
Deriving state-and-transition models from an image 

series of grassland pattern dynamics 

A B S T R A C T 

We present how state-and-transition models (STMs) may be derived from image 

data, providing a graphical means of understanding how ecological dynamics are 

driven by complex interactions among ecosystem events. A temporal sequence of 

imagery of fine scale vegetation patterning was acquired from close range 

photogrammetry (CRP) of 1mquadrats, in a long term monitoring project of 

Themeda triandra(Forsskal) grasslands in north western Australia. A principal 

components scaling of image metrics calculated on the imagery defined the state 

space of the STM, and thereby characterised the different patterns found in the 

imagery. Using the state space, we were able to relate key events (i.e. fire and 

rainfall) to both the image data and aboveground biomass, and identified distinct 

ecological „phases‟ and „transitions‟ of the system. The methodology objectively 

constructs a STM from imagery and, in principle, may be applied to any temporal 

sequence of imagery captured in any event-driven system. Our approach, by 

integrating image data, addresses the labour constraint limiting the extensive use of 

STMs in managing vegetation change in arid and semiarid rangelands. 
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1. Introduction 

The state-and-transition model (STM) is a conceptual tool to organize our understanding of how 

the dynamics (or temporal change) of vegetation communities are driven by complex interactions 

among events (e.g. fire, grazing and flooding), processes (e.g. mineralisation and drainage) and 

biological factors (e.g. invasive species). STMs were originally developed to explain limitations 

in Clementsian linear succession models in predicting the consequences of land management on 

rangeland vegetation dynamics, including: irreversible vegetation change; grazing catastrophe; 

episodic plant recruitment; and, alternative stable vegetation states (Westoby et al., 1989). As a 

management tool, the STM illustrates the potential impacts, nonlinearities and uncertainties 

inherent under different environmental conditions or management scenarios (Bestelmeyer et al., 

2004). Consequently, STMs are a key component of the proposed framework for science-based 

land management (SBLM) of rangelands in the western United States and elsewhere (Herrick et 

al., 2006). However, a science-based, quantitative implementation that goes beyond current 

qualitative methods of deriving STMs is constrained by: (i) a lack of long term data 

encompassing the breadth of different possible ecosystem behaviours; (ii) the need to derive 

STMs indirectly by collating a range of often disparate data sources; and, (iii) system and 

geographical specificity, thereby creating an inequity in terms of which systems and localities 

will be investigated first (Bestelmeyer et al., 2003, 2004). Data in the form of aerial imagery 

would ameliorate the above difficulties in STM modelling, as imagery is spatially extensive and 

may be reliably captured, georeferenced and processed at a range of geographical scales. A 

methodology to arrive directly at a STM from temporal sequences of imagery that capture 

vegetation pattern dynamics is therefore proposed. 

In its simplest form the STM identifies the possible vegetation communities that can 

occur in a particular system or locale, labelling them as different meta-stable phases (i.e. these 

vegetation communities may vary from being transient to persistent; Westoby et al., 1989; 

Stringham et al., 2003). The system may then experience a transition (or pathway) from one 

phase to another that was triggered (or driven) by the interacting effect of different events and 

processes. Hence, some of the nonlinearities observed in the field that confound linear 

succession models may be described, a list including: ecological thresholds and irreversible 

transitions; multiple stable states; historical contingency; cross-scale interactions, and lagged 

effects (Friedel, 1991; Rietkerk and van de Koppel, 1997; Peters et al., 2004). The dynamics of a 



system are therefore an observed sequence of nonlinear transitions between different phases (Fig. 

1). 

A key concept of the STM is the ecological threshold, a boundaryin space and time 

between different phases of the system (or domains of stable system behaviour; May, 1977; 

Friedel, 1991). Transitions across ecological thresholds can occur along a continuum 

from irreversible to immediately reversible pathways (Stringham et al., 2003; Briske et al., 

2005). Irreversible transitions are triggered by events that are typically unprecedented and 

which lead to a degraded state that is constrained by a different set of biological and soil 

processes (e.g. soil erosion, overgrazing, introduction of exotic plant species, altered fire regimes 

or a combination of such events). The typology of Stringham et al. (2003) uses irreversible 

transitions to define „states‟ of the system, whereas reversible transitions separate „phases‟ or 

„communities‟. Collections of phases, connected by a network of transitions are visualize as the 

phase dynamics nested within each system state (Fig. 1; Stringham et al., 2003). 

Science-based land management (SBLM) is defined by four core elements: (1) a method 

of land classification to describe „ecological‟ sites; (2) a data storage and management facility; 

(3) conceptual models of ecosystem dynamics, including site specific STMs; and (4) a 

methodology to evaluate the status of the ecosystem, be it qualitative or quantitative (Herrick et 

al., 2006). To date, SBLM has been applied to arid lands of western United States, where 

episodic events such as rainfall drive often dramatic shifts in ecological processes. In arid lands, 

intensive assessment is necessary to match and capture the frequency of driving events, 

otherwise important factors leading to vegetation change will likely be missed and long term 

trends will be confounded by temporary responses to recent events. Consequently, the need for 

long term monitoring is implicit in SBLM, and is akin to adaptive management (Holling, 1978): 

data from long term monitoring is used to update models and knowledge that assists management 

decision making in dynamic and uncertain ecological systems. 

The main constraint to SBLM is the ability to capture data. Currently, SBLM defines a 

protocol of 17 qualitative indicators for the evaluation of three key ecosystem attributes: soil and 

site stability, hydrologic function and biotic integrity (e.g. Pellant et al., 2005). If more precise 

information is required then a further protocol composed of quantitative indicators may be 

applied (Herrick et al., 2005). Both protocols are similar to landscap functional analysis (LFA) in 

the type of indicators they employ (Ludwig et al., 1997; Tongway and Hindley, 2005). However 



acquiring data by both LFA and SBLM is labour intensive, resulting in limited spatial sampling 

(i.e. a sampling bias, Watso and Novelly, 2004), and risking significant observer bias (differen 

observers may provide different assessments, and the same observer may provide different 

assessments under different conditions, Burrough and McDonnell, 1998; Hunt et al., 2003; Boot 

et al., 2006). The limitations inherent in labour-intensive, qualitative assessments is exacerbated 

by the need for repeated long term monitoring in capturing ecological dynamics, and is likely to 

limit the application of STMs beyond intensively studied sites. 

Ecosystem assessments that serve multiple management goals, such as that promoted by 

SBLM, employ a large number of indicators, as individual indicators represent only singular 

aspects of ecosystem behaviour. For example, a number of metrics that quantify pattern in 

imagerymaybe applied, be they structural (e.g. patc based) or textural (i.e. pixel based). These 

image metrics frequently describe similar aspects of image pattern, such as average patch radius 

and the perimeter–area ratio (Riitters et al., 1995). Dimension reduction techniques, such as 

principal components, can be used to simplify the multivariate information of a large number of 

candidate metrics into a small number of summary variables (Riitters et al., 1995). In effect, the 

summary variables define a„state space‟ (or blank canvas) on to which individual images can be 

plotted. 

An ordination of image metrics calculated on time sequences of imagery will generate a 

trajectory of a system‟s dynamics in the ordination defined state space. Time trajectories of a 

system‟s behaviour have previously been applied to studying changes in plant community 

composition, with ordination plots used to elucidate the difference in dynamics between good 

and poor condition shrubby grasslands of arid Australia (Friedel, 1991). Nonmetric 

multidimensional scaling has also described the regeneration of grassland at polluted sites in 

comparison to semi-natural meadows in East Germany (Voigt and Perner, 2004). A partitioning 

of the state space into various ecological phases can then be linked to ecological events that drive 

transitions between the ecological phases, thus deriving a STM. 

The flexibility of imagery in terms of scale, geographical extent and relative ease of 

capture makes imagery an ideal data source, with potential to alleviate both the sampling and 

observer bias of manual methods, and to reduce costs associated with long term monitoring. 

However, it remains uncertain how to best incorporate imagery within existing assessment 



frameworks, despite remote sensed imagery being viewed as an important facet of ecosystem 

monitoring in spatially extensive systems (Ludwig et al., 2004; Herrick et al., 2006). Our 

challenge is to derive models of ecosystem behaviour directly from imagery sourced data, a step 

critical in furthering the utility of both imagery and the STM in the SBLM framework 

(Bestelmeyer et al., 2004). Consequently, our objectives were to: (i) generate a state space by 

applying image metrics to an image series; (ii) partition the state space to represent different 

„phases‟ of the system‟s dynamics; (iii) associate sets of system events to the different phases, 

and thus define the ecological triggers for transitions between phases; and, (iv) construct a state-

and-transition model by integrating the above information. As discussed below our approach 

extends that of (Jackson and Bartolome, 2002), who were first to realize the feasibility of 

applying data driven methods in developing STMs. Further, our approach uses only off-the-shelf 

statistical tools, readily available to both managers and applied scientists, in fulfilling our stated 

objectives. 

  



 

 

 

 

Fig. 1.  State-and-transition model.  

The state space contains ecological states (or vegetation communities) separated by transitions 

across irreversible ecological thresholds. Each state may be described by its own characteristic 

set of phase dynamics. Transitions between these phases are reversible, either directly or 

indirectly. Transitions, whether reversible or irreversible, are triggered by interacting ecological 

events.  

Modified from Stringham et al. (2003). 

  



 

Fig. 2. Monthly and annual rainfall at Hamersley Station (October 1996–October 2005). (a) The 

monthly rainfall record shows a seasonal summer rain pattern, and dates of fires and image 

capture; (b) variability in monthly rainfall is illustrated by the boxplots, with median monthly 

rainfall given by a thick horizontal bar. Average monthly maximum temperature and average 

monthly minimum temperature are given by the solid and dashed red lines, respectively. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of the article.) 

  



2. Method 

The methodology for deriving a state-and-transition model from an image series was developed 

on a grazing exclosure experiment that focuses on the long-term biomass and nutrient cycling of 

Themeda triandra (kangaroo grass) tussock (bunch) grasslands in the sub-tropical and semi-arid 

Pilbara region of north western Australia. The data here represent a case study of how the 

methodology may be applied to other systems and image series. 

2.1. Study sites 

The study sites were located on Hamersley Station, a cattle property ∼1700km north of 

Perth, where T. triandra grasslands are confined to deep self-mulching red Vertisol soils on very 

gently sloping alluvial plains. Soils are extremely low in organic matter (less than 1%) and 

nutrients (Bentley et al., 1999). The T. triandra grasslands studied are monospecific swards, with 

less than 3% annuals and forbs by biomass (Bennett et al., 2002). On drier slopes adjacent to the 

plains, vegetation is generally a mix of open mulga (Acacia anuera complex) woodland and 

spinifex (Triodia spp.) hummock grasslands. 

 The dynamics of tussock grassland biomass in the Pilbara region are largely driven by 

episodic events such as flood and fire. In particular, growth of T. triandra is highly responsive to 

seasonal deluges associated with summer cyclonic activity, and senesces under drought 

conditions that may last for several years. Mean annual rainfall is 350mmy−1, but varies from 50 

to 800mm y−1 (Fig. 2a). Fire generally consumes all standing biomass and several good growing 

seasons (i.e. high rainfall) are required before pre-fire biomass is regained. Consequently, fuel 

accumulation after fire is inextricably linked to the unpredictable timing and extent of drought 

and large rainfall events. The fire return interval for T. triandra grasslands in the Pilbara is in the 

order of 4–10 years, depending on the occurrence of rainfall, compared to 1–3 years for T. 

triandra in temperate and tropical regions elsewhere (Bennett et al., 2002 Lunt and Morgan, 

2002). 

  



2.2. Data acquisition 

We acquired data from two fenced grazing exclosures located 12km apart („Ridge‟ and 

„Cattlewell‟ paddocks). Exclosures were established in 1995 to assess the productivity and 

dynamics of T. triandra grasslands in the absence of cattle grazing. Changes in cover and 

biomass in response to climate, fire and nutrient additions have been measured at these sites 

since October 1996 (Bennett et al., 2002). 

Imagery captured through close range photogrammetry (CRP) have spatial resolutions as 

fine as 1mm, and includes nadir photography captured by on-ground frame mounted cameras 

(e.g. Cooper, 1924; Bennett et al., 2000; Laliberte et al., 2007), or more recently digital sensors 

mounted on ultralight airplanes (Hunt et al., 2003; Booth et al., 2006). CRP methods have small 

fields of view, typically ranging from 1 to 100 m, and do not provide continuous photographic 

coverage over extensive landscapes. Instead, images are sampled intermittently across the 

landscape (Booth et al., 2006). Combined with image processing, CRP in rangelands is at least as 

accurate as non-image assessment methods in estimating vegetation variables such as percentage 

foliage cover (Bennett et al., 2000; Booth et al., 2006). Here, we use CRP to regularly capture 

the fast system dynamics of biomass turnover in T. triandra grasslands. As biomass will likely be 

highly correlated with vegetation structure or “texture”, we propose a STM mapping of the 

“texture” dynamics. In principle, the same methodology may be applied to image series captured 

at different scales for event driven vegetation systems exhibiting slower dynamical cycles and/or 

shifts. 

At each site a sub-plot measuring 1m× 1m central to a larger 5m× 5m plot was 

photographed from above using a camera mounted on a 2m high tripod (Bennett et al., 2000). 

Initially, from October 1996 to October 2002, a film SLR camera was used, but was replaced 

with a digital SLR from March 2003 to October 2005. Sites were sampled twice a year, generally 

corresponding to before (October) and after (near April) the summer growing season, although at 

times major rainfall events that resulted in extensive sheet flooding of the sites limited 

accessibility to the sites. Consequently, in 2000 and 2001 plots were sampled only once. Half of 

the plots were experimentally burnt and photographed in November 1996. The complete data set 

therefore consists of four replications of two time series (experimentally burnt and unburnt) of 



18–19 images at each of two sites, giving a total of 295 images (with one image treated as a 

missing value). 

Covariates assigned to each image were: site („Ridge‟, „Cattlewell‟); biomass; time since 

last fire (months); and rainfall (mm). Total aboveground biomass was harvested from half of the 

replicated plots at any one sampling date, from a sub-plot on the perimeter of each 5m× 5m plot 

to minimise disturbance to the central unharvested photo/monitoring sub-plot. The sub-plot 

sampled for biomass therefore differed at each sampling date. Total aboveground biomass was 

oven dried (75 ◦ C for 48 h) and weighed (Bennett et al., 2000, 2002).  

Wildfire, ignited by lightning strikes, was documented for each of the two sites (Fig. 2a). 

However, an arbitrary value of 100 months for time since last fire was assigned to the first 

sampling date in October 1996, as fire had not been previously observed by the stationmanagers 

at either site for at least a decade. Rainfall data for the period were acquired from Hamersley 

Station, with temperature data from the nearest town (Tom Price, 35kmdistant). Annual rainfall 

was defined as two variables,summedover the early wet season (November–January), and middle 

wet season (February–March). The early season and middle season rainfall variables correspond 

respectively to rising and peak ambient temperatures and evapotransipiration demand over the 

summer season (Fig. 2b). 

2.3. Image processing and metrics 

A complete sequence of digital RGB (red–green–blue) images was assembled by 

scanning photographs acquired by the SLR camera during the first part of the monitoring 

program at high resolution (2000 dpi). Images were processed in Adobe® Photoshop® 7.0 

(ADOBE®, 2002) and were firstly color adjusted using a black and white color tile placed in 

each image. The color tile permitted standardisation of color between sampling periods, as the 

sub-plots were shaded with a purpose built shade cloth when photographed. Georeferencing was 

enabled by placing a 1m× 1m metal sub-plot frame over marker pegs, and the camera tripod 

inserted onto a pole, both permanently situated in the ground at the start of the monitoring 

program. Images were warped and clipped to a 1000 × 1000 pixel template to compensate for 

any errors in camera angle. To increase separation between foliage and red soil, the blue 



brightness of the green color channel was increased by 100%. Images were then reduced to 2× 

250 pixels, the coarsest resolution that permitted detection of fine scale vegetation features by 

the naked eye. To further simplify computation and data management images were thresholded 

(i.e. transformed) at a brightnes value of 80 to produce black and white (or binary) images. Data 

were then imported into an R software environment (version 2.7; R Development Core Team, 

2008), coupled to the Geographical Information System GRASS (version 6.0.4 GRASS 

Development Team, 2006; Neteler and Mitasova, 2004; Bivand et al., 2008).  

The final processing step applied a smoothing filter to remove noise from the images. All 

patches of nine pixels size or smaller were removed to produce an image series (Fig. 3). Table 1 

summarizes the image metrics calculated for each image in the GRASS-R computing 

environment. Our choice of metrics depended on  qualitative review of their mathematical 

properties (such as scale, rotation and translation invariance; see for example Frohn, 1998). 

  



 

 

Fig. 3. Image series of Cattlewell plot. The image series are of a single 1m× 1m control 

treatment plot at the Cattlewell site (i.e. not burnt in November 1996). Two mai types of pattern 

seem to occur (above vs. below rows), the separation of which coincides with the wildfire of 

April 2001. 

  



Table 1 

Image metrics 

Metric Description Reference 

White Fraction The proportion of the image occupied by the „white‟ 

fraction of a binary black and white image. 

 

Number of Patches Counts the number of discrete “white” patches. See Frohn (1998) for a 

discussion. 

Twist Number A measure of overall shape complexity. Calculated by 

counting the number of twists in the perimeter of a 

shape. 

Bogaert et al. (1999) 

Effective Mesh Size Associated with the probability of two locations 

belonging to the same patch, and determines the size 

of uniform patches that corresponds to that 

probability. 

Jaeger (2000) 

Box Counting Slope Complex systems may display some form of multi-

fractality, i.e. differently scaled regions may display 

different space filling properties. Slopes of the box 

counting plot are therefore used as separate metrics 

using box dimensions of 1, 2, 5, 10, 25, and 50 pixels 

in length. 

Li (2000) 

Contrast Measures local variability of pixel values. Haralick et al. (1973) 

Contagion Based on the relative frequency of finding a pixel of 

one type next to a pixel of another type. 

O‟Neill et al. (1988); Li 

and Reynolds (1993) 

Recursivity Measures uniformity of pixel pair combinations. 

Designed to be independent of contrast and scaled to 

between 0 and 1. 

Baraldi and 

Parmiggiani (1995) 

Compactness Counts the number of internel pixel edges contained in 

a shape, and is expressed as a fraction of the 

maximum number of internel edges possible for a 

shape of the same number of pixels. 

Bribiesca (1997) 



2.4. Statistical methodologies 

A two-dimensional (2D) state space was defined by the first two axes produced from a 

principal component analysis of the image metrics, with data points corresponding to individual 

images. A key concern of the analysis is how to classify the state space into different ecological 

phases. A classification could be elicited through a combination of expert opinion, on-ground 

evidence and knowledge of site history. However, such a classification should be compared to an 

unsupervised classification that makes few assumptions a priori regarding the possible structure 

of the STM. Here we apply model-based clustering to the image metric scores, grouping the four 

replicates for each treatment × site × capture date combination into a single multivariate 

observation through concatenation. This grouping of observations assumes that all replicates are 

situated within the same ecological phase given they have the same history of fire and rainfall. 

The model-based clustering identifie clusters of observations based on estimating finite mixture 

models that vary in both their location and spread, while choosing an optimal number of clusters 

through applying a Bayesian Information Criterion (BIC; implemented in the „Mclust‟ package 

in R; Fraley and Raftery, 2002). The original data were then classified into one of the inferred 

clusters by their treatment × site × capture date information, with each identified cluster 

representing a hypothesized ecological phase. In addition to the initial principal components 

ordination and model-based clustering, our approach included a further three statistical 

procedures: (i) kernel density estimation; (ii) classification trees; (iii) penalized spline 

geoadditive regression. 

A „porous‟ phase boundary for each cluster may be drawn in the principal component 

state space through kernel density estimation. Kernel density estimation superimposes a density 

curve (or surface), known as the kernel, over each data point and sums the resulting collection of 

density curves, and may be interpreted simply as a smoothed histogram (Bowman and Azzalini, 

1997).  phase boundary can therefore be represented by choosing a specific contour (e.g. the 

countour given by the 85th percentile defines all points on the density surface of equal height 

that contains 85% of the volume under the density surface). A Gaussian kernel was employed, 

with the smoothing parameter controlling the kernel‟s dispersion chosen automatically as the 

asymptotic normal smoothing parameter estimate (Wand and Jones, 1995). Kernel density 

estimation was implemented using the „sm‟ package of Bowman and Azzalini (1997) in R. 



A classification tree analysis identified which covariates, such as time since fire and 

rainfall, were associated with transitions between different hypothesized 

phases.Somehypothesized phases maybe different in terms of structural patterning as captured by 

the imagery, but are not ecologically different in terms of what drivers or covariates explain 

them. The operation of classification trees is relatively straightforward, choosing splits in a 

single variable through some optimality criterion (in this case a deviance measure based on the 

conditional likelihood) before proceeding to further splits (Breiman et al., 1984). A split occurs 

at a „node‟, and terminal nodes are known as „leaves‟. Classification trees have been used 

frequently in the ecological literature (e.g. De‟ath and Fabricius, 2000; Jackson and Bartolome, 

2002) and were implemented using the „rpart‟ package in R (Venables and Ripley, 2002), with 

confusion matrix statistics estimated with the „caret‟ package. 

A geoadditive model was used to understand how biomass varied across the state space 

after taking into account such variables as time since fire and rainfall, and thereby give some 

ecological meaning to the state space (in amanner similar to surface fitting in ordinated spaces; 

Dixon, 2003). Geoadditive models combine both semiparametric regression (i.e. including linear 

and smooth functions such as splines of regressor variables) and universal kriging(i.e. covariate 

regression and autocorrelated error) within a shared mixed model framework (Kammann and 

Wand, 2003), facilitating model fitting and selection. Smoothing parameters for fitting trend 

lines were selected automatically using generalised crossvalidation (Ruppert et al., 2003), whilst 

the number of knots used to define the splines was constrained to five knots for univariate 

regressors and 20 knots for bivariate regressors to highlight any main trends in the data. Standard 

F-statistics were used in choosing an optimal model through combined backward and forward 

selection of both smooth and linear functions of covariates. Although there is no explicit form for 

the distribution of these statistics within semiparametric regression, some guidance is provided 

by comparison to a corresponding F distribution in the absence ofcomputationally intensive 

simulation (Hastie and Tibshirani, 1990). Thus a test with significance levels set to 0.05 in this 

context provides only some evidence (as opposed to strong evidence) of a trend or effect in 

response to explanatory variables. Implementation of geoadditive models used the „SemiPar‟ 

package in R (Ruppert et al., 2003). 

  



 

Fig. 4.  Density estimation of hypothesized phases. The data were allocated to one of five 

hypothesized phases identified through model-based clustering of the entire set of principal 

components. The contour for each hypothesized phase represents the 85th percentile of a 2D 

kernel density estimate of points assigned to the hypothesized phase. Points are plotted on the 

first two principal component axes. 

  



Table 2 

Classification of phases by events 

Node 1 Node 2 Node 3 Class 

(leaf) 

Positive 

prediction rate 
a
 

Number of 

observations 

Rain over last 2 

months 

> 106mm 

High 

November–January 

rainfall > 215mm 

 5 75% 16 

 Low 

November–January 

rainfall < 106mm 

 4 71% 59 

Rain over last 2 

months 

< 106mm 

High 

November–January 

rainfall > 62mm 

Time since fire ≤ 6.5 

months 

3 25% 16 

  Rain over last 6 months 

< 36mm & time since last 

fire between 20 and 85 

months 

5 75% 16 

  Otherwise 1 and 2 100% 104 

 Low 

November–January 

rainfall < 62mm 

Time since fire > 5 years 1 and 2 83% 24 

  Rain in last 12 months 

< 99mm and time since 

fire < 5 years 

4 83% 12 

  Otherwise 5 75% 48 

 

a
 The positive prediction rate is the difference between the total number of predicted positives 

and number of falsely predicted positives, as a proportion of total number of positives for each 

leaf of the classification tree. 



3. Results 

3.1. Defining the state space and ecological phases 

A state space was constructed using the first two principal components of the sphered 

image metric data (where sphering divides the data by its correlation matrix), explaining 84.5% 

of the variation in the image metric data (66% principal component 1; 18.5% principal 

component 2). Each point in the state space corresponds to an observed image with observations 

concentrated to the right hand side of the state space (Fig. 4a). A user defined mask covered all 

points, illustrating that not all parts of the state space contain observations. 

Five phases (clusters) were hypothesized by the model-based algorithm: phases 1 and 2 

shared the same location, but with phase 2more widely dispersed across the state space than 

phase 1 (Fig. 4b and c). In order of proximity to phases 1 and 2 the phases were defined as phase 

5, phase 4 and phase 3. Both phase 5 and phase 4 were more broadly dispersed than phases 1 and 

2, whereas phase 3 was the least frequently occurring phase containing just eight of the 295 

observations in total. Note that at the 85th percentile there is significant overlap between the 

different hypothesized phases in the state space. 

3.2. Interpretation of transition pathways 

Apartition of the state space using a classification tree shows the intensities and types of 

event combinations most associated with the hypothesized phases (Table 2). For example, phase 

4 was associated with two differing sets of conditions defined by two separate branches of the 

classification tree: (i) under dry November–January conditions (combined seasonal rainfall< 215 

mm), but when rainfall in the previous 2 months was greater than 106mm; or, (ii) under more 

extreme drought conditions (previous yearly rainfall < 99 mm), but within 5 years of the most 

recent fire. Phase 1 and Phase 2 were largely congruous, but with 36% of Phase 2 observations 

distinguished from Phase 1 observations by a time since fire of greater than 7 years. Phases 1 and 

2 were then combined to lif the overall classification accuracy rate up from 73% to 81% (a 

statistically significant increase in accuracy at the ˛ = 0.05 significance level), suggesting that in 

terms of the ecological drivers examined here the two phases differed little. Together, phases  

and 2 were predicted well by low recent rainfall (< 106mm) but with a high combined rainfall in 

the most recent November–January period (> 62 mm), or when time since fire was greater than 8 



years. Phase 3 was the most poorly predicted (a sensitivity rate of 50% in Table 3), but was 

associated with recent fire within the previous 6 months. Significantly, the previous phase of the 

system was not found to be an important predictor of the current system phase. 

Exploratory data analysis (EDA) may be employed to support or contradict the model 

derived from the model-based clustering and tree classification. The event histories at the two 

sites in the timing of fire in relation to a drought over 2001 and 2002. The fire at Cattlewell in 

April 2001 preceded the drought and led to phases 4 and 5 type behaviour (Fig. 5). The fire at 

Ridge in December 2002 was at the tail of the drought: images captured during the drought are 

tightly clustered within the phases 1 and 2 region (Fig. 6). Pronounced behaviour such as this 

response to the interaction of fire and drought is encapsulated in the classification tree (Table 2). 

More transitory behaviour, such as a sheet flow event in early 2004 that was observed to strip the 

T. triandra grasslands of much of its senesced biomass, in part explains why phase 4 and phase 5 

wer associated with both drought and extreme wet events, both being biomass removing 

ecological events. Here is an example of similar structural configurations, as captured by the 

imagery, resulting from different ecological stimuli. Further, where events or hypothesized 

phases were infrequently observed then the model-based clustering and classification tree 

performs less reliably, as when the November 1996 images for Ridge being classed as phase 4 

whereas ideally they would be classed as phase 3 as they were captured within 2 months of an 

experimental burn. The low positive prediction rate for phase 3 (Table 3) arises from the 

allocation of June 1998 images from Cattlewell into phase 3 through the location/spread form of 

the mixture models estimated in the model-based clustering.This result supports an assertion that 

distances between images in the state space should not be automatically assumed to represent 

„ecological distance‟, and effort should be invested in EDA to query the underlying drivers of 

state space movements and transitions. 

Not all state space mappings will have the advantage of these data in having available 

auxillary state variables such as biomass to verify or ground-truth the dynamics captured by the 

image series. Biomass data for the T. triandra grassland, harvested at the same time as when the 

imagery were captured, ranged from 0.2 to 10tha−1. In general, high scores on the first principal 

component represented a 2 t ha−1 higher biomass than low scores, once site, time since fire and 

rainfall (summed over the previous 6 months) were taken into account in a geoadditive semi 



parametric (spline) regression of sub-plot biomass (Fig. 7). The single regressors illustrated the 

following trends: (i) biomass first increased with rainfall but showed a relatively constant 

response thereafter (Fig. 7a); (ii) biomass increased linearly with time since last fire (Fig. 7b); 

and, (iii) the „Cattlewell‟ site had 0.45 t ha−1 higher biomass than „Ridge‟, after taking into 

account the other regressors (p-value = 0.023). The inclusion of a bivariate smoothing interaction 

between fire and rainfall did not lead to a strong improvement in model fit. Thus phases 1 and 2 

may be interpreted as a high biomass phase, and phase 3 as the low biomass phase in association 

with recent fire. 

3.3. Mapping the state-and-transition model 

A STM was mapped onto the 2D state space derived from the principal component 

ordination of image metrics applied to the CRP imagery (Fig. 8). The STM was composed of the 

hypothesized ecological phases that partition the state space. The overlapping of phase 

boundaries was permitted as there was a priori no reason to assume different phases should be 

entirely discrete (for these data the 60th percentile of the 2D kernel density estimate of the data 

points in each ecological phase was considered an acceptable heuristic for a relatively discrete 

representation of phases in Fig. 8). The ecological phases were simply connected as a graph by 

transitions defined by specific sets of ecological events deduced from the tree classifier.  

In summary, driving events associated with transitions of the system from one phase to 

another are learned by: (i) hypothesizing phases either through an unsupervised classifier such as 

model-based clustering, through expert opinion, or through an EDA (such as breaking down the 

system‟s dynamics in the image state space into individual sampling dates and searching for 

similar clustering behaviour); (ii) by associating threshold intensities of different ecological 

events to each of the hypothesized phases through a supervised classifier such as a classification 

tree; (iii) assigning the state space some ecological meaning through querying the performance 

of the classifier through EDA techniques, or if available the geoadditive regression of auxillary 

state variables over the state space. Ecological meaning could further be validated by applying 

the classifier to test image series captured at novel locations.  



Table 3 

Confusion matrix for predicting hypothesized phases 

Predicted Hypothesized phase     

 Phase 1 and 2 Phase 3 Phase 4 Phase 5 Specificity 
a
 

Phases 1 and 2 124 0 0 4 97.4% 

Phase 3 4 4 4 4 95.8% 

Phase 4 0 4 52 15 91.9% 

Phase 5 16 0 4 60 90.6% 

Sensitivity 86.1% 50.0% 86.7% 72.3% n = 295 

 

  



 

Fig. 5. Cattlewell vegetation pattern dynamics, 1996–2005. Each plot maps the images defined 

as points on the first two principal components for individual sampling dates at the Cattlewell 

site. Control (     ) and treatment plots experimentally burnt in November 1996 (    ) are plotted, 

with the size of each observation dependent on time since last fire. A large plotting symbol 

indicates a recent fire, with a wildfire occurring in April 2001. Rainfall (mm) summed over the 3 

months previous to the sampling date is represented by the height of the bar at the bottom of each 

image. Dark shading of the state space corresponds to high biomass whilst light shading 

corresponds to low biomass, after factors such as site, time since fire and rainfall have been taken 

into account in a geoadditive regression. 

  



 

 

Fig. 6. Ridge vegetation pattern dynamics, 1996–2005. Each plot maps the images defined as 

points on the first two principal components for individual sampling dates at the Ridge site. 

Control (   ) and treatment plots experimentally burnt in November 1996 (   ) are plotted, 

with the size of each observation dependent on time since last fire. A large plotting symbol 

indicates a recent fire, with a wildfire occurring in December 2002. Rainfall (mm) summed over 

the 3 months previous to the sampling date is represented by the height of the bar at the bottom 

of each image. Dark shading of the state space corresponds to high biomass whilst light shading 

corresponds to low biomass, after factors such as site, time since fire and rainfall have been taken 

into account in a geoadditive regression. 

  



 

 

Fig. 7. Semi-parametric regression of biomass. Total biomass (gm−2; square-root transformed 

for variance stabilization) was regressed on: (a) the natural logarithm of the sum of the previous 

6months rainfall; (b) the natural logarithm of time since last fire; and (c) the two PCA axes. Grey 

regions in plots (a) and (b) indicate ±2 standard errors. The PCA component shows high 

biomass in red and low biomass in blue. Total estimated biomass is the additive sum of the 

component smooth regressions. The regressions used either 5 knots (rainfall and fire) or 20 knots 

(bivariate PCA). The plotting mask in (c) was user defined to cover all observed points. 

  



4. Discussion 

We have demonstrated the direct construction of a state-andtransition model from a time series 

of image data. Thus far, state-and-transition models have been used to cogently summarize the 

existing state of knowledge of an ecosystem‟s complex dynamics, to identify the transitions that 

are most important for management, to direct research towards conditions that lead to those 

transitions, or as qualitative tools to evaluate the relative benefits and risks of different 

management actions (Westoby et al., 1989; Stringham et al., 2003). High spatial and temporal 

variability in driving event processes were previously thought to preclude a quantitative 

approach (Bestelmeyer et al., 2004). Where quantitative transition rules have been assigned to a 

STM, as in the modelling of long term carbon dynamics in Australian savannas, parameter 

values for these rules were sourced from other studies (Hill et al., 2005). Our approach builds on 

that of Jackson and Bartolome (2002) by employing an unsupervised classifier for hypothesizing 

different system phases and states, and a supervised classifier to associate ecological covariates 

and events to the hypothesized phases. The methods proposed here differ from Jackson and 

Bartolome (2002), however, in a number of ways: 

• The classifiers are applied to patterning in imagery (as characterised by a set of image 

metrics) as opposed to communitycomposition data. 

• The phases/states are mapped directly onto a state space defined by an ordination of the data 

through kernel density percentiles, rather than deduced by the expert from the classification. 

The plotting of dynamic trajectories onto an ordinated state space follows Friedel (1991) and 

Voigt and Perner (2004). 

• The model-based clustering provides an objective method of choosing the number of 

hypothesized phases/clusters, though exploring alternative numbers of clusters should be an 

important component of the EDA. The supervised classifier should „whittle‟ down the 

number of hypothesized classes when hypothesized classes may be explained by similar 

event histories (as with phases 1 and 2 in the T. triandra data set). 

• We employed the tree classifier to predict the occurrence of system phases and not observed 

transitions (as in Jackson and Bartolome (2002)). In the T. triandra system, previous system 

phase was not found to be competitive with other ecological covariates in predicting the 

current system phase. While the previous system phase is likely to be an important predictor 



in other ecological systems, the evidence presented here suggests that the dynamics of T. 

triandra grasslands are highly event dependent: processes such as fire occurrence and drought 

mask any possible relationship between the current and previous system states (supported by 

the high classification rate> 80% overall). Our formulation of including previous system 

phase as a predictor also allows for the possible identification of events that sustain the 

persistence of a system over time in a given phase. 

Our study identified four phases in the fine scaled vegetation pattern dynamics of T. triandra 

grasslands in the Pilbara: a „high‟ biomass ecological phase (combined phases 1 and 2) 

associated either with greater early season rain in November–January or when there is an 

extended absence of fire from the system (> 7 years); a transitory „low‟ biomass phase occurring 

immediately after infrequent fire (phase 3); and two intermediate biomass phases spanning the 

remainder of the state space (4 and 5). There was no evidence of irreversible transitions in the 

observed dynamics of the system, and so what is reported here represents „phase‟ dynamics 

within the T. triandra grassland state as opposed to transitions between system states. 

Identification of multiple phases can be interpreted as a response to a highly variable and 

unpredictable environment of fires and droughts. Transitions between meta-stable phases in 

vegetation patterning brought about by shifts in standing plant biomass and plant numbers are 

considered to confer resilience in arid ecosystems to drought and grazing (van de Koppel and 

Rietkerk, 2004), and concurs with previous observations of northern T. triandra grasslands as 

being amongst the most resilient grazing systems in Australia (Tongway and Ludwig, 1994). The 

efficacy by which image metrics of fine-scale grassland patterning were able to distinguish 

distinct ecological phases also lends weight to the close coupling of vegetation pattern and 

ecological process in arid systems (Noy-Meir, 1973; Ludwig et al., 1997). The role of patter 

dynamics as a useful surrogate for the underlying dynamics of ecological processes is to an 

extent supported. Two key caveats in utilizing pattern dynamics as a surrogate for process 

dynamics remain: (i) similar vegetation pattern configurations as captured in the imagery may 

result from different ecological stimuli (as in phases 4 and 5 that may occur after sheet flow or 

interacting drought/fire events); and (ii) distance between points in the state space is not to be 

confused with „ecological‟ distance, in that infrequently observed phases (e.g. phase 3) may have 

both poor sensitivity and specificity in their prediction, and are thereby not well identified. Both 

these issues result from data constraints in the number and length of image series that can be 



generated through more extensive monitoring in both time and space. Some of the 

misclassification may result from the difficulty of monitoring appropriate or sufficiently many 

covariates. The practical consequence of these data constraints is that there is still a need for 

rigorous querying by the ecological expert of outputs from the clustering and classification 

methods, and of how they are to be interpreted. 

The derivation of STMs from image time series complements the adaptive management 

paradigm that underpins the SBLM framework for arid and semiarid ecosystems. For example, 

the hypothesis that an early season rainfall of greater than 62mm allows a „high‟ biomass phase 

to persist can be refined and updated by reapplying the STM methodology when further 

monitoring data are acquired. Thus, the STM methodology provides a facility to learn the 

dynamics of a largely uncertain system – to date not all intensities, timing and interactions 

between ecological events possible under the current event regime have been observed, with 

their consequent impacts on vegetation dynamics largely unknown (Holling and Allen, 2002). 

However, caution is needed in interpreting model output as exact values (such as 62mm) are an 

automatic product of the classification tree methodology. Further analyses, utilizing random 

forests (Breiman, 2004), may be used to provide a measure of variability about such estimates. 

Threshold intensities in events associated with transitions between phases should therefore be 

viewed as provisional, but valid, starting points in predicting ecological phase, and in providing 

an increasingly precise understanding of system behaviour over time. 

A quantitative basis to STM construction also provides new possibilities for 

understanding and thus managing vegetation dynamics, in addition to detecting potential 

deviations from the domain of normally observed dynamics, including: (i) comprising an „early 

warning‟ system that detects potential deviations away from the domain of normally observed 

dynamics, observed as a trajectory moving away from commonly occurring phases in the state 

space; (ii) classifying landscapes and landscape change according to ecological phases; (iii) 

determininghowdifferent ecological phases underpin other processes such as the likelihood of 

fire; and (iv) prediction of future transitions, although this last application will be dependent on 

the ability to predict the occurrence and intensity of ecosystem events. 

Overlapping boundaries of the polygons defining different ecological phases in the 

constructed STM (Fig. 8) may be compared to higher order phase transitions in physical systems. 

In physical systems, a system parameter may be increased so one phase becomes dominant over 



another (i.e. that phase becomes the meta-stable phase) but that dominance is not complete, or 

not realized immediately. For example, shrub dominance is in a constant state of flux when there 

is no sustained overgrazing in semi-arid wooded grasslands in eastern Australia, with changes in 

shrub dominance driven by fire interacting with drought events (Westoby et al., 1989). The high 

variability in timing and intensity of fire and rainfall ensures that shrub or grass dominance in 

wooded grasslands is never complete at landscape scales. An awareness of the lack of complete 

dominance (or lack of discreteness of phase boundaries in the state space) of any single phase 

should be maintained when interpreting STMs generated from image series, and multivariate 

data in general. 

Our approach of deriving STMs of ecosystem dynamics from CRP imagery has the 

potential to reduce the labour required in extensive long term monitoring by ground based 

methods. However, non-trivial issues in advancing the implementation of the methodology 

include calculating how much ground-truthing is required to attribute some form of ecological 

meaning to phases of the state space (exemplified in this study by the linkage of the state space 

to labour intensive biomass data), and the initial cost of developing image processing protocols. 

Without auxillary state variables interpretation will have to rely on judgements inferred from the 

EDA and knowledge of event histories at different sites. An auxillary state variable or other 

interpretation is not strictly necessary for purposes of detecting novel system dynamics, but is 

likely essential in communicating the event driven STM behaviour from an abstract state space 

to on-ground managers. 

When developing protocols for derivingSTMsfrom image series, four criticisms of 

applying image metrics should be answered: (i) the image processing procedure has the potential 

to alter what processes are actually being monitored, and the ecological interpretation of metrics 

applied to the imagery; (ii) the same metrics may have potentially different meanings at different 

scales and in different ecosystems, therefore representing possibly unrelated processes (Li and 

Wu, 2004); (iii) image metrics are subject to criticism similar to that of on-ground ecological 

indicators in that not any one metric may fully represent a process; and (iv) image metrics also 

possess mathematical properties that may impact on the utility of a metric (e.g. „energy‟ based 

measures will in general have a higher sensitivity to deviations from landscape uniformity than 

from landscape heterogeneity in comparison to other textural measures; Baraldi and Parmiggiani, 

1995). In consequence, several image metrics are typically used to represent a process, analogous 



to what occurs for on-ground monitoring in SBLM and Landscape Functional Analysis. 

However, while on-ground indicators are often designed for measuring specific ecological 

processes (e.g. soil electrical conductivity for salinity) image metrics measure only pattern, with 

little a priori knowledge of which image metrics will usefully capture ecological processes 

(Riitters et al., 1995; Fortin et al., 2003; Li and Wu, 2004). For example, there is not an 

automatic correlation between textural metrics of image pattern and the scale at 

which plants may utilize resources in a landscape. A further task in constructing STM state 

spaces from image data is therefore the selection of the subset of image metrics that will be 

appropriate to a specific application. However, once established image processing would be at 

least semi-automatic for the repeated capture of images and of benefit to any long term 

monitoring program. 

The need of land managers to distinguish alternative ecological phases at broader scales 

(i.e. paddock to landscape) than the1m
2
 quadrats captured here by CRP can in part be addressed 

by multiple image capture over a study site. In this study, for example, eight quadrats were 

photographed at each of the two sites at each sampling date. Contours of kernel density estimates 

defining boundaries of the hypothesized ecological phases were then one way of representing the 

mean field behaviour of the T. triandra grasslands over the paddock scale sites where the 

imagery were captured. However, land managers in other contexts will likely employ imagery of 

different resolution at larger spatial scales. Differently scaled vegetation patterns will therefore 

be detected (e.g. a grass–woodland matrix), dominated by differently scaled ecological processes 

(e.g. landscape flows of water and plant invasion). This diversity of applications may be 

furthered by managers choosing other metrics, processing methods and driver variables that are 

directed more towards management needs, rather than the approach presented here which aims at 

detecting differences in image pattern with as few a priori assumptions as possible (e.g. 

managersmaybemore interested in shifts in basal area of the grasslands for assessing stocking 

rates, as opposed to overall changes in patterning of above ground biomass). However, the 

deployment of alternative imagery and metrics will likely affect the generatio of STMs, 

potentially resulting in different, hypothesized ecological phases correlated to somewhat 

different system events. This specificity of the derived STM in relation to the image source will 

constrain the capacity of managers to “mix-and-match” STMs generated from different image 

sources and at varying spatial scales for the one vegetation system. Despite the limitations of 



moving beyond a specific spatial scale and imagery source, the salient point here is that STMs 

can be generated from an image series. The methodology may therefore be applied more 

generally to larger scale imagery in future. 

4.1. Alternative applications 

Our study of T. triandra grasslands of north western Australia represents a relatively 

simple system: a monoculture that responds rapidly to driving events, with experimental 

exclusion of grazing. Wheregrazing is a factor, changes in grazing intensitymaybe incorporated 

as a driver of a system‟s dynamics by including grazing intensity as a further covariate in the tree 

classification, assuming the data are available. In addition to semi-arid and arid systems, the 

methodology may be applied to the pattern dynamics of other event-driven, multi-phase systems 

such as seagrass-macroalga communities (Fourqurean and Rutten, 2004), where strong changes 

in patterning may be captured by aerial imagery over relatively small time scales. More complex 

vegetation systems, such as coniferous forests whose event-driven dynamics evolve over decadal 

scales, will require monitoring of multiple sites in a space-for-time substitution, with the 

divergence in event histories between sites to be maximised (Pickett, 1989). For example, 

„Ridge‟ and „Cattlewell‟ were sufficiently distant spatially to be subject to separate wildfires, 

permitting the interaction between fire and drought to b better identified in the T. triandra image 

series (Figs. 5 and 6). An image derived dynamics has then a potentially wide application to 

a range of vegetation systems. 

More generally, our approach consists simply of defining a state space, hypothesizing 

phases through an unsupervised classifier, and then assigning thresholds in driving events to 

those phases using a supervised classifier. As demonstrated by (Jackson and Bartolome, 2002), 

the methodology may be extended to other multivariate, long-term monitoring data and not just 

to pattern metrics derived from image data. For example, restoration projects using plant 

community data in comparing phase dynamics between disturbed and benchmark sites could be 

used to evaluate project completion targets (Grant, 2006). Remote sensing technologies 

quantifying aspects of the system elements other than vegetation pattern (e.g. biomass and net 

primary productivity; „greeness‟ indices; water yield and heat fluxes) would simply extend the 

number of indicators to be incorporated into the state space, or be treated as auxiliary state 

variables. Existing rangeland monitoring data comprising SBLM type indices to detect changes 

in ecosystem processes may also be integrated within this framework. 



 

Fig. 8. State-and-transition model of T. triandra grassland dynamics. Boundaries of ecological 

phases are represented by the 60th percentile of 2D kernel density estimates of all observations 

placed into each hypothesized phase, and were collapsed onto the one plot. Note that the 

different phases overlap but in this plot have been discretised to an extent by the choice of 

percentile. Together the phases and transitions form a phase dynamics that characterise an 

ecological state of the system (i.e. T. triandra grassland). 

 

 


