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Abstract We consider an experiment with fixed number of blocks, in which a
response to a treatment can be affected by treatments from neighboring units. For
such experiment the interference model with neighbor effects is studied. Under this
model we study connectedness of binary complete block designs. Assuming the cir-
cular interference model with left-neighbor effects we give the condition for minimal
number of blocks necessary to obtain connected design. For a specified class of binary,
complete block designs, we show that all designs are connected. Further we present
the sufficient and necessary conditions of connectedness of designs with arbitrary,
fixed number of blocks.

Keywords Interference model · Information matrix · Connected design ·
Permutation matrix · Irreducible matrix · Circulant matrix
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1 Introduction

If in the experiment the response to a treatment is affected by other treatments (for
example in agricultural and horticultural experiments), an interference model is usually
studied. It is worth observing that only experiments in which all treatment contrasts are
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estimable are interesting. Thus, in this paper we characterize connected designs with
arbitrary, fixed number of blocks under an interference model with neighbor effects.

In the literature connectedness of designs under an interference model has not been
discussed yet. Recently some results on optimality of binary designs under this model
were published. These results concern mainly universal optimality of circular neighbor
balanced designs and orthogonal arrays of type I under the fixed and mixed interfer-
ence models, where the observations are correlated or not (see, e.g. Druilhet 1999;
Filipiak and Markiewicz 2003, 2004, 2005, 2007). It is known, however, that for some
combinations of design parameters the universally optimal designs cannot exist. In
such a case efficiency of some designs (Filipiak and Różański 2004) or optimality
with respect to the specified criteria (Filipiak et al. 2008) are considered.

This paper is organized as follows. In Sect. 2 we present some general definitions
and notation. In Sect. 3 we give conditions for connectedness of complete designs with
minimal number of blocks. We identify a specified class of designs which consists only
of connected designs. At the end we present some necessary and sufficient conditions
of connectedness of complete design with arbitrary, fixed number of blocks.

2 Definitions and notations

Let Dt,b,k be the set of designs with t treatments, b blocks and k experimental units
per block. An interference model with left-neighbor effects associated with the design
d ∈ Dt,b,k can be written as

y = Tdτ + Ldλ + (Ib ⊗ 1k)β + ε, (1)

where τ , λ and β are the vectors of treatment, left-neighbor and block effects, respec-
tively. Here ε is a vector of random errors, ε ∼ N(0, σ 2Ibk), where σ 2 is an unknown
constant. The matrix Ib denotes the identity matrix of order b, 1k is the k-vector of
ones and ⊗ denotes the Kronecker product.

Let Tdu be the design matrix of treatment effects in the block u, 1 ≤ u ≤ b. Further,
define Td = (T′

d1 : · · · : T′
db)

′ as the design matrix of treatment effects. For each u
we define Ldu = HkTdu , where Hk is a k × k matrix of the form

Hk =
(

0′
k−1 1

Ik−1 0k−1

)
, (2)

where 0n is the n-vector of zeros. Then, Ld = (Ib ⊗ Hk)Td is the design matrix of
left-neighbor effects. Model (1) with Hk and Ld defined above, is called a circular
interference model with left-neighbor effects. This form of the matrix Hk follows from
the assumption that each treatment has a left neighbor. This situation may occur if each
block of a design has the form of a circle. If plots in blocks are arranged in linear form,
we can obtain the effect of circularity by adding border plots at the beginning of each
block, where the treatment at the border plot is the same as the treatment at the opposite
end of the block (for more details see, e.g. Druilhet 1999). Border plots are not used
for measuring the response variables.
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Connectedness of complete block designs under an interference model 781

The matrices Td and Ld depend on the arrangement of treatments on plots, i.e. they
change with the design. Thus, they are indexed by d.

Observe, that model (1) without left-neighbor effects, i.e.

y = Tdτ + (Ib ⊗ 1k) β + ε, (3)

is the standard model of block experiments. Recall, that block designs from Dt,b,k are
described by the incidence matrix Nd = T′

d (Ib ⊗ 1k) = (nd,i j )1≤i≤t,1≤ j≤b, where
nd,i j denotes the number of units in the j th block receiving i th treatment.

Under the interference model (1), the information matrix for the estimation of
treatment effects, Cd , can be expressed as

Cd = T′
dQIb⊗1k Td − T′

dQIb⊗1k Ld
(
L′

dQIb⊗1k Ld
)− L′

dQIb⊗1k Td (4)

(Markiewicz 1997), where QIb⊗1k is the orthogonal projector onto the orthocomple-
ment of the column span of Ib ⊗ 1k and A− denotes a generalized inverse of A. It is
easy to see that QIb⊗1k = Ib ⊗ Ek , where Ek = Ik − 1

k 1k1′
k . From the form of the

matrix Ek and orthogonality of Hk it can be seen that L′
dQIb⊗1k Ld = T′

dQIb⊗1k Td .
We are interested in determining connected designs, i.e. in testing the null hypoth-

esis of equality of treatment effects, which is possible if and only if all functions of
the type τi − τ j , i, j = 1, 2, . . . , t , i �= j , are estimable.

Definition 1 A linear parametric function of treatment effects, �′τ is called a con-
trast if �′1t = 0. It is called an elementary contrast if � has only two nonzero entries
consisting of 1 and −1.

Theorem 1 (Raghavarao and Padgett 2005) All elementary contrasts of treatment
effects are estimable if and only if rank Cd = t − 1.

Definition 2 A block design is said to be connected if all elementary contrasts of
treatment effects are estimable.

Theorem 1 and Definition 2 imply the following.

Corollary 1 A block design d is connected if and only if rank Cd = t − 1.

Let A be nonnegative matrix of order n. We denote the eigenvalues of A by λ1(A) ≥
λ2(A) ≥ · · · ≥ λn−1(A) ≥ λn(A) ≥ 0. From the above Corollary it is easy to note
that a design d is connected if λt−1(Cd) > 0.

Observe, that a generalized inverse of the matrix in formula (4) depends on the
design, i.e. it changes itself with the arrangement of treatments on experimental units.
It makes the determination of connected design difficult. Therefore, in this paper
we consider experiments in which each treatment occurs at most once in each block
(binary designs) and with t = k (complete designs), whilst b is arbitrary. The class of
such designs we will denote by Bt,b,t . The information matrix of d ∈ Bt,b,t has the
form

Cd = bEt − 1

b
KdK′

d , (5)

123



782 K. Filipiak, R. Różański

where Kd = T′
dQIb⊗1t Ld = T′

dLd − b
t 1t 1′

t . Since the vectors Td1t and Ld1t are in
the column space of Ib ⊗1t , the matrix Kd has zero row and column sums. The (i, j)th
element of the matrix T′

dLd denotes the number of occurrences of treatment i with
treatment j as left neighbor in a design d. Therefore T′

dLd is called a left-neighboring
matrix and it will be denoted by Sd . It is easy to see that in the class Bt,b,t the diagonal
entries of Sd are equal to 0 and the off-diagonal entries belong to the set {0, 1, . . . , b},
such that the row and column sums are equal to b.

Observe, that the matrix Et is symmetric, idempotent and t −1 of its eigenvalues are
equal to 1. Moreover, Et 1t = 0t , KdK′

d1t = 0t and matrices Et and KdK′
d commute.

It follows, that

λt−1 (Cd) = b − 1

b
λ1

(
KdK′

d

)
. (6)

We denote by Pn the class of permutation matrices of order n, and by P̃n ⊂ Pn the
subclass of derangement matrices, i.e. matrices with pii �= 0, i = 1, 2, . . . , n. By C

we denote the set of complex numbers. We use the following definition.

Definition 3 (Horn and Johnson 1985) An n × n matrix A is said to be reducible if
either of the following conditions is satisfied
1. n = 1 and A = 0,
2. n ≥ 2 and there is a permutation matrix P ∈ Pn and an integer r with 1 ≤ r ≤ n−1

such that P′AP =
[

B C
� D

]
, where B ∈ C

r×r , D ∈ C
(n−r)×(n−r), C ∈ C

r×(n−r)

and � ∈ C
(n−r)×r is a zero matrix.

A matrix is called irreducible if it is not reducible.

Note that every irreducible permutation matrix P ∈ Pn represents a cycle of length
n (P is a full-cycle permutation matrix). Moreover, matrix Hn defined in (2) is a
full-cycle permutation matrix.

It is worth observing, that the left-neighboring matrix can be expressed as Sd =∑b
i=1 P̂i , where all P̂i , i = 1, 2, . . . , b, are full-cycle permutation matrices.

3 Results

3.1 Connected designs with minimal number of blocks

Note that if we add some blocks to a connected design, the extended design is also
connected. Thus, in this section we determine the condition of minimal number of
blocks necessary to construct connected design.

Theorem 2 Let design d ∈ Bt,b,t . If d is connected, then b ≥ 2 for odd t and b ≥ 3
if t is even.

Proof Let b = 1. Without loss of generality let assume Sd = Ht . From (5) we have

Cd = Et −
(

Ht − 1

t
1t 1′

t

) (
Ht − 1

t
1t 1′

t

)′
= �t ,
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Connectedness of complete block designs under an interference model 783

where �t is a t × t matrix of zeros. Thus, every design which contains only one block
is disconnected.

Let b = 2. Without loss of generality let Sd = Ht + PHt P′, where P ∈ P̃t . From
(5) we have

Cd = 2Et − 1

2

(
Ht + PHt P′ − 2

t
1t 1′

t

) (
Ht + PHt P′ − 2

t
1t 1′

t

)′

= It − 1

2

(
Ht PH′

t P
′ + PHt P′H′

t

)

and it can be observed that λt−1(Cd) �= 0 if and only if Ht PH′
t P

′ is irreducible.
Let t be even. Since every cycle of even length is an odd permutation, the product

of two odd permutations has to be even. The even permutation represents a cycle of
odd length or the product of disjoint cycles. Since t is even, Ht · PH′

t P
′ has to be a

product of disjoint cycles and hence it is reducible. Thus, every design d ∈ Bt,2,t with
even t is disconnected.

Similarly, when t is odd we obtain the product of two even permutation which is
also even. Thus, Ht · PH′

t P
′ is a cycle of odd length or the product of disjoint cycles.

Since t is odd, there exists a matrix P ∈ P̃t such that Ht PH′
t P

′ is a cycle of odd length
and the design with Sd = Ht + PHt P′ is connected.

Let b = 3. Since adding some blocks to connected design does not change the
property of connectedness of extended design, it is enough to consider even t . We
show that for even t there exists connected design d ∈ Bt,3,t .

Let Sd = Ht + H′
t + G, where G = P1H′

t P
′
1 and

P1 =
⎛
⎜⎝

It−2 0t−2 0t−2

0′
t−2 0 1

0′
t−2 1 0

⎞
⎟⎠ .

From (5) we have

Cd = 2It − 1

3

(
H2

t + H−2
t + Ht G′ + H′

t G
′ + GH′

t + GHt

)
.

Assume that d is disconnected. Thus, two eigenvalues of Cd have to be 0. It implies
that there are two eigenvectors, x1 �= x2, corresponding to zero eigenvalue. It is easy
to see that one of these eigenvectors, say x1, is 1t .

Observe, that the eigenvalue of Cd is zero if and only if

λ1

(
H2

t + H−2
t + Ht G′ + H′

t G
′ + GH′

t + GHt

)
= 6.

Since all components in this sum are permutation matrices, we obtain the eigenvalue
equal to 6 if every matrix has the same eigenvector, different than 1t , corresponding to
the eigenvalue 1. It follows from John (1987) that the only eigenvector corresponding
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to the eigenvalue 1 of the matrix H2
t is x2 = (1,−1, 1,−1, . . . , 1,−1)′, which is not

the eigenvector of GHt :

GHt x2 = (1,−1, 1,−1, . . . , 1,−1, 1, 1,−1,−1)′ �= λ (GHt ) x2.

Thus, λt−1 (Cd) > 0 and design d is connected. 	

For d ∈ Bt,b,t and p(t − 1) < b < (p + 1)(t − 1), p ∈ N ∪ {0}, let

K(b) =
{

Kd : Kd = ∑b−pt+p
i=1 Pi + (p − b

t )1t 1′
t − pIt ,

Pi , P′
i P j ∈ P̃t , i �= j, i, j = 1, 2, . . . , b − pt + p

}
.

For a given b and t the specified subclass of K(b) was considered in Filipiak et al. (2008)
and Filipiak and Różański (2005). We show that if the conditions of Theorem 2 are
satisfied, then every design d ∈ Bt,b,t for which Kd ∈ K(b) is connected.

Theorem 3 Let d ∈ Bt,b,t and b satisfies conditions from Theorem 2. If Kd ∈ K(b)

then design d is connected.

Proof From (6) it follows that the matrix Cd is of rank t −1 if and only if λ1
(
KdK′

d

)
<

b2. For Kd ∈ K(b) we have

KdK′
d =

(
a + p2

)
It +

a∑
i=1

a∑
j=1
j �=i

Pi P′
j − p

a∑
i=1

(
Pi + P′

i

) − (p − a)2

t
1t 1′

t ,

where a = b − pt + p, and

λ1
(
KdK′

d

) ≤ a + p2 + a2 − a + 2pa = (2p + b − pt)2 = (b − p(t − 2))2 < b2

for every t > 2. 	


3.2 The conditions of connectedness of designs

It is known from the literature that in model (3) a block design is connected if and only
if for a given any two treatments θ and φ and for a given m, there exists a chain of treat-
ments θ = θ0, θ1, . . . , θm, θm+1 = φ such that θi and θi+1 occur together in a block
for i = 0, 1, . . . , m (cf. Raghavarao and Padgett 2005). It should be remarked that a
disconnected block design has a simple structure which is easy to recognize by utiliz-
ing the above chain definition of connectedness. However, there does not appear to be
a simple way of checking for connectedness of, e.g. row–column designs. Neverthe-
less, to show connectedness of designs from Bt,b,t under model (1) we can formulate
similar necessary and sufficient condition of connectedness. In such a situation the
incidence matrix Nd in the information matrix of design under model (3) has to be
replaced by left-neighboring matrix.
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Connectedness of complete block designs under an interference model 785

For every design d ∈ Dt,b,k we denote by d̃ a design associated with d, i.e. such
that Nd̃ = Sd . It is easy to see that d̃ has t treatments which are arranged in t blocks
of size ki , i = 1, 2, . . . , t ,

∑t
i=1 ki = t2. Moreover, the i th block of d̃ contains all

treatments for which i is a left neighbor in d. Thus, if d ∈ Bt,b,t , then d̃ ∈ Dt,t,b, and
we can formulate the following.

Theorem 4 A design d ∈ Bt,b,t is connected under model (1) if and only if a design
d̃ associated with d is connected under model (3).

Proof Let d ∈ Bt,b,t . From (5) we have

Cd = bIt − 1

b
SdS′

d ,

and this matrix is also the information matrix of d̃ in model (3). Thus, connectedness
of d̃ in model (3) is equivalent to connectedness of d in model (1). 	

Example Let t = 5, b = 3. The designs d and d̃

d =
⎛
⎝ 5 1 2 3 4 5

4 1 2 3 5 4
2 1 5 4 3 2

⎞
⎠ �⇒ d̃ =

⎛
⎜⎜⎜⎜⎝

2 2 5
1 3 3
2 4 5
1 3 5
1 4 4

⎞
⎟⎟⎟⎟⎠

are connected in models (1) and (3), respectively. 	

For a specified classes of designs the algebraic conditions of connectedness can

be formulated. Since the left-neighboring matrix of design from Bt,b,t is the sum of
b full-cycle permutation matrices of order t , during the construction of designs (cf.
Filipiak and Różański 2005) it is natural to consider circularity of this matrix.

Definition 4 A matrix A = ∑t
i=1 αi Hi

t , where αi ’s are scalars, is called a circulant
matrix.

Now we can prove the following theorem.

Theorem 5 The design d ∈ Bt,b,t with circulant left-neighboring matrix, i.e.

Sd =
t∑

i=1

αi Hi
t , where

t∑
i=1

αi = b and αi ∈ N ∪ {0}, i = 1, 2, . . . , t

is connected if and only if neither

(i) for every pair of powers of Ht , say i1, i2 (i1 �= i2), such that αi1 , αi2 �= 0, there
exists k ∈ {1, 2, . . . , t − 1} such that k(i1−i2)

t is an integer
nor

(ii) Sd = bHi
t .
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786 K. Filipiak, R. Różański

Proof Assume that design d is disconnected. Then λt−1(Cd) = 0. We need to deter-
mine matrix Kd with λ1(KdK′

d) = b2. It is easy to see that circularity of Sd implies
circularity of Kd . From the form of Kd we can write

KdK′
d =

(
t∑

i=1

αi Hi
t − b

t
1t 1′

t

) (
t∑

i=1

αi Hi
t − b

t
1t 1′

t

)′
.

Now assume that for a given i1 �= i2, i1, i2 ∈ {1, 2, . . . , t}, there exist non-zero
αi1 , αi2 . Since

(
Hi

t

)′ = H−i
t , we obtain

KdK′
d =

t∑
j=i+1

t−1∑
i=1

αiα j

(
Hi− j

t + H j−i
t

)
+

t∑
i=1

α2
i It − b2

t
1t 1′

t .

For the circulant matrix Ht it is known (John 1987), that its eigenvalues are equal to
the t th root from the unity. Thus, for k = 1, 2, . . . , t − 1

µk(KdK′
d) =

t∑
i=1

α2
i + 2

t−1∑
i=1

t∑
j=i+1

αiα j cos
2k( j − i)π

t
,

where µk(A) are the unordered eigenvalues of A, and

λ1(KdK′
d) =

t∑
i=1

α2
i + 2

t−1∑
i=1

t∑
j=i+1

αiα j max
1≤k≤t

[
cos

2k( j − i)π

t

]
.

It is easy to see that the maximum is obtained if and only if cos 2k( j−i)π
t = 1. It holds

if condition (i) is satisfied.
Now assume Sd = bHi

t . Then KdK′
d = b2It − b2

t 1t 1′
t and each non-zero eigenvalue

of KdK′
d is equal to b2 and d is disconnected. 	


Let consider designs from Bt,b,t with non-circulant left-neighboring matrix Sd . In
such a case we can prove only the sufficient condition of disconnectedness.

Theorem 6 Let d ∈ Bt,b,t . If at most one entry of Sd is maximal, i.e. equal to b, then
design d is disconnected.

Proof For a design d assume that in the left-neighboring matrix one entry is equal
to b. Without loss of generality let assume that it is the (1, 2)th entry of Sd . Since
Kd1t = K′

d1t = 0t , the first row and the second column of this matrix are b
t (−1, t −1,

−1,−1, . . . ,−1) and b
t (t −1,−1,−1, . . . ,−1)′, respectively, and hence the first row

of KdK′
d is of the form: b2

t2

(
t2 − t,−t, . . . ,−t

)
. To show that b2 is the eigenvalue of

KdK′
d it is enough to prove, that the matrix KdK′

d −b2It is singular. Observe, that the

row and column sums of this matrix are −b2 and the first row of this matrix is − b2

t 1′
t .
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Connectedness of complete block designs under an interference model 787

If to the second row we add all remaining rows except the first one, we obtain the row

of the form b2(1−t)
t 1′

t , which is proportional to the first one and the determinant is 0.	


Caution! The converse is not true.

Maximal element in Sd means that treatment i is always preceded by treatment j .
The consequence being that the effect of treatment i is confounded with the neighbor
effect of treatment j . Thus, from Theorem 6 follows that if in the design d at least one
pair of treatments occurs in each block, then d is disconnected.

Example Let t = 5, b = 3. The design

d =
⎛
⎝ 3 1 2 5 4 3

5 1 4 3 2 5
3 1 4 5 2 3

⎞
⎠

has non-circulant left-neighboring matrix:

S′
d =

⎛
⎜⎜⎜⎜⎝

0 1 0 2 0
0 0 1 0 2
2 1 0 0 0
0 0 2 0 1
1 1 0 1 0

⎞
⎟⎟⎟⎟⎠ .

Observe, that there is not any pair of treatments which occurs in every block, but
design d is disconnected. 	
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