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oisture estimation within a mine heap: An application
f cokriging with assay data and electrical resistivity
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ABSTRACT

Cokriging has been applied to estimate the distribution of
moisture within a rock pile of low-grade gold ore, or heap.Along
with the primary data set of gravimetric moisture content ob-
tained from drilling, electrical resistivity was used to supplement
the estimation procedure by supplying a secondary data set. The
effectiveness of the cokriging method was determined by com-
paring the results to kriging the moisture data alone and through
least-squares regression �LSR� modeling of colocated resistivity
and moisture. In general, the wells from which moisture data
were derived were separated by distances far greater than the hor-
izontal correlation scale. The kriging results showed that regions
generally undersampled by drilling reverted to the mean of the
moisture data. The LSR technique, which provides a simple
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ransformation of resistivity to moisture, converted the low resis-
ivity to highmoisture, and vice versa. The sparse well locations
reated a high degree of uncertainty in the transformed data set.
xtreme resistivity values produced nonphysical moisture val-
es, either negative for the linear model or values greater than
ne for the power model. The cokriging application, which con-
iders the correlation scale and secondary data, produced the best
esults, as indicated through the cross validation. The mean and
ariance of the cokriged moisture were closer to the measured
oisture, and the bias in the residuals was the lowest. The appli-

ation likely could be improved through optimal well placement,
hereby the resistivity results guide the drilling program through
ross target characterization, and the moisture estimation could
e updated iteratively.
INTRODUCTION

Modern mining relies on the heap leaching process to extract met-
l from rock �e.g., Burkin, 2001; Han, 2002�. Heap leaching is a
ethod of applying a dilute aqueous ionic solution to the surface of a

ile of prepared ore �Juvonen and Kontas, 1999�. Ore preparation
an include crushing, agglomeration, or run-of-mine �ROM�, de-
ending on the geology and amount of fine-grained material. The
eachate is allowed to percolate through the pile to solubilize and

obilize the metal �Crundwell and Godorr, 1997; De Andrade Lima
nd Hodouin, 2005; Bouffard and Dixon, 2007�, and the leaching so-
ution is either acidic or basic, depending on the metal. A basic sodi-
m cyanide solution, for example, is used to extract gold by forming
urocyanide �Habashi, 1966; Marsden and House, 1992�. Gold ex-
raction can be enhanced also by pretreatment with biological agents
r through roasting �Iglesias and Carranza, 1994�. Beneath the heap,

Manuscript received by the Editor 10 May 2009; revised manuscript receiv
1Formerly hydroGEOPHYSICS, Inc., Tucson,Arizona, U.S.A.; presently
2010 Society of Exploration Geophysicists.All rights reserved.
liner and drainage pipe network collects the pregnant leach solu-
ion �PLS� for final processing, including solvent extraction and
lectrowinning.

The application rate of leaching solution to the surface of a heap is
pproximately 5 to 15 L /h per square meter of surface area, and ef-
ective leaching of the ore is impacted greatly by the types of geolog-
c materials used in the construction, how they were placed, and the
egree of fines. In general, heaps are large heterogeneous rock piles
f differing geologic media taken from various parts of an open pit
see Kennedy, 1990�. The heap at the Round Mountain Mine in cen-
ral Nevada, for example, spans approximately 1600 m by 800 m
nd is more than 150 m tall, with gold occurring in tuff, limestone,
nd quaternary alluvium �Mills, 1985�. These different types of de-
osits have their own grain-size distribution and controlling factors
or lixiviant flow.

y 2009; published online 20 January 2010.
IS U.S., Inc., Tucson,Arizona, U.S.A. E-mail: druck8240@gmail.com.
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B12 Rucker
Ineffective leaching within the heap typically is the result of fac-
ors that can include the tendency of finer-grained material to com-
act into confining zones, wetting front instability, and channeling
long “fractures” of well-sorted, coarse-grained material �Kunkel
nd Arnold, 2008�. The creation of confining zones, for example,
auses pooling and shading. The pooling of lixiviant occurs when
olution accumulates above the confining zone, where the hydraulic
onductivity of the zone is sufficiently low that percolation through
he zone occurs at very large time scales. The pooling then causes ad-
itional water to cascade around the confining zone and create a
hading effect immediately below. The shaded region remains rela-
ively dry, reducing the total volume of leached ore. Large confining
ones therefore reduce the total effectiveness of the heap and leave
arge metal inventories in place.

Targeting the dry zones with a secondary leaching application,
uch as Hydro-Jex �Seal, 2004, 2007�, increases the yield and effi-
iency of a heap. The secondary leaching process consists of drilling
nd casing holes within a heap, perforating the casing at specific
epth intervals, and injecting leachate at high pressures within each
epth interval using a straddle packer. The challenge then becomes
he characterization of the heap and effective well siting. Given the
ost of well drilling and assaying, indiscriminate well placement
ould absorb the additional profit gained through secondary recov-
ry.

Heap characterization can be conducted through direct and indi-
ect means. Direct characterization includes hard information ob-
ained from assay results during drilling. Indirect characterization
an include inexpensive geophysical surveys, and the mining indus-
ry has relied traditionally on geophysics, primarily for the initial ex-
loration of mineral resources. Geophysics, however, can be applied

F

s a

igure 1. Site location of the North Area Leach �NAL� pad, north of
arlin, Nevada, U.S.A. Coordinates are in Nevada State Plane,
eters, NorthAmerican datum of 1927.
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o near-surface problems to understand more fully the distribution of
esources and moisture in an engineered earth. Examples of geo-
hysics applied to engineered structures include levees �Asch et al.,
008�, dams �Osazuwa and Chinedu, 2008�, and foundations �Dong
t al., 2008�. The geophysical data usually are considered soft, as
nique relationships between the geophysical property and the de-
ired heap property �water content, gold concentration, and so on�
re rare. Many competing factors can give rise to similar values of
he measured geophysical property, and it is necessary to combine
he hard and soft data to form a complete conceptual model of the
ubsurface.

In this study, we present a method of combining hard assay data
nd soft geophysical data for characterizing an active heap using
eostatistics. The assay data include gravimetric water content
mass-based moisture content as defined in Topp and Ferré, 2002�,
nd the geophysical data include electrical resistivity, acquired
long transects on the surface of the heap and inverse modeled using
3D resistivity code. This study follows an approach similar to

arks and Bentley �1996�, whereby several geostatistical methods
re tested and compared, including kriging of the assay data alone,
east-squares regression �LSR� of the assay and resistivity data, and
okriging of the assay and resistivity data. Although geophysical
haracterization of waste rock piles is shown in the literature �e.g.,
ampos et al., 2003; Gloaguen et al., 2007; Poisson et al., 2009�, this

tudy explores an active heap to help increase gold production by
roviding the means for better well siting for secondary recovery
ethods.

SITE DESCRIPTION

Figure 1 shows the site location of the North Area Leach �NAL�
ad at Newmont Mining Corporation’s Carlin, Nevada, operations.
he mine is 20 miles north of Carlin, Nevada, U.S.A. The NAL pad
as constructed in 1987 to process low-grade oxide gold ores mined

rom multiple open pits on the Carlin Trend. It was constructed as a
ully lined facility in a series of phased expansions.

The heap under investigation was underlaid with synthetic liners
laced directly on a prepared native soil base. An underdrain solu-
ion collection system, composed of four-inch perforated polyvinyl
hloride �PVC� pipe, lies on top of the synthetic liner. The ore con-
isted of ROM and crushed rock. Since 2004, however, only ROM
re has been placed. Lime is added directly to the ore and to the lix-
viant to increase the pH for effective gold removal. The ore is placed
y end dumping from 250-ton trucks in nominal 10-meter lifts with
n ultimate heap height of 100 meters.

Gold is leached from the ore with a dilute sodium cyanide solu-
ion, which is applied to the surface of the heap using drip emitters.
ypical solution application rates of 12.2 L /h /m2 are used with a
rimary leach cycle lasting 90 to 120 days. Total barren solution
ows from the heap at a rate of approximately 1.82�106 L /h. Gold

s recovered from the pregnant solution by means of a carbon-in-col-
mn �CIC� plant. As of December 2008, more than 208 million tons
ave been placed, from which three million ounces of gold have
een recovered. The heap construction and leaching process is simi-
ar to that of pads on adjacent properties �see Bhakta and Arthur,
002�.

It is suspected that a significant quantity of gold remains in the
eap, prompting Newmont to consider secondary recovery using
SEG license or copyright; see Terms of Use at http://segdl.org/
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Moisture estimation within a mine heap B13
ressurized injections �Rucker et al., 2009b�. The injections are used
o push lixiviant into unleached or minimally leached zones through
erforated wells. To site the wells better for secondary recovery,
rilling and assaying along with electrical resistivity imaging were
onducted on the pad. Twenty-nine wells were placed as low as a
epth of 60 m below the pad surface �BPS�, and samples were ex-
racted and characterized every 1.5 m for gravimetric moisture con-
ent, gold, pH, and other information.

Atotal of 983 samples were used to characterize the pad with hard
ata. The moisture content ranged from very dry �0.005 g /g� to
oist �0.28 g /g�. The aurocyanide concentration ranged from 1
10�4 ounces per ton of ore �OPT� to 6.21�10�2 OPT. Economi-

ally, aurocyanide concentrations greater than 6�10�3 OPT are of
nterest at NAL, which accounted for 186 samples. The pH generally
as between 7 and 10 with a few values falling below 7 and a few
ear 11. The average pH was 8.15. Figure 2 shows the assay data for
ells 13 and 24 at NAL. The data appear rather heterogeneous, with
oisture in particular changing dramatically over very short dis-

ances.
For this work, we chose the geostatistical method of ordinary

riging to estimate the distribution of moisture in the heap. Kriging
ses a weighted linear combination of neighboring values to esti-
ate the value at the unsampled location. The following section de-

cribes the theory and results of kriging moisture data over the heap.
We are at an advantage, however, because we also have a 3D rep-

esentation of electrical resistivity over a portion of the pad, which
an be used for cokriging the hard and soft data together, assuming
hat the two data sets have some spatial correlation. Figure 1 shows
he outline of the resistivity area in the center of the pad. Cokriging is
imilar to kriging, whereby a weighted linear combination of hard

igure 2. Example data distribution of moisture, leachable gold �as
.005 is dry, whereas 0.28 is moist ore.
Downloaded 20 Jan 2010 to 150.135.239.97. Redistribution subject to 
nd soft data is used to calculate the value at the unsampled location.
he cokriging method also can accommodate either type of data that
o not necessarily coexist at the same location, allowing for the high-
y resolved resistivity to be incorporated with low-resolution assays.

THEORY

eostatistics

Geostatistics offers a way of describing the spatial continuity of
atural phenomena and providing a means of interpolation �or ex-
rapolation� at an unsampled location u0 �Isaaks and Srivastava,
989�. For the kriging and cokriging methods, the variogram or co-
ariance functions are used to estimate the spatial continuity of the
ample population. These functions aim to measure the average de-
ree of dissimilarity between an unsampled value z�u� and a nearby
ata value z�u�h� �Deutsch and Journel, 1992�, where h is the lag
etween the two data points. Typically, larger lags equate to greater
issimilarity between data values.

The covariance is defined for a set of paired data at a given lag as

Cov�z�u�,z�u�h��

�Czz�h�

��1

n
��

i�1

n

�z�u�i� z̄�u���z�u�h�i� z̄�u�h��, �1�

here n is the total number of data pairs and the bar notation refers to
he mean. In general, the covariance relates how each data value dif-
ers from its mean, and a large positive covariance value equates to
he paired data responding similarly to their mean �both increasing

gures

anide�, and pH within two wells, 13 and 24. A moisture content of
Fi

aurocy
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B14 Rucker
r decreasing at the same rate�. The covariance at h�0 is the vari-
nce.

Equation 1 can be applied at many different lags to produce an ex-
erimental covariance function, which commonly is plotted as
zz�0��Czz�h�. The experimental covariance function can be repre-

ented by a mathematical covariance model, and for this work we
rimarily used the spherical model,

Czz�0��Czz�h�

���c1
z �c0

z�� 3h

2az �
1

2
� h

az�3��c0
z , if h�a

c0
z �c1

z if h�a
	,

�2�

here c0
z is the nugget for the covariance model of z, c1

z is the sill,
nd az is the range. The nugget describes the discontinuity at the ori-
in of the covariance function resulting from short scale variability.
he sill is the plateau of the covariance function, and the range is the
istance to which the covariance function reaches the sill. The spher-
cal model in general is the most popular model �Isaaks and Srivas-
ava, 1989�, but it was chosen here because of its linear behavior near
he origin.

The ordinary kriging method uses the covariance model to formu-
ate the weights used in the estimation procedure. The unknown
ample z0 is calculated by

z0� �
i�1

n

wizi, �3�

here w represents the vector of weights for all known samples. The
eights are calculated so that

�
i�1

n

wi�1, �4�

o ensure an unbiased estimator. The covariance model of equation 2
hen is used with equation 4 to formulate a set of linear equations of
he form �Isaaks and Srivastava, 1989�

�
j�1

n

wjCij���Ci0 ∀ i�1. . .n

or 

C11 ¯ C1n 1

] � ] ]

Cn1 ¯ Cnn 1

1 ¯ 1 0
� ·


w1

]

wn

�
��


C10

]

Cn0

1
�, �5�

here Cij is the covariance for data zi and zj at a separation of hij and
is the Lagrange parameter �Isaaks and Srivastava, 1989�. The

ight-hand side of equation 5 is the covariance between zi and un-
ampled z0.

To demonstrate, the moisture data from all wells at NAL were
riged over the domain encompassing the resistivity measurements.
he spherical covariance function was used:
Downloaded 20 Jan 2010 to 150.135.239.97. Redistribution subject to 
Czz�0��Czz�h��c0
z �Sph�1az

1c1
z ��Sph�2az

2c1
z �

Czz�0��Czz�h��0.4·10�3�Sph� 40

0.4·10�3 �
�Sph� 100

0.03·10�3 �, �6�

here Sph indicates the spherical form of the covariance model.
ultiple models can be compounded, where, for example, the first

pherical covariance model operates in the range � 1a
z� of 0 to 40 m,

nd the second spherical covariance model operates in the range of
0 to 100 m � 2a

z�; 1c1
z is the sill for the first range of 1a

z, and 2c1
z is

he sill for the second range. Beyond 100 m, the covariance flattens
o a value of c0

z� 1c1
z� 2c1

z.
Figure 3 shows the results of the kriging as a slice through the heap

t a constant elevation of 1790 m above mean sea level �approxi-
ately 15 m BPS�. Figure 3a is the covariance function and the
odel fit to the covariance function as described in equation 6. The

xperimental covariance function is smoothly varying out to about
0 m, which is the average depth for the wells. Beyond 40 m, the co-
ariance function is quite noisy, and the range and sill for the larger
ags were estimated by judgment. The initial 40-m range of the first
pherical model coincides with the average length of the wells, sug-
esting that there is more consistency in the vertical than in the later-
l direction.

Figure 3b shows the kriging results for a horizontal slice through
he heap at a constant elevation of 1790 m. The MATLAB program
OKRI �Marcotte, 1991, 1993� was used to krige the data at 1680 lo-
ations on the planar surface �coincident with electrode locations de-
cribed in geophysical surveying methodology�. For the isolated
ells in the western and northern regions, the moisture content

hows rings around the wells that extend about 40 m. Greater than
0 m, the moisture is roughly the mean of all moisture measure-
ents. For the cluster of wells in the eastern region, greater variabili-

y is seen immediately around and between the wells.Away from the
ell cluster, the moisture returns to a mean value, suggesting that an

ccurate assay-based characterization of this heap likely would re-
uire wells placed every 30 to 40 m.

Cross validation is a means of testing the covariance model and
riging method by serially estimating the unknown value at an al-
eady sampled location. The sampled value is removed from the
opulation, and the estimated result is compared to the true value.
igure 3c shows the results of the cross validation by removing a sin-
le measurement point for reestimation. The scatter plot shows a rel-
tively good fit considering the heterogeneous nature of the parame-
er. However, because the point measurements are separated by only
.5 m along the length of the well, measurements above and below
he removed sample strongly influence the outcome. Furthermore,
he point-based cross validation says nothing about regions that gen-
rally are underrepresented. The methodology presented in Figure
d helps to overcome this by removing measured values from an en-
ire well.All values within the well then are reestimated, and Table 1
ists the statistics for the outcome of this procedure. Clearly, the

odeled moisture from kriging reverts to values near the mean, but
he variance of the modeled moisture is quite low. There also is a
light bias in the residuals.
SEG license or copyright; see Terms of Use at http://segdl.org/
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Moisture estimation within a mine heap B15
okriging

Cokriging is similar to kriging, whereby the weighting of primary
nd secondary �or hard and soft� data remains a linear process:

z0� �
i�1

n

wizi� �
j�1

m

� jv j

× �

�
)h(

C

a)

b)

igure 3. Kriging of moisture data, �a� experimental covariance func
n elevation of 1790 m, �c� cross-validation results from a point-base
l procedure. The term lag refers to the distance between data pairs; C
y a lag of h. Coordinates are in Nevada State Plane, meters, NorthA

able 1. Cross-validated moisture statistics.

ata Mean Varianc

easured 0.068 0.00064

riged �well based� 0.057 0.00001

SR: Linear fit 0.106 0.0055

SR: Power fit 0.089 0.0064

okriged �well based� 0.061 0.00006
Downloaded 20 Jan 2010 to 150.135.239.97. Redistribution subject to 
and �
i�1

n

wi� �
j�1

m

� j�1, �7�

here v represents the soft data, m is the total number of soft data
vailable for cokriging, and � is the weighting factor on the soft data.
he weights are formulated through covariance models, and cokrig-

c)

d)

d covariance model for moisture, �b� modeled moisture contours at
val procedure, �d� cross-validation results from a well-based remov-
C�h� is the variance minus the covariance of the data pairs separated
n datum of 1927.

Mean of
residuals

Variance
of

residuals rms

�0.010 0.00061 0.0266

0.037 0.0053 1.43

0.022 0.0062 1.58

�0.0072 0.00063 0.0261
tion an
d remo
�0��
e

1

5
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B16 Rucker
ng with two variables requires three models to be generated: one co-
ariance model for the primary, one for the secondary, and a cross-
ovariance model describing the relationship between the primary
nd secondary variables. The cross-covariance is described by

Cov�z�u�,v�u�h���Czv�h�

��1

n
��

i�1

n

�z�u�i� z̄�u���v�u�h�i

� v̄�u�h�� �8�

For the cokriging method to be valid and avoid negative varianc-
s, the linear model of coregionalization must be used �Ahmed and
e Marsily, 1993�. The linear model of coregionalization places re-
trictions on the covariance model �all models must be of the same
ype�, as well as the values for the sill, nugget, and range that can be
sed in the cross-covariance model,

c0
zv� �c0

zc0
v�

c1
zv� �c1

zc1
v�,

azv� �azav�, �9�

here the superscript zv indicates the cross-covariance model pa-
ameter, z indicates the primary model parameter, and v indicates the
econdary model parameter. One way to help overcome the restric-
ions of the linear model of coregionalization is to scale the second-
ry data by the mean of the primary data �Parks and Bentley, 1996�.
n example of the cokriging method is presented after introducing

he electrical resistivity data.

lectrical resistivity

The resistivity method uses electric current �I� that is injected into
he earth through one pair of electrodes �transmitting dipole� and

easures the resultant voltage potential �V� across another pair of
lectrodes �receiving dipole�. The scalar spatial voltage distribution
an be modeled with Poisson’s equation �Dey and Morrison, 1979�:

�

�x
� 1

�

�V

�x
��

�

� y
� 1

�

�V

� y
��

�

� z
� 1

�

�V

� z
�� I �10�

here � is the spatially heterogeneous resistivity. The electric cur-
ent is generated by battery-driven or motor-generator-driven equip-
ent. Field data are acquired using a multielectrode array along lin-

able 2. Array comparisons for the AGI SuperSting R8 w
0-ms time window, and two repeat cycles.

rray
Number
of data

Number
of command

lines

Number
of effective

channels

radient 2809 399 7.04

ole-pole 1540 217 7.1

ole-dipole 1485 210 7.07

ipole-dipole 1542 272 5.67

enner-Schlumberger 1315 500 2.63
Downloaded 20 Jan 2010 to 150.135.239.97. Redistribution subject to 
ar transects. A multielectrode array enables rapid data acquisition
ver a large area with minimal reconfiguration of equipment. Com-
on array configurations include Wenner, Schlumberger, and di-

ole-dipole arrays.
The Advanced Geosciences Inc. �AGI� system, the SuperSting

8, offers another option, which AGI refers to as the gradient array
AGI, 2008�. The gradient array is similar to the Wenner and
chlumberger arrays because the current electrode pair is placed on

he two outer electrodes of the basic four-electrode setup, and the
oltage is measured on the inner pair. The progression of measure-
ents occurs by moving one current electrode forward along the ar-

ay and then measuring all adjacent voltage pairs inside the current
air. When the roving current electrode reaches the end of the
ransect, the other current electrode at the beginning of the line

oves forward incrementally and voltage is measured again on all
djacent electrode pairs. The advantages of the gradient array are the
arge number of measurements and its effective use of the number of
vailable channels on a multichanneled resistivity meter.

Table 2 lists the acquisition statistics for some different array
ypes, with parameters specific to the resistivity meter. For each ar-
ay comparison, 56 electrodes were used with a measure time of
00 ms using two cycles for repeat error estimation. Acquisition
ith the gradient array almost doubles the amount of data while us-

ng, on average, 7.04 channels �of a total of 8� per reading. The disad-
antages of the gradient array are the long acquisition time and the
ifficulty in conducting a roll along.

After acquisition, the data are preprocessed to remove obvious
ad measurements �negative voltages, extremely high voltages, data
ith high repeat errors, and so on� resulting from random machine

rror, bad electrode placement, or poor electrode contact with the
urrounding material. Unlike the other array types that can be plotted
n a logical pseudosection of apparent resistivities, the gradient array
oes not have an intuitive plotting strategy of apparent resistivity. It
s difficult, therefore, to do a preassessment of the spatial arrange-

ent of gradient data prior to inverse modeling. Typically, these data
re inverse modeled to find outliers, outliers are removed, and the
ubset of remaining data is remodeled. The process is repeated until
desired goodness of fit is achieved.
The objective of the inversion is to minimize the difference S be-

ween the modeled and measured apparent resistivities, usually in a
east-squares sense. The general form of the objective function for
he resistivity inversion is based primarily on weighted least
quares:

S�m�� �dcalc�dmeas�TWd�dcalc�dmeas�, �11�

here dcalc is the calculated voltage data from the numerical model-
ing at coincident locations with dmeas, which rep-
resents the measured voltage. The expression Wd

represents a weighted function based on the mea-
surement errors and is equal to the inverse of the
error covariance matrix. The objective function
has been updated many times to include other
terms, such as smooth model constraints �i.e., a
smooth model based on minimizing the second
spatial derivative of the resistivity�.

For the inverse models completed on the New-
mont Carlin NAL data, the smooth model criteri-
on was invoked, and the final objective function
to be minimized for smooth model inversion is
represented by

electrodes,

isition time
�h:mm�

0:57

0:31

0:30

0:38

1:11
ith 56

Acqu
SEG license or copyright; see Terms of Use at http://segdl.org/
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Moisture estimation within a mine heap B17
S�m�� �dcalc�dmeas�TWd�dcalc�dmeas�

���m�m0�TK�m�m0�, �12�

here the second term represents model smoothness, � is the damp-
ning factor, m is the model parameter of resistivity at every cell, m0

s the a priori information and/or initial starting guess, and K is the
ifference operator for estimating model smoothness. Changes to
he previous model of resistivity distribution �m occur by

�JTWdJ��K�m�JTWd�dcalc�dmeas���K�m�m0�

�13�

nd

mi�1�mi��m . �14�

The �N�M�J matrix contains the derivative of the simulated data
easurements �n� with respect to the model parameters �m�

Gunther et al., 2006�.
In general, the automated inversion routine for inverse modeling

roceeds as follows:

. The earth’s voltage data have been measured and are dis-
cretized into grid nodes using a finite-difference or finite-ele-
ment mesh. The meshing parameters depend on electrode spac-
ing. The inversion sets out to estimate the true resistivity at ev-
ery grid node.

. An initial estimate of the subsurface properties is made based
on the literal translation of the pseudosection to a true resistivi-
ty, a constant value, or some other distribution from a priori in-
formation. The forward model runs with this initial estimate to
obtain the distribution of voltages in the subsurface. The root-
mean-square �rms� error is calculated between the measured
voltage and the calculated voltage.

. Based on the degree of match between simulated and measured
voltages, the initial estimate of resistivity is changed and the
forward model is rerun. The iterative method is linearizing a
highly nonlinear problem using Newton’s method. Essentially,
the program solves the linearized problem to obtain the change
in modeled resistivity ��m� for the next iteration.

. The resistivity model is updated using the general formula
mi�1�mi��m, where mi�1 is the resistivity in a model cell
at the next iteration, and mi is the current value.

. Steps 3 and 4 are repeated until the rms error changes between
successive iterations are less than 10%.

The iterative nature of resistivity inversion is necessary because
quation 10 is nonlinear. A more complete discussion of resistivity
nversion and the methods by which the true resistivity is calculated
an be found in several sources, including Li and Oldenburg �1994�,
aBrecque et al. �1996�, and Loke and Barker �1996�.

GEOPHYSICAL SURVEY METHOD AND RESULTS

The electrical resistivity method was conducted with a multicon-
uctor cable and stainless steel electrodes. The acquisition was con-
ucted one line at a time to create a series of profiles of 2D data. Each
ine was composed of 140 electrodes, with an electrode spacing of

m. Data were acquired using the gradient array for the 12 lines,
ith a line spacing of 15 m. A total of 1680 electrode locations and
Downloaded 20 Jan 2010 to 150.135.239.97. Redistribution subject to 
05,840 data values were collected on the heap over a period of six
ays. After initial noise removal and filtering of substandard data,
he net data count was 81,242.

Although the electrical resistivity data were acquired along 2D
ines, the data can be combined into a 3D data set given proper geo-
eferencing of the electrodes. For our study, the inversion code
arthImager3DCL �or EI3DCL� byAGI was used to invert the NAL
ad resistivity data. The code uses the finite-element numerical
ethod and can incorporate topography. The meshing consisted of

etrahedral elements with 108,976 core nodes �139 rows, 56 col-
mns, 14 layers� on which the electrical resistivity was calculated.
or this application, the processing computer system comprised a
ell PowerEdge 6800 running Microsoft Windows Server 2003 64

bit with four dual core Intel Xeon 7120 M processors �3 Ghz� and
2 GB of RAM. To reduce memory requirements, the data were ro-
ated 15.85° counterclockwise, which in effect reduced the number
f unique rows and columns in the model domain.

The inverse modeling occurred in two steps. The first step was an
nitial inversion run with all data after preprocessing. This step re-
uired eight iterations to complete in approximately 32.5 hours. The
rst iteration finished with an rms of 40.55; the last iteration finished
ith an rms of 20.97. The results of the last iteration then were used

or final filtering to remove spurious data that did not fit the overall
rend of modeled versus measured voltage. The second step included
nverse modeling of a subset of data from the first step, whereby

easured voltage data with a difference greater than 20% from the
odeled data were removed. The final data count for step two was

5,501. Upon close inspection of the filtered data set used in the in-
ersion, the filtering removed 77 electrodes from the domain likely
aused by poor contact and high error, an additional 82 transmitter
lectrodes �that still were used as receivers�, and 37 receiver elec-
rodes �but still used as transmitters�. There did not appear to be a
attern or a specific region for the removal of data. The inversion of
he reduced data set resulted in the model completing in five itera-
ions to a final rms of 5.77.

Figure 4 shows the 3D distribution of electrical resistivity within
he heap. The modeled resistivity values of the heap range from
.8 to 800 ohm-m, demonstrating that the heap is highly heteroge-
eous. The inversion model creates a solid block of cells, with each
ell having a resistivity value and hence a color associated to it. To
rovide a means to look within the model, the solid block was sliced
orizontally at a depth of 1790 m in Figure 4a. The slice is color con-
oured with warm colors �red and yellow� representing high resistiv-
ty values and cool colors �blue and purple� representing low values.
n alternative view of the spatial distribution is to remove all data

bove �or below� a set resistivity value and show the remaining pop-
lation as a solid rendered body. Figure 4b shows a solid body of val-
es less than 50 ohm-m, and Figure 4c shows a solid body of values
reater than 75 ohm-m. These opaque bodies are presented from
verhead and from the south side. Black lines represent the location
f electrodes from lines 1 through 12, which are draped over the sur-
ace of the heap to give a perspective to the topography.

The distribution of resistivity within the heap shows high values
ear the surface and in the center of the measurement area. The near
urface having high resistivity can be explained through evapotrans-
iration. High resistivity values can be seen also at breaks in slope on
he heap, which are labeled in Figure 4c. It can be reasoned further
hat the bypassing of leachate along the toe of the heap is caused by a
SEG license or copyright; see Terms of Use at http://segdl.org/
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B18 Rucker
apillary barrier created by a dipping, fine-grained rock layer over-
ain on a coarse-grained rock �Rucker et al., 2009a�. Low resistivity
alues, on the other hand, are more common for rock with higher
oisture content. The distribution of low resistivity material is ob-

erved to be along segregated portions of the measured area and ex-
end as low as the depth of investigation �about 70 m below the heap
urface�. The depth of investigation is based on the sensitivity of the
odel cells, and cells below 70 m contributed practically nothing to

he inversion procedure. The nature of the resistivity distribution in
igure 4 could suggest preferential flow, whereby gravity drainage
long high-permeability zones allows the leachate to shortcut to the
rainage system and liner. Most low resistivity regions appear to
ave a complete connection from top to bottom of the survey area.

b)

a)

igure 4. Electrical resistivity distribution within the NAL pad, show
ngs of �b� low resistivity and �c� high resistivity material. Black line
ive an indication of topography. Coordinates are in Nevada State Pla
Downloaded 20 Jan 2010 to 150.135.239.97. Redistribution subject to 
MODELING OF ASSAY AND
RESISTIVITY DATA

east-squares regression

Empirical relationships have been developed to describe the ob-
erved bulk resistivity of rock cores to water saturation. For sand-
tones or other high resistivity rock with little to no surface-conduc-
ion effects, theArchie relationship can be used:

�t�a�w	�mSw
�n, �15�

here �t is the resistivity of the rock with fractional saturation, n is
he saturation index, 	 is the porosity, a and m are parameters to de-

)

a horizontal slice at an elevation of 1790 m and solid model render-
ed across the surface in �b� and �c� represent electrode locations and
ters, NorthAmerican datum of 1927.
c

ing �a�
s drap
ne, me
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Moisture estimation within a mine heap B19
cribe the formation, and �w is the resistivity of the water. Keller
1988� suggests n�2 for sand, and many use this value for their
ork �see Edwards, 1997; Dannovski and Yaramanci, 1999; Garam-
ois et al., 2002; Descloitres et al., 2008�, whereas others observe
alues less than n�2 �Taylor and Barker, 2006�. Grellier et al.
2008� use n�2.5 for a landfill application, and Sen �1997� discuss-
s some reasons for n deviating from its “normal” value of n�2.

Regardless, if m�n, then equation 15 can be reduced to

�t�a�w
 v
�n �16�

r

�t�a�w�Db
 g��n, �17�

here the substitution of 	�nSw
�n is made for the volumetric water

ontent �
 v�. In equation 17, another substitution of gravimetric wa-
er content is made for volumetric water content by incorporating the
ulk density �Db� in g /m3. Guzman et al. �2008� describe several re-
ationships of dry bulk density as a function of heap height, where
he bulk density was observed to increase as much as 30% at 80 m
PS.
Other popular petrophysical relationships that account for a con-

uctive matrix include the Waxman Smits �W-S� shaly sandstone
odel �Waxman and Smits, 1968� and the Hanai-Bruggeman �H-B�

ffective medium theory �Bussian, 1983�, which are presented be-
ow �in order� with a partial saturation term:

1

�t
�

Sw
n

F
� 1

�w
�

BQv

Sw
�, �18�

�t��wSw
�n	�m�1��w/�d

1��t/�d
��m

, �19�

here in the W-S model of equation 18, F is the formation factor, Qv

s the cation exchange capacity per-unit pore volume, and B is the
quivalent ionic conductance of clay exchange ions. The remaining
erm of equation 19 is �d, representing the dispersed-phase resistivi-
y, and Taylor and Barker �2006� describe these equations in more
etail.

Although the petrophysical relationships were derived on core
amples, whereby all of the parameters that compose the relation-
hips are measured at the same scale, many have adopted them to
onvert field-based resistivity back to a saturation �or water-content�
alue. Singha and Gorelick �2006� summarize the complications
rom this approach, including the mismatch in scale between mea-
urements and the decreased sensitivity of the method away from the
lectrodes. They conclude that the field-scale relations between
lectrical resistivity and the hydrogeologic parameter must be site,
urvey, and inversion specific.

To accommodate these issues, further work summarized in
ingha et al. �2007� proposes two new approaches for field-based
etrophysics: the full inverse statistical calibration �FISt� and the
andom field averaging �RFA� methods. Both methods appear to
rovide a better calibration of the resistivity data by removing the
ias typically observed when applying equations 16–19. The FISt
ethod relies on geophysical modeling of hundreds of synthetic re-

lizations of the random distribution of the water content to create
etrophysical relationships at every location in space. The realiza-
ions and FISt method could be developed for the NAL pad because
he basic covariance model has been defined. However, inverse
Downloaded 20 Jan 2010 to 150.135.239.97. Redistribution subject to 
odeling every realization would be too time-consuming, consider-
ng the 32.5 hours necessary to invert a single realization.

The RFAmethod is less time-consuming and requires only one re-
lization to be inverse modeled. In addition, the RFAmethod has the
ame general restrictions necessary for cokriging �Gaussian distri-
ution of both parameters, stationarity, and the same basic covari-
nce model�, making the application of RFA to the NAL data set ap-
ear doable and preferred. However, the method requires access to
nternal matrices during the inversion process, namely, the model
esolution matrix R calculated through

R� �JTWdJ��K�1JTWdJ . �20�

For commercial codes, access to the parameters necessary for cal-
ulating R is either limited or nonexistent. For EI3DCL, there is no
ccess and hence we are stuck with reverting back to fitting relation-
hips to colocated measurements of the hard and soft data regardless
f their mismatch in scale. Figure 5a shows the 431 colocated resis-
ivity measurements for moisture and aurocyanide concentration.
he high sampling rate of 1.5 m within the borehole meant that sev-
ral moisture data values fell within a resistivity model cell. For this
xercise, each of these data was considered independently; that is,
everal moisture values were compared to a single resistivity value.
veraging all moisture values that fell within each resistivity block
as considered also, but that would have smoothed the moisture
ata unnecessarily.

Figure 5 shows the results of least-squares regression �LSR� for
oisture and resistivity �presented here as electrical conductivity

EC��. Figure 5a is the scatter of colocated EC versus moisture,
hereby two regression models have been developed: a linear and a
ower function. The scatter generally shows a direct relationship be-
ween the two data, although weak. The power function model is an
bvious choice for a fit to the data, based on the form of equation 17.
he linear fit is based on a common methodology in science to relate

wo variables; it is not based on a physical model. A high degree of
catter appears to exist between the two variables, with a low corre-
ation coefficient for both models. In addition to the reasons given in
ingha and Gorelick �2006�, other contributors of high scatter might
e the use of a univariate correlation and moisture sampling in non-
ptimal locations. From equations 15, 18, and 19, the saturation pa-
ameter is used to describe the bulk resistivity relationship, which in-
orporates saturated water content �or porosity�, residual water con-
ent, and tortuosity. Furthermore, the bulk density is a spatially vari-
ble parameter. Therefore, Figure 5a might be a collapsed 1D view
f a multivariate relationship.

The second issue of nonoptimal sampling stems from the basics of
eophysics as a target recognition tool. For this problem, the targets
re high and low resistivity regions that might be indicative of pref-
rential flow into high-permeability and around low-permeability
ones. Figures 4 and 5b and d show the location of characterization/
timulation wells into regions that mostly straddle the high and low
esistivity. The wells were placed prior to the geophysics, with the
esult of an oversampling of the middle of the resistivity distribution.
he lowest 3.5% of the resistivity values �below 36 ohm-m�, for ex-
mple, is not represented in the assay sampling, nor are values above
70 ohm-m found within the colocated data sets. Sampling the ex-
remes could improve the relationship.

Figure 5b and d shows the conversion of resistivity to moisture for
he linear fit and power fit, respectively. Figure 5c and e shows the
quivalent of a cross validation, whereby the modeled moisture was
ompared to the measured moisture for colocated values. The con-
SEG license or copyright; see Terms of Use at http://segdl.org/
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B20 Rucker
ours of modeled moisture within Figure 5b and d generally show the
ame shape of high and low moisture. For the linear fit, the underrep-
esentation of high resistivity values caused the conversion to calcu-
ate physically impossible negative moisture values. These were
runcated to a value of zero. For the power fit, the underrepresenta-
ion of the low resistivity caused physically impossible moisture val-
es above 1, and these values were truncated to 0.5. The scatter plots
f Figure 5c and e focus on the physically reasonable moisture val-
es between 0 and 0.3 g /g, accounting for 78% of the data.

The plots show the typical bias observed in other studies �Day-
ewis et al., 2005; Singha and Moysey, 2006�, and Table 1 lists the
tatistics for the conversion. Both models overestimate the mean and
ariance of the moisture, and the residuals �modeled moisture-mea-
ured moisture� support the overestimation. The power model per-
orms marginally better than the linear model, with a lower bias as
emonstrated in the mean of the residuals.

okriging of moisture with resistivity

The spatial correlation of the moisture and resistivity data can be
stimated with the covariance function. Figure 6a shows the experi-

y x

y x
R

R

)

b)

)

d)

)

igure 5. �a� Scatter plot and models for colocated moisture and
ents, �b� moisture distribution from resistivity transformation usin

n elevation of 1790 m, �c� validation of measured moisture versus m
he linear model, �d� moisture distribution from resistivity transform
r model at an elevation of 1790 m, �e� validation of measured mois
oisture for the power model. Coordinates are in Nevada State P
merican datum of 1927.
Downloaded 20 Jan 2010 to 150.135.239.97. Redistribution subject to 
ental covariance function and covariance model for the EC, and
igure 6b shows the cross-covariance information for the moisture
nd EC. The EC data were rescaled to the mean of the moisture data.
he experimental covariance function for EC is smooth, and similar
ovariance models for geophysical data are shown by Parks and
entley �1996�. The spherical model was chosen to represent the co-
ariance structure. The experimental cross-covariance function of
igure 6b also is generally less noisy than the moisture covariance
unction. There appears to be a reduction in Czv�0��Czv�h� at lags
reater than 100 m, which likely is picking up on the sizable resistiv-
ty features that appear with a periodicity of about 100 m. At first
lance, the cross-covariance model appears to be a poor fit to the
horter lags. The linear model of coregionalization forces the use of
articular parameters for the model, as described in equation 9.
gain, Parks and Bentley �1996� observe that the cross-covariance
odel is not the best visual fit to the experimental data.
Using the covariance and cross-covariance models of Figures 3

nd 6, the data were cokriged with the program COKRI, using the or-
inary cokriging option. The program is run with several parameters
hat control the number and distance of data to use in estimating the

moisture at unsampled locations. Two crucial pa-
rameters are the formulation of the “model” and
“c” matrices, which describes the covariance
model and the parameters for the model. For this
application, these matrices were set to

model�
nugget 1

model1 1az

model2 2az ��
1 1

4 40

4 100
�
�21�

and

c�

0cz

0czv

0czv
0cv

1cz
1czv

1czv
1cv

2cz
2czv

2czv
2cv

��

4.0 1.5

1.5 6.0

4.0 0.7

0.7 2.4

0.3 0.2

0.2 0.4

��10�4,

�22�

where the first column of “model” represents the
model to use �1�nugget, 4�spherical�, and the
second column consists of the ranges. Marcotte
�1991� describes in more detail how the matrices
are formulated.

Figure 6c shows the results of cokriging for
moisture over the heap.Again, the 1680 electrode
positions were used to establish the locations of
the unsampled moisture at an elevation of
1790 m. The results look markedly different from
the original kriged version of Figure 3 away from
the wells, and show some similarities to the re-
sults of Figure 5. The region near the cluster of
wells in the east shows the highest moisture, even

ity measure-
near model at
moisture for

sing the pow-
rsus modeled
eters, North
resistiv
g the li
odeled

ation u
ture ve
lane, m
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Moisture estimation within a mine heap B21
hough this was not the site of the lowest resistivity. The north-south
anded nature of the resistivity in the western half of the survey area
s retained also in the cokriging results but generally shows lower

oisture. The region is undersampled relative to the east, likely con-
ributing to the estimated moisture being lower.

The cross-validation test results in Figure 6d and e show how well
he cokriging performed. For the point-based cross validation, the
esults are quite similar to those of the kriging. There appears to be
ufficient support from the remaining moisture data within individu-

)h(
�

�×

)h(
C

�

�×

m m

m

) b)

)

) e)

C
C C

igure 6. Cokriging of moisture data using 3D electrical resistivity, �
ariance function and covariance model for a scaled electrical resist
y�, �b� cross-covariance modeling of moisture and scaled electric

oisture distribution from cokriging with moisture and conductivi
790 m, �d� cross-validation results from a point-based removal proc
dation results from a well-based removal procedure. Coordinates
lane, meters, NorthAmerican datum of 1927.
Downloaded 20 Jan 2010 to 150.135.239.97. Redistribution subject to 
l boreholes to reconstruct the missing data point. The resistivity
ata add nothing for this interpolation. However, the real strength of
he cokriging method is seen in Figure 6e, in which the well-based
ross validation shows a much better performance than kriging and
SR. Where kriging produced a flatline response with almost no
ariability in unsampled data 40 m away from the measurement lo-
ation, and LSR produced nonphysical estimations with very high
ariability, the cokriging method appears to be a hybrid of these two
ethods. Cokriging produces higher variability than kriging with

physically meaningful moisture values. The sta-
tistics of Table 1 also show that the cokriging of
moisture is closer to the mean and variance of the
measured moisture than the other techniques with
a much lower bias in the residuals. The rms,
which tends to favor higher errors, also is the low-
est for the cokriging method.

The cokriging method appears to work reason-
ably well considering the nonoptimal sampling.
Even if the method cannot reproduce the mea-
sured moisture exactly, and there is uncertainty in
the cross validation, the method can be used to
find targets of potential dry spots missed during
the primary leaching cycle. Figure 6c shows the
location of recommended drilling spots based on
the estimated driest areas of the pad. Once drilled
and assayed, the moisture data can be reinterpo-
lated to hone the spatial distribution. In this way,
the geophysics and assaying can be conducted it-
eratively to extract more gold during the second-
ary leaching cycle.

CONCLUSIONS

A rock pile was characterized for the potential
application of secondary recovery. The character-
ization methods included hard data from drilling
and soft geophysical data from electrical resistiv-
ity. The samples from drilling were obtained ev-
ery 1.5 m vertically from 29 well locations, but
the wells were spaced too far apart to provide suf-
ficient lateral resolution alone. The resistivity
data were acquired along 12 parallel lines of ap-
proximately 400 m in length, and were subse-
quently inverse modeled in three dimensions.
The cokriging method was used to supplement
the measured moisture data with electrical resis-
tivity to produce a map of potential dry spots
within the pile.

The cokriging results demonstrated advantag-
es over kriging the moisture data alone and least-
squares regression �LSR� of the resistivity-ver-
sus-moisture scatter plot of colocated measure-
ments. The correlation length of the moisture
measurements was shorter than the average well
spacing, making the kriged moisture appear rath-
er homogeneous away from the sampling point.
At approximately 40 m away from the well, the
estimated moisture reverted to the average value
of the sampled data. This gave the kriged mois-
ture a bull’s-eye appearance around the well. The

erimental co-
s conductivi-
ductivity, �c�
elevation of

�e� cross-val-
evada State
m

a� exp
ivity �a
al con
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B22 Rucker
okriging method provided a means for interwell interpolation. The
oisture from the LSR method mimics the resistivity distribution

ecause the method is conducted by simple transformation of the re-
istivity. For this example, the LSR moisture produced physically
nrealistic values 20% of the time, and the ordinary cokriging meth-
d ensured that the estimated moisture falls within the bounds of the
easured moisture. The cross-validation results also revealed that

he cokriging method reproduced the mean and variance of the sam-
led data much better than kriging or LSR, while also having the
owest bias in the residuals. However, the general indirect relation-
hip between resistivity and moisture would allow the LSR method
o be a starting point for initial characterization of rock piles by guid-
ng the drilling program.

It is recommended that the cokriging with resistivity and assay
ata be conducted iteratively by introducing the assay data as it be-
omes available. In this way, the moisture distribution can be updat-
d to site new wells better. Even if the cokriging method cannot re-
roduce with exact fidelity the moisture distribution of the pile, it
ikely would locate the driest portions of the heap indicative of re-
ions bypassed during primary leaching. It is anticipated that the
avings in drilling through proper well siting would more than offset
he cost of geophysics.
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