
system can fail. This step yields to a model, that we call extended system model
(ESM), in which all the components of the SM can fail according to the specified
failure modes. The typologies of failure modes to inject into a SM can be stored and
retrieved from alibrary of generic failure modes, the so-called Generic Failure Modes
Library (GFML) and then automatically injected into the forma system model
through an extension facility.

Safety Requirements Capturing Aslong asa SM/ESM or a FoSaM isavailable, it is
possible to verify its behaviour with respect to the desired functional (nominal
behaviour) and safety requirements (degraded behaviour). During the safety
requirements capturing phase, therefore, design and safety engineers define functional
and safety requirements, that will be used at a later stage to assess the behaviour of
the system. In particular the design engineer and/or the safety engineer will verify the
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system either by writing directly the system requirements using some formal notation
(e.g., temporal logic [EmeQ0]) or by loading the basic safety requirements of a safety
critical system from a so-called Generic Safety Requirement Library (GSRL).

Model Analysis This is the phase in which the behaviour of a system is assessed
against functional and safety requirements. The model analysis phase is performed by
running formal verification tools (e.g.,, model checkers) on the given system
properties. In particular, model analysis includes two possible verification tasks. In
case of a system property, the model checking engine can test validity of the property,
and generate a counterexample in case the system property is not verified (e.g.,
assuming the property is required to hold for every possible path of the system, the
model checking engine generates a counterexample showing one particular path along
which the property is falsified). In case of a safety requirement, the model checking
engine generates all possible minimal combinations of components failures, called
Minima Cut Sets (MCS), that violate the safety requirements. Minimal cut sets can
be arranged in the so-called Fault Tree representation [VGRH81]. Fault trees provide
a convenient representation of the combination of events resulting in the violation of a
given top level event, and are usually represented in a graphical way, as a parallel or
sequential combination of AND/OR logical gates.

Result Extraction. During this phase the results produced by the model analysis
phase are processed to be presented in human-readable format. In particular, the result
extraction phase is responsible for conveniently displaying al the outputs
automatically generated by the model checking engine, e.g., smulation traces and
minimal cut sets, and to present results of safety analyses in formats that are
compatible with traditional fault tree analysis tools used by safety engineers.

2.2 The ESACS Platform

The ESACS platform supports and automates the application of the methodology
described in the previous subsection.

The ESACS platform is shipped in four possible configurations, namely the
Altarica configuration [AGPRO0O], based on the CeciliasOCAS tool, the
FSAP/NUSMV-SA configuration (http://sra.itc.it/toolsyFSAP), based on the NuSMV2
model checker [CCG+02], the SCADE configuration, based on the SCADE tool
(http://www.esterel-technologies.com) and on the PROVER plug-in [SS00], and the
Statemate configuration, based on the Statemate tool (http://www.ilogix.com) and on
the VIS model checker [BHS+96].

All the configurations of the ESACS platform share the same architectural
principles and functional requirements. The delivery in four different configurations
has guaranteed a more flexible integration of the platform within the industrial
partners processes, by allowing, for instance, choice on the formal notation to use for
writing SM/FoSAM. The general architecture of the ESACS platform is shown in
Figure 2.
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Figure 2 — ESACS Platform Architecture

The core of the ESACS platform is the so-called Safety Analysis Task (SAT).
This block provides the core of the interaction with the system and allows users to
access the libraries and to store and manage al the information relevant to the
assessment of a system (SAT Repository). In particular, the SAT repository can store
the following information: system models (i.e., SM, ESM or FoSaM), failure modes,
system requirements (i.e., system properties and safety requirements), and the
specifications and results of the analyses to perform.

The other blocks of the ESACS platform include facilities for system design, for
automated system verification, and for automated safety assessment. The architecture
is composed of both commercial off-the-shelf tools (i.e., for model capturing, for the
verification of system properties, and for the presentation of safety analysis results)
and components (both libraries and algorithms) specifically developed for the ESACS
project (e.g., for system requirements capturing, failure mode capturing and system
model extension, model analysis — for the generation of MCS starting from a safety
requirement, and safety result extraction).

The commercial tools provided for the different ESACS platform configurations
are the following. For the model capturing block, which is used by the design
engineer to define the system forma model, the following different modelling tools
are used: Altarica, NuSMV, Statemate and Scade. The model analysis block, used to
verify the SM/ESM or FoSaM with respect a specific system property, is based on
one of the following model checking engines: VIS, Prover Plug-In, NuUSMV-SA (an
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extension of NuSMV?2, with safety analysis algorithms), and Altarica. Finally the
safety analysis result presentation block is used to display the output of the automated
fault tree generation in the traditional safety analysis tools, namely Isograph FT+,
Aralia, ORA and SARAA.

The components specifically defined for ESACS include facilities for failure mode
capturing and model extension, system requirement capturing, model analysis (in
particular automated fault tree generation) and result extraction. The failure mode
capturing block allows the user retrieve the specification of the failure modes from a
specifically developed library of failure modes (GFML) and to instantiate them to a
specific system model. When all the failure modes have been retrieved and
instantiated, the model extension facility allows for the automatic extension of the SM
into a ESM. The safety requirements capturing block allows to write functional and
safety requirements; these can either be extracted from a library of generic properties
(GSRL) or directly written using some standard logic formalism (e.g., temporal
logic). Finaly the model analysis and the result extraction blocks implement the
most important facility of the ESACS approach, e.g., the computation algorithm for
the automated generation of fault trees, based on formal methods techniques, and the
necessary conversion algorithms to present the result of safety analysis using standard
commercial tools (e.g., for analysing fault trees).

As a final remark, we stress that the basic functions provided by the ESACS
platform may be combined in different ways, in order to comply with various
development and safety assessment processes. For instance, it is possible to support
an incremental approach, based on iterative releases of a given system model at
different levels of detail (e.g., model refinement, addition of further failure modes
and/or safety requirements). Furthermore, it is possible to have iterations in the
execution of the different phases (design and safety assessment), e.g., it is possible to
let the model refinement process be driven by the safety assessment phase outcome
(e.g., disclosure of system flaws requires fixing the physical system and/or correcting
the formal model).

3. A Case Study: the Secondary Power System

One of the case studies investigated in the ESACS project is the Secondary Power
System (SPS hereafter) of the Eurofighter Typhoon aircraft. The case study has been
chosen for the following reasons: it is of industrial interest, it is a heterogeneous
system comprising various types of components like electromechanical components
(e.g., control valves, relays), mechanica components (e.g., shafts, gearboxes,
freewheels), electronic transducers (e.g., speed sensors, pressure sensors) and
electronic controllers (SPS computers), and it has been judged of the right
(medium/high) complexity to be analysed within the project. The case study has been
conducted in collaboration among Alenia Aeronautica, Societa Italiana Avionica, and
ITC-IRST. The aims were twofold: on the one hand we wanted to investigate the
behaviour of the SPS, on the other we wished to use the case study as a way to test
two configurations of the ESACS platform.
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The Secondary Power System drives the hydraulic and the electrical utilities of
both the left and right hand side of the aircraft and therefore it can be considered as a
“critica” system from the safety point of view. To satisfy the basic safety
requirement, i.e. “no single failures shall cause the total loss of the SPS utilities’, the
architecture of the system includes two basic redundancies: there are two independent
and perfectly symmetric lines, whose purpose is to drive the left and the right hand
side utilities, respectively; for each side, the mechanical drive of the relevant utilities
(normal mode) is redounded by a pneumatic drive (cross-bleed mode) in case of
failure of one of the componentsin the mechanical line.

Figure 3 shows a schematic view of the SPS. The SPS normal operation consists
in transmitting the mechanical power from the engines to the relevant hydraulic and
electrical generators. In case of an engine failure, the SPS computers automatically
initiate a cross-bleed procedure consisting in driving the hydraulic and electrical
generators by means of an air turbine motor, using bled air from the opposite engine.
Correct functioning of this procedure is an example of one safety requirement of the
SPS system.

GBX

ATM Air Turbine Starter Motor

GB Gearbox
LH Left Hand
ME Main Engine

PRSOV Pressure Reducing Shut Off Valve
PTO Power Take Off Shaft

RH Right Hand

SPS Secondary Power System

UTIL Utilities

Figure 3 — SPS schematic view

In order to investigate the behaviour of the SPS, a set of formal models, described at
different level of details, has been set up, using two configurations of the ESACS
platform, namely the Statemate-based configuration and FSAP/NuSMV-SA. This
hierarchy of models can be summarised as follows (in increasing order of
complexity):

1. the simplest model, which — in the standard development process — is aso
representative of the first specification that the safety engineer receives from the
design engineer - isa sort of block diagram. In our case, this simple model includes
both the left and right hand side of the SPS and a very simplified model of the SPS
computer. The variables used are all Boolean and the components are blocks which
may be either working or not working; Figure 4 highlights the various components
and the data flow among them;
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. in the second model, the behaviour of the components of the SPS is more redlistic,
even if the SPS computer is still very simplified. Using a discretization approach,
variables representing physical quantities have been encoded by means of integer
variables ranged between 0 and 20. Moreover, by exploiting the functional
symmetry of the system, we removed some of the components, and we limited
reasoning on just one side of the system;

. the third model is as the previous one but with both sides of the system included;

. the fourth model is derived from the previous one by enriching the SPS computer
model; in the Statemate-based configuration we used real-valued variables,
whereas in FSAP/NuSMV-SA we used discretized integer variables with ranges
closer to the real values provided by the system;

. finally, we realised two very detailed models in which both the nominal and the
faulty behaviour of each component is modelled in detail. Variables are encoded
like in the previous model. Graphs obtained by simulating these detailed models
are in accordance with the graphs obtained from the telemetry on the real system.
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Figure 4 — SPS block diagram model
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4. Reaults

The industrial partners involved in the SPS case study (Alenia Aeronautica and
Societa Italiana Avionica) performed a cycle of application, as end-users of the
ESACS methodology and tool-set, in which the various SPS models were tested, in
order to highlight pros and cons of the ESACS approach and to devise possible
methodology and tool platform improvements. The main criteria of the evaluation
were the following:

1. effectiveness of the methodology to improve the integration of the “design” and
“safety” activities on the complex system;

2. effectiveness of the tool-set in the implementation of the different steps defined by
the methodology (i.e., failure mode definition and injection in the system model,
system property definition, system verification with respect to the functional and
safety requirements, fault tree generation).

In the following we briefly summarise the results of our evaluation.

Representational |ssues: one interesting aspect of the case study concerned the
modelling of the various components of the SPS. In particular, one of the most
challenging modelling issue has been the modelling of hydraulic and mechanical
components. For such systems, in fact, when reasoning about degraded situations, the
standard input/output modelling with functional blocks may be particularly difficult.
(For instance, a leakage in a pipe may cause loss of pressure in the whole pipe. As a
second example, in certain situations, e.g. grippage, mechanical forces may need to
be propagated in “reverse” - e.g., by affecting functional blocks that are further “up”
in the functional chain). To address these issues, particular care had to be taken in
modelling such kind of aspects. More in general, we think that the use of hybrid
systems modelling tools may be extremely effective for such kind of models.

Integration of the “design” and “safety” activities: we experienced that the ESACS
approach effectively improves and encourages the interaction between design and
safety engineers as they, for instance, can “speak” the same unambiguous language,
sharing the same formal system model. Moreover, the safety evaluation of the
proposed system architecture, thanks to the possibility to smulate and verify the
system model, can be performed in the very early phases of system design. However,
an important issue concerns the possible “semantic gap” between the model provided
and the actual design/system. In fact, while existing modelling and simulation tools
(e,9., the ones provided by the Statemate-based configuration) support very rich input
languages, often, in order to be able to formally verify properties it is necessary to
scale the model down, e.g., by abstracting away certain characteristics of the design
model. This leads to models whose accuracy with respect to the real models has to be
agreed upon by specialists. On the other hand, future improvements of current model
checking tools can help to ameliorate this problem. We will come back to this point in
the next section.
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Failure mode definition and injection: within the ESACS approach, as aready
discussed, there are two possibilities to include the failure modes of system
components in the system model: the definition of user-defined failure modes as a
particular class of variables included in the system model, and/or the injection of
typical failure modes (such as stuck-at, ramp-down, delay, ...) to take into account all
the possible faulty behaviours of system components. The facility for failure mode
injection and system model extension experimented during the different test cycles of
the ESACS platform works well but it is based on a library of generic failure modes
specifically created for the ESACS purpose. As a consequence, the library needs to be
enriched in the next future to include the failure modes typical of the main types of
complex system components (e.g., electronic, electric, mechanical, pneumatic
components and so on).

System property definition: the ESACS approach allows the definition of different
types of verification tasks on system models, like, for instance, reachability of a given
state (e.g., gearbox failure) or the fulfilment of a given condition (e.g., output from
one utility a certain percentage under its nominal value). In any case, in order to write
the system property, it is necessary to use some particular formalism (e.g., LTL or
CTL temporal logics), that are often difficult to understand, especialy by people who
are not expert in formal verification. As a consequence, a future improvement of the
ESACS platform concerns the inclusion of different classes of system properties to
instantiate the main formalisms to be used for performing the different verification
tasks.

System property verification: performing model checking of functional requirements
on the system model often leads to the “state explosion” problem. In order to mitigate
this problem, the definition of a set of different models has helped, as it has been
possible to define “ specialised” modelsto be used for certain properties.

From an industrial point of view, the possibility of using simulation and exhaustive
techniques to “drive’ the system into a state has been proven particularly useful, for
example, to show that a safety critical state cannot be reachable when failure modes
are disabled.

Fault tree generation: automatic generation of fault trees has been possible with
satisfactory results only for the first two types of forma model, whereas with the
more complex models we encountered difficulties due to the “state explosion”
problem. Nonetheless, the generated fault trees can still be very informative for the
safety engineers (see, for instance, the example of generated fault tree in Figure 5).
The possibility for the safety engineer to have more complex system models, which,
at least, can be used to perform simulations, remains also a valuabl e aspect.
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Figure5— An example of generated Fault Tree

5. Rélated Work

ESACS Project and Platform The work described in this paper has been developed
within the ESACS project. For more details about the project we refer the reader to
the URL http://www.esacs.org/. The different configurations of the platform have
been tested on various case studies, among which we would like to mention:

1. Air inlet control system APU (Auxiliary Power Unit) JAS39 Gripen, related to a
critical subsystem of an airplane. The work has been carried out using the SCADE
based configuration.

2. Wheel Steering System, related to a critical subsystem of a family of Airbus
airplanes.

3. A controller of the Airbus A340 High Lift System.

4. Hydraulic System A320, related to the hydraulic system of the Airbus A320. The
work carried out using the Altaricaand (partly, FSAP-NuSMV-SA), is described in
[BCSO2].

FSAP/NuSM V-SA Configuration Concerning the NuSMV-based configuration, the
safety analysis capabilities provided by this platform include traditional fault tree
generation [VGRH81] together with formal verification capabilities typical of model
checking [CGP0O0, CCG+02]. The algorithms for cut set and prime implicant
computation mentioned in Section 2.1 are based on classical procedures for
minimization of boolean functions, specifically on the implicit-search procedure
described in [CM92, CM93], which is based on Binary Decision Diagrams (BDDs)
[Bry92]. This choice was quite natural, given that the NuSMV model checker
[CCG+02] makes a pervasive use of BDD data structures. The ordering analysis
procedure mentioned in Section 2.1 also makes use of these algorithms [BV03].
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Fault Tree Computation The ESACS Platform can compute fault trees using
algorithms based on formal methods techniques. Related work includes, e.g., [LR98,
Rae00]. The implemented algorithms support both monotonic and non-monotonic
systems. We also mention [MDCS98, SDC99], which describe DIFTree, a
methodology supporting (however, still at the manual level) fault tree construction
and allowing for different kinds of analyses of sub-trees (e.g., Markovian or Monte
Carlo simulation for dynamic ones, and BDD-based evaluation for static ones). The
notation for non-logical (dynamic) gates of fault trees and the support for sample
probabilistic distributions could be nice features to be integrated in our framework.

Probabilistic Safety Assessment A large amount of work has been done in the area
of probabilistic safety assessment (PSA) and in particular on dynamic reliability
[Siu94]. Dynamic reliability is concerned with extending the classical event or fault
tree approaches to PSA by taking into consideration the mutual interactions between
the hardware components of a plant and the physical evolution of its process variables
[MZDL98]. Examples of scenarios taken into consideration are, e.g., human
intervention, expert judgment, the role of control/protection systems, the so-called
failures on demand (i.e., failure of a component to intervene), and also the ordering of
events during accident propagation. Different approaches to dynamic reliability
include, e.g., state transitions or Markov models [Ald87, Pap94 ], the dynamic event
tree methodology [CIMP92], and direct simulation via Monte Carlo analysis [SD92,
MZDL98].

6. Conclusionsand Future Work

In this paper we have presented the ESACS safety analysis platform and
methodology. The ESACS platform can be used as atool to assist the safety analysis
process from the early phases of system design to the formal verification and safety
assessment phases. The goal is to provide an environment that can be used both by
design engineers to formally verify a system and by safety engineers to automate
certain phases of safety assessments. To achieve these goals, the platform provides a
set of basic functions which can be combined in arbitrary ways to realize different
process development methodologies. The functionality includes traditional analysis
methodologies like fault tree generation, together with exhaustive property
verification capabilities typical of model checking, plus model construction facilities
(e.g., automatic failure injection based on a library of predefined failure modes) and
traceability capabilities, which improve exchange of information and make system
maintenance easier. The major benefits provided by the use of the ESACS platform
and methodology are a tight integration between the design and the safety teams,
mechanisation of (some of) the activities related both to the verification and to the
safety analysis of systemsin a uniform environment, and support for the realization of
different development methodologies (e.g., incremental development approach, based
on iterative releases of a given system model at different levels of detail).
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Concerning the works on dynamic reliability cited in Section 5, the most notable
difference between our approach and the works mentioned there is that we present
automatic techniques, based on model checking, for both fault tree generation and
ordering analysis, whereas traditional works on dynamic reliability rely on manual
analysis (e.g., Markovian analysis [Pap94]) or simulation (e.g., Monte Carlo
simulation [MZDL 98], the TRETA package of [CIMP92]). Current work is focusing
on some improvements and extensions in order to make the methodology competitive
with existing approaches. In particular, we need to extend our framework in order to
deal with probabilistic assessment. Although not illustrated in this paper, associating
probabilistic estimates to basic events and evaluating the resulting fault trees is
straightforward. However, more work needs to be done in order to support more
complex probabilistic dynamics (see, e.g., [DS94]). We aso want to overcome the
current limitation to permanent failures.

As far as FSAP/INUSMV-SA s concerned, the models used so far are discrete,
finite-state transition models. In order to alow for more reaistic models, we are
considering an extension of NuSMV with hybrid dynamics, along the lines of [Hen96,
HHW97]. This would allow both to model more complex variable dynamics, and also
a more realistic modelling of time (which, currently, is modelled by an abstract
trangition step). Furthermore, this would ameliorate the problem of state explosion,
which is partly due to the current use of discretized integer variables. Another
direction of research that we are investigating is the use of SAT-based model-
checking verification techniques [BCCZ99], which have been shown to be extremely
efficient for model debugging and bug hunting [ABC+02, ACKS02]. In the near
future, we plan to use these techniques both for interactive fault tree generation and
for formal specification debugging.
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