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24—ANALYSIS OF THE DRY-RELAXED KNITTED LOOP
CONFIGURATION

PART I: TWO-DIMENSIONAL ANALYSIS

By R. PosTLE and D. L. MUNDEN

Models of the relaxed plain-knil structure proposed by previous workers suffer
from the disadvantage of being based on the assumption of some geometrical
shape for the knitted loop and are nol derived from equilibrium conbiderations
of the forces and couples applied to one loop by its neighbours. In the work
described in this paper, the dry-relaxed knitted-loop configuration is considered
as a function of a system of localized forces and couples acting on the loop al
the interlocking points in the fabric. The assurned system of forces and couples is
derived from physical considerations of equilibrium and loop symmetry.

In this paper, the loop is assumed to be plane (or two-dimensional), and its
shape is analysed as a function of the forces acting in the plane of the fabric.
The resultant loop configuration is discussed in relation to experimental work
previously done on relaxed plain-knit fabrics. The analysis is to be extended
to three dimensions in Part 11.

1. INTRODUCTION
(a) Previous Experimental Work

Previous work on the physical and geometrical properties of the knitted
structure can be traced back to Tompkins^ v^ho, in 1914, made the earliest
recorded attempt to rationalize the properties of knitted fabrics. A major
advance in this field occurred when Doyle- and Munden^ reported that, for an
extremely wide range of relaxed plain-knit fabrics, the fabric dimensions are
completely determined by the knitted-loop length. The following relations
were found to apply:

c==kM. (1)

u' = /ra.//, (2)

5 = c X w = kjl\ (3)
and

c/>v = kjk^ = 1 - 3 , (4)

where c is the number of courses per unit length, w the number of waies per
unit length. S the stitch density or number of loops per unit area, and / the
loop length, and A'̂ , A',,-, and k^ are constants such that

=^ /C(. X

and are termed the fabric dimensional parameters throughout the present
series of papers.

The above relations apply only for plain-knit fabrics that are in their re-
laxed state. During the knitting process, strains are imparted to the fabric
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24—Analy\is of the Dry-reUixcd Kfiittetl-loop Configuration

as it comes off the knitting machine, and subsequent recovery from these
strains occurs until the fabric has attained its relaxed or stable-equilibrium
state. Mundcn-' defines two basic relaxed states: the dry-relaxed state and the
wet-relaxed state. The yarn in a dry-relaxed fabric is in a condition of stress
and when unravelled from the fabric tends to return to its natural stress-free
or straight configuration. The stresses in the loop are largely released
during wet rekixation. Setting then takes place during drying, and as a result
the yarn retains its looped configuration when unravelled from u wet-relaxed
fabric.

Equations (l)-(4) have been found by Munden-** to apply for each of these
relaxed states. For a wide range of plain-knit wool fabrics, he obtained the
average numerical values of the fabric dimensional parameters given in Table
I. For other plain-knit fabrics, similar values were obtained to those found for
wool fabrics, except that for hydrophobic yarns the numerical values in the
wet-relaxed state are the same as those in the dry-relaxed state.

Munden's interpretation of these observations is that, on relaxation, the
knitted loop tends to take up a definite equilibrium configuration, which is
independent of the tightness of construction of the fabric and of the physical
properties of the yarn. This loop configuration is the same for all plain-knit
fabrics in a given state of relaxation, and it governs the numerical values of the
fabric dimensional parameters. The values of these parameters are constant,
and, once they are determined, the fabric dimensions are functions only of the
knitted-loop length.

Table I
Numerical Values of the Fabric Dimensional Parameters for

Plain-knit Wool Fabrics

A-c
A..
A.
A" f/A Ul

Dry-relaxed

5 0
3'8-

19-0
13

Wet-relaxed

5-3
4 1

21 6
1-3

Although the dimensions of relaxed knitted fabrics were found to be
dependent only on the knitted-loop length and are independent of the yarn
count, it is expected that other physical properties (such as the mechanical
properties of the fabric, fabric stiffness, and pilling) will depend on the tight-
ness of construction. Munden * has pointed out that the ratio of natural yarn
diameter to the knitted-loop length can be used to specify the tightness of
construction of a knitted fabric. From the proportionality between yarn
diameter and count (or linear density), the parameter

, (5)

where T is the yarn linear density in tex and / is in cm, can be used as a measure
of fabric tightness. This parameter, termed the ^cover factor' by several
workers, has a value between 13 and 15 for plain-knit worsted fabrics of
average tightness of construction.

(b) Previous Analyses
Chamberlain^ Shinn", Peirce", Leaf and Glaskin\ Vekassy», and LeaP**

have all made separate attempts to define geometrically the configuration of
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l^'in I: Two-dimensional Analysis—Postle ami Munden 331

the relaxed knitted loop. None of these attempts to obtain a consistent
geometry of the relaxed plain-knit structure is entirely satisfactory. These
models are based on the assumption of some geometrical shape for the knitted
loop, the parameters of which are then fitted to give the experimentally
observed values of the fabric dimensional parameters. None of the above-
mentioned models of the knitted loop is derived from considerations of
equilibrium between the complex system offerees and couples applied to one
loop by its neighbours.

For Leaf's geometry, the forces and couples were found^^ that must be
applied at the interlocking points in the fabric to hold the loop in the assumed
geometrical configuration. The main conclusion drawn from this work was
that the yarn is held in the shape of Leaf's model primarily by the action of
the couples applied to it at the points of loop-interlocking, and that the forces
applied there play a relatively minor part. However, it will be shown in section
2 of the present paper (Fig. 4) that, because of symmetry, the largest compo-
nent of the applied couple required to hold a yarn in the shape suggested by
Leaf's model cannot exist in the knitted structure.

In 1958, Leaf^- in an attempt to explain the experimental observations,
showed that, when a homogeneous elastic rod is bent into a loop in one plane
by bringing its two ends together and parallel, it takes up a definite configur-
ation, which is independent of the length of the loop and the physical prop-
erties of the rod (provided that the rod is not plastically deformed by the
bending). Nutting and Leaf̂ ^ have extended this idea by investigating the
conditions under which two straight elastic rods would take up similar con-
figurations when they were deformed by forces and couples applied at their
ends so that a three-dimensional loop was formed. By using the analysis
of Love^*, it was found that, after deformation, the rods would take up a
similar configuration in space only if they had the same ratio of flexural
rigidity to torsional rigidity. However, the assumed conditions of application
of the forces and couples are again not derived from equilibrium consider-
ations within the knitted structure.

In the present work, the dry-relaxed knitted-loop configuration is
determined as a function of the forces and couples acting on the loop. A
similar approach to this has been employed by Peirce^^ and Olofsson^^ to
determine the yarn-crimp configuration in a woven structure. The most
satisfactory approach to the problem for the knitted structure would be to
consider the general case of a yarn bent and twisted in three dimensions by
forces applied over the regions of loop-interlocking, and to find the stable-
equilibrium configuration of the yarn under these conditions. An approxi-
mate treatment is given in the present paper, in which the loop is considered
initially to be a two-dimensional structure and its configuration is analysed
by considering the force and couple components acting in the plane of the
fabric. This analysis is then extended to three dimensions in Part 11 by
considering the components acting perpendicular to the plane of the fabric.
The yam is assumed to behave as a homogeneous rod of perfectly elastic
material and having a natural stress-free straight configuration. It follows
that there can be no plastic deformation of the yarn when it is bent to form
the loop; this assumption is reasonable for all knitted structures except those
produced from yarns such as continuous-filament nylon, which are subjected
to plastic deformation by the knitting action. It follows also that we exclude
from consideration fabrics that have undergone setting treatments after
knitting. The analysis thus deals only with knitted fabrics in their dry-relaxed
state (where the natural stress-free configuration of the yarn is straight.)
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332 24—Analysis of the Dry-relaxed Knitted-loop

2. FORCES ACTING ON THE LOOP IN THE PLANE OF THE FABRIC

A knitted fabric consists of a series of interlocking loops, which produce
reaction forces along the regions of contact. Consider the plane loop whose
central axis is represented by the full line in Fig. 1 and which interlocks with
the loops represented by the broken lines. The structure is referred to the axes
OX. OY, where OX is parallel to the line of the courses and OY parallel to the
line of the wales, and the loop is assumed to lie in the XY plane. The abscissa
OX cuts the loop at A, and the ordinate OY cuts the loop at C. Subsequently,
the direction parallel to OX is termed horizontal and the direction parallel to
OY vertical. By symmetry, it is necessary to consider only the quarter ABC
of the central loop, with yarn cross-over points at D and E. Contact along
the region of interlocking. DE, is made between loops of successive courses,
and the point K is the centre point of the interlocking region, i.e., the mid-
point of the line DE. The position of maximum loop width is at the point F.

The tendency of the yarn A'C to regain its natural straight configuration
produces a reaction component of force acting on the centre loop and
distributed over the region of contact DE. The resultant of this distributed
force is assumed to have the same effect as that of a localized horizontal force
/*, whose line of action passes through the point K. The point B at which this
localized force is applied to the loop is termed the interlocking point. The
forces acting on the centre loop, shown by the full arrows in Fig. 1, are
balanced by equal and opposite forces, which are derived from the reaction
of the centre loop on its neighbours immediately above or below, and which
are shown by broken arrows in Fig. 1.

In general, there is a vertical displacement between the point of maximum
width of one loop, F, and the point of minimum width of the interlocking
loop, F' (as is shown in Fig. 1). If this displacement is zero, the point of
application of the forces, i.e., the interlocking point, B, will be coincident
with the point of maximum loop width, F; this limiting case is assumed in all
the geometrical models proposed by other workers. However, microscopical
examination of several relaxed plain-knit fabrics indicates that this assumption
is not usually valid, and that in practice there is generally a vertical displace-
ment between the points of maximum and minimum width of interlocking
loops.

Fig. 1
Forces acting in the plain-knil structure

Fig. 2
Equilibrium of the loop segments
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!: Two-dimensional Analysis—Postle and Mi'nden 333

Consider the loop divided into segments as shown in Fig. 2. There is no
force applied to the segment BC of the loop. Any vertical component of
torce acting on the segment BC is ruled out by equilibrium considerations.
The application of a horizontal component of force to the segment BC would
produce a resultant yarn tension or compression in the segment. Similar
yarn tensions would exist in all other such segments throughout the fabric.
These tensions would act in parallel for all the loops in the same wale, and their
resultant would be an over-all fabric tension in the direction of its width,
i.e., parallel to the line of the courses. This would require an external force
applied to the fabric in the direction parallel to the line ofthe courses in order
to hold it in its equilibrium state. No such external force is necessary to hold
a fabric in its relaxed state, and the yarn tension in the loop segment BC must
therefore be equal to zero. Thus, there can be no forces applied to the segment
BC ofthe relaxed knitted loop.

By a similar argument, it can be shown that the only force that can act
on the segment AB of the relaxed loop is the purely horizontal force P (i.e..
a force acting in the direction parallel to OX, the line ofthe courses). If at
any point along this segment it is assumed that there is a tension T acting
parallel to the yarn axis and a shear S acting perpendicular to the yarn axis,
the resultant of which is always acting horizontally and is equal to the applied
force P (as shown in Fig. 2), any vertical component of force applied to the
segment AB of the loop would result in an over-all fabric tension in the
direction of its length. This would require an external force applied to the
fabric in the length direction (i.e.. parallel to the line of the wales) in order
to hold it in its equilibrium configuration. Once again, this possibility is
ruled out for a fabric in its relaxed state. It follows that the resultant force
exerted by one loop on its neighbour at the interlocking point in a relaxed
fabric must always act on the loop segment A8 in a purely horizontal
direction.

The validity of these assumptions is limited by geometrical considerations
of jamming ofthe knitted structure in either the width or the length direction.
Jamming ofthe structure occurs in the width direction when the two arms of the
loop make contact at the point of minimum loop width, as shown in Fig. 3(a).
whereas jamming occurs in the length direction when loops of adjacent courses
make contact at the back ofthe fabric, as shown in Fig. 3{b). The assumptions
described in the previous two paragraphs ^o'c the general case (where jamming
of the structure does not occur) require that the tensions Ty and T.,, shown

(a)

Fig. 3
Jamming of the plain-knit structure

{a) in the width direction
{b) in the Icnt̂ ih direction
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24—Analysis of the Dvy-reloxed Knitted-loop Confisitraiion

in I ig. 3, must be equal to zero. However, the occurrence of jamming would
give rise to yarn compressive forces, C, and Cg, as shown in Fig. 3 (a) and (b)
lor the conditions of jamming in the width and length directions, respectively.
For a relaxed fabric, these compressive forces would have to be balanced by
non-zero values of the yarn tensions, T^ and T... Thus, the occurrence of
jamming would considerably alter the forces acting on the loop, and the
assumptions of the previous paragraphs would no longer apply.

The bending moment M shown in Fig. 2 is derived from the action of the
adjoining loop segment. There is no discontinuity in the bending moment
at the interlocking points, and there can therefore be no applied couple
acting in the plane of the fabric. That this must be so can be seen from Fig. 4.
If there is a clockwise couple L acting in the plane of the fabric about the point
B on one loop, then there must be an anti-clockwise reaction couple L acting
about the point B' on the interlocking loop. If symmetry is assumed and
the figure is inverted, the loop segments AB and A'B' are interchanged as
shown by the letters given in brackets. For the inverted system, however, the
couple L acts in an anti-clockwise direction about the interlocking point B
and in a clockwise direction about the interlocking point B'. Thus, the
couples for the inverted system are acting in the opposite directions to those
originally assumed. It follows that L must be equal to zero.

Fig. 4
Diagram showing that Z, 0 by symmetry

If we now consider the segments AB of the loop, the condition of equil-
ibrium is given by:

M=^ P X -^, * (6)

where p is the vertical distance between successive interlocking points (as
shown in Fig. 2), i.e., p is the knitted-course spacing.

Doyle^' has suggested that frictional constraints are important in
determining the relaxed state of a knitted fabric, particularly its dry-relaxed
state. The importance of yarn friction in the knitted structure is indicated
experimentally by the significant hysteresis effects observed in load-extension
cycling. These hysteresis effects were observed by Doyle^ for plain-knit and
rib structures and must be interpreted as friction, especially for cycling
between low loads, where plastic deformation of the yarn does not occur.
Similar effects were observed by Cook and Grosberg^^ for the load-extension
properties of warp-knitted fabrics and were interpreted as friction.

The role played by yarn friction at the interlocking points is shown in
Fig. 5. When a fabric is taken from the knitting machine, it is highly distorted,
as shown in Fig. 5(a), such that there is a considerable vertical displacement
between the point of maxiinum width of one loop, F, and the point of
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I: Two-dimensional Anuhsis—Postle and Xiundcn 335

Fig. 5
Diagram showing the forces acting on the loop

ia) in a distorted condition
(h) in the relaxed condition

(c) in the relaxed condition, showing the elastic and frictional components

minimum width of the interlocking loop, F'. On relaxation, sliding of one
loop over its neighbour would tend to occur, so that the vertical displacement
between F and F ' is reduced as shown in Fig. 5[b). This sliding is opposed
by frictional forces. The forces acting on the loop at the interlocking point B
are therefore the reaction force and the frictional force tending to oppose slid-
ing. The resultant force acting at B must always be a purely horizontal force
acting on the segment AB in order that the over-all fabric tension is equal to
zero. If it is assumed that the resultant force acting at each interlocking point
is equal to P as shown in Fig. 5(c), the reaction component of P is equal to
/*cos p and acts perpendicular to the loop, whereas the frictional component
acts tangentially to the loop and is equal to \i.P cos p, where u is the coefficient
of static yarn-yarn friction and ;i the angle that the tangent to the loop at the
interlocking point makes with the vertical. The angle [i is termed the/V;/er-
locking angle and is given by the following relation:

tan p = [x (7)

for knitted fabrics in their dry-relaxed state, where no external influence is
provided to overcome the frictional constraints.

3. ANALYSIS OF THE TWO-DIMENSIONAL LOOP CONFIGLRATION
With reference to Fig. 1, if the length of the loop segement AB is /j and

the length ofthe segment BC is /.., then by symmetry the knitted-loop length is
given by:

/ ^ 4 ( / , -T-/J. (8)

Furthermore, the wale-spacing, q. is given by:

q = ^X, (9)
or

q - l{h~il). (10)

where b is the width o{ the loop at the interlocking point B, i.e.:

b-^2X,. (11)

The tw o segments AB and BC of the loop are analysed separately.

(a) Analysis of Segment AB

The analysis of this segment is the problem of a bent beam with ends
parallel but not aligned, as shown in Fig. 6. A similar problem is considered
in detail by Love^^ and by Southwell'^.
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336 24—Analysis of the Dry-relaxed Knitted-loop Configuration

Fig. 6
Geometry of the loop segment AB

The origin of co-ordinates in Fig. 6 has been translated from OlA', Y)
to A(.v, )•) such that:

A ' - X + g/4, (12)
and:

r-j. (13)

The cur\ ature oi" the central axis of the loop at the point T(x,y) is given by
(—dO/d^), where 0 is the angle that the tangent to the loop at T makes with the
positive direction of the ,v-axis (i.e., the line of the wales) and s is the distance
of T, measured along the loop, from the point A. The force acting at the point
T(A',V) must be P. There being an inflexion at the point A (by symmetry), there
are zero moment and zero curvature at A. Hence, by considering the loop
segment AT and taking moments about A, it follows that:

dO P ^
(14)

where B is the flexural rigidity of the yarn. This differential equation governs
the equilibrium configuration of the loop segment AB and is the equation of an
elastica. The parameters z and 7 are introduced such that:

£ = sin (15)

and

£ sin 9 =̂  sin -7- + "T" (16)

where y. is the angle that the tangent to the centre point of the loop A makes
with the line of the wales, and is subsequently termed the hop angle. Equa-
tions (15) and (16) show that 9 ^ -/2 at A (where 0 ^ a). Let 9 = 9;i at the
interlocking point B (where 0 = — [i), so that:

e sm Or. = sin

or

sm c)Q =
£1/2 cos — sm (17)
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Part I: Two-dimensional Analysis—Postle and Munden 337

From SouthwelP^, it can be shown that:

and

— = - / ^ ' (19)
d(? V ^ * V C l - £ - s i n 2 9 ) * ^ ^

By using the relations:
d.v = sin 0.d5

and
d.v = cos d.ds,

the Cartesian co-ordinates of any point T on the loop segment can be found
and are given by:

A- = —--i f(£,9) - 2e(£,9) y (20)

and

y = ̂ "^ J~p • ^°^?' (^0
where

r(e,9) = r(£,-/2) — r(E,9), (22)

e(£,9) = E(s,-/2) — E(£,9), (23)

F (£,7r/2) and F (£,9) are, respectively, complete and incomplete elliptic integ-
als of the first kind, such that:

J
0

9
d9

and E (£,Tr/2) and E (2,9) are, respectively, complete and incomplete elliptic
integrals ofthe second kind, such that:

0

These integrals do not give an analytical solution, but they have been solved
numerically for various values of t and 9. Their numerical values are given
in several sets of mathematical tables, such as those of Dale-**.

At the interlocking point B, ,v = p/2, and equation (21) leads to:

Substituting for z and 93 from Equations (15) and (17) gives:

F 8(sin X + sin 3)
-B= 7 • (24)

Substituting in Equations (20) and (21) to eliminate P/B gives:

12V2 (sin 1 + sin (25)
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24—A nalysis of the Dry-relaxed Knitted-loop Configuration

and

— = —/^, . . , cos <p. (26)
P V2(sin a + sm p) ^

Equations (25) and (26) are the equations of the loop segment AB in terms of
the parameters t and 9. The distance s measured along the loop from A to
the point T(£,<p) can be found from Equation (19):

e - _ / ^ f dy ni\
V^Jvd-e^sin^q,) * ^ ̂

71/2

Substituting from Equations (22) and (24) gives:

The length /j of the loop segment AB is therefore given by:

p 2v2(sina + s

(b) Analysis of Segment BC
The bending moment, M, remains constant along the length of this

segment. Hence the equilibrium configuration of BC is that of a segment of
a circle with diameter D, where:

Substituting for M from Equation (6) gives:
4 Bn =
p • p '

and substitution for P/B from Equation (24) gives:
D 1

— = -TT- , • n , . (31)

p 2 (sin a + sin P) ^ ^

The width b of the loop at the interlocking point B is given by:
b = Dcos?,

or
b cos 3

^
p 2 (sin a + sin p) '

The length lo of the segment BC is given by:

Substituting for D from Equation (31) gives:

/J ~ 4 (sin a + sin p) ' ^

4. THE RELAXED-FABRIC PARAMETERS

The knitted-loop length, /, can be found by substituting from Equations
(29) and (33) in Equation (8):

L = _ ?—^-rr-1 (7r/2-P) + VT{sin a + sm^) f(e,9e) j (34)
p (sm a 4- sm P) 1̂  ^ J
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Parr J: Two-dimensional A nalysis—Postle and Munden 339

In addition, the wale-spacing, g, given by Equation (10), can be found by using
Equations (27) and (32):

1
p (sin a + sin

cos p — \ /2 (sin a + sin P) < f(e,9p) — 2e(e,cpp) ••(35)

The fabric dimensional parameters, defined in Equations (l)-(4), are given by:
/

which, on substituting from Equation (34), becomes:
1

V2(sina+sinp)f(c ,9p)} ; ... .(36)

and:

which, on substituting from Equations (34) and (35), becomes:

^ (7r/2 - p) + V2 (sin g + sin

cos p - ^ 2 (sin a + sin pj{f(e,9p) - 2e (e,

Expressions for the stitch-density parameter, k^, and the ratio of courses to
wales per unit length, c/w, can be found by using the relations:

and
c q kc
w p ky^'

It should be noted that the parameters e and cpQ are fixed by Equations
(15) and (17) for any given values of the loop angle a and the interlocking
angle p. The fabric dimensional parameters are therefore completely deter-
mined by the values of these angles.

The force P required to hold the loop in its equilibrium configuration is
given by Equation (24), namely:

P _ 8 (sin a + sin P)

which, in terms of dimensionless parameters, becomes:
p/2
B

= Skc^ (sin a + sin p). (38)

The bending moment, M, at the interlocking points is simply related to
the curvature, 2/D, ofthe segment BC and is given by Equation (6), namely:

In terms of dimensionless parameters, this becomes:

2/ ^ , , .
= ^ = 4 /:c (sin a + sm p). (39)
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24—Analysis of the Dry-relaxed Knitted-loop Configuration

5. GEOMETRICAL LIMITATIONS IMPOSED BY LOOP-INTERLOCKING
There are two limitations that must be applied to the geometry of the

loop, i.e., to the values of the geometrical parameters a and p, in order that the
requirements of loop-interlocking are fulfilled. The two conditions are:

{a) limitation of Jamming in the width direction; and
(b) limitation of jamming in the length direction.

Fig. 7
Diagram showing in detail the geometry of loop-interlocking

(a) Limitation of Jamming in the Width Direction

It can be seen from Fig. 7 that, in order that there should be sufficient
space in the structure for interlocking of loops in the width direction:

9 / 2 -

where .v̂  is the value of the abscissa .Y (with origin at A) at the point of
maximum loop width F (6 = 0), and d is the effective diameter of the yarn at
the interlocking points in the fabric. Since interlocking loops must always
make contact along the interlocking region in order to produce the reaction
component of the applied force, it follows that the effective yarn diameter,
d, is equal to the distance GG' shown in Fig. l{b). Considering the triangle
LQL' where L and L' are the centre points of, respectively, the circular
portions of the loops GC and G'C (both of diameter D), we have:

from which it can be shown that:

D
(41)

where Djp and qjp are given by Equations (31) and (35), respectively.
The ratio given on the left-hand side of Relation (40) is a direct measure

of the openness of the knitted structure in the width direction. The inequality
of Relation (40) requires that the two arms of the loop do not make true
contact with each other at the position of minimum loop width. The limiting
case, given by the equality of Relation (40), occurs when the two arms of the
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Part !: Two-dimensional Analysis—Postle and Munden 341

loop do make contact; in this case, the knitted structure becomes jammed in
the direction of its width.

Relation (40) can be rewritten in the form:

1 2{x,lp)

where k^, k^, and l/d are given by Equations (36), (37), and (41), respectively,
and (xjp) is given by Equation (25) when 6 = 0 (i.e., e sin 9 = l/\/2).

The relation between a and ^ for the condition of jamming in the width
direction, i.e., when the equality of Relation (42) holds, is shown graphically
by the curve labelled I in Fig. 8. This curve shows that width-jamming occurs
over a very small range of values of a (from about 26 to 28*5°). Any loop
configuration having a combination of values of the angles a and p that falls
below this curve gives a structure for which jamming in the width direction
does not occur, i.e., the inequality of Relation (42) holds. Combinations of
a and p falling above the curve are geometrically impossible for the knitted
structure; in these cases, the restriction of Relation (42) is not satisfied.

30-0

27-5

2S-0

22-5

20-0

I WrDTH-JAWUING
E LENGTH-JAMMING

Fig. 8
Relation between 1 and ° for the jamming conditions

(b) Limitation of Jamming in the Length Direction

Interlocking of loops of successive courses can occur only if the distance
between the central yarn axes of adjacent courses at the back of the fabric is
greater than or equal to the effective diameter of the yarn. With reference
once again to Fig. 7, this condition requires that the length DE" is greater
than or equal to the effective diameter of the yarn at the cross-over points, D
and E". For a first approximation, it is assumed that the effective yarn diam-
eter remains constant along the length of the loop and is equal to d, where
l/d is given by Equation (41). If the length DE" is denoted by c, then:

c/d> 1, (43)
where c/d is a direct measure of the openness of the knitted structure in the
length direction. The inequality of Relation (43) indicates that there is room
for adjacent courses at the back of the fabric to fit together without making
contact with each other at the yarn cross-over points. The equality implies
that contact is made, i.e., the fabric becomes jammed in the direction of its
length.

In Fig. 7, the point L" is the centre point of the circular loop segment
B"C". Because of symmetry, the hypotenuse of the triangle QL'L" must pass
through the point A of the loop. It should be noted that the distance c is
actually equal to the length measured along the hypotenuse of the triangle
between the central axes of adjacent courses at the back of the fabric. This
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342 24—Analysis of the Dry-relaxed Knitted-loop Configuration

distance is very nearly equal to the length DE". This assumption is used
merely for the purpose of clarity and does not affect the derivation given
below. On considering the triangle QL'L", it follows from Fig. l{c) that

{c + Z))2 = q^/4 +(p + D sin p)^,

from which it can be shown that:

(44)

The relation between a and p for the jamming condition in the length
direction is shown graphically by the curve labelled II in Fig. 8, from which
it can be seen that length-jamming occurs for only a very small range of values
of the interlocking angle p (in the region of 3-4-5°). On combining the restric-
tions on the angles a and fi imposed by the two geometrical limitations, as
given by curves 1 and 11 of Fig. 8, only those values lying in the shaded area
of the figure are geometrically possible for the plain-knit structure. It is
immediately evident that jamming in the length direction of the fabric would
prevent the attainment of the two-dimensional loop configuration in which
the interlocking angle, p, is equal to zero. From Equation (44) it can be shown
that in this case

c/d :̂  1/2
for all values of the loop angle, a. Hence, in order to attain the loop configur-
ation in which p is equal to zero, the effective diameter of the yarn at the cross-
over points would have to be approximately half that at the points of applic-
ation of the forces (or the interlocking points, as they are termed in the present
work). This is physically unrealistic, since it would involve extremely high
compressive forces between loops of adjacent courses at the back of the fabric.

The point of intersection of curves 1 and II of Fig. 8 corresponds to the
condition of jamming in both length and width directions of the two-
dimensional structure. This occurs when:

a = 27-5^
and

P = 4-5°
and gives the completely jammed plain-knit structure.

6. DISCUSSION
(a) Dependence of the Fabric Dimensional Parameters on the Loop Shape

Equations (36) and (37) show that the relaxed-fabric dimensional
parameters are functions only of the geometrical parameters of the loop, a
and p. The actual shape of the loop is determined by the loop angle, a, and
the point at which interlocking occurs is determined by the interlocking angle,
p. By the geometrical considerations of jamming given in the previous section,
the possible combinations of a and p have been restricted.

The variation of the relaxed-fabric dimensional parameters with loop
shape (i.e., with the loop angle a) within the limits allowed by the geometry
is shown in Figures 9-12 for constant values of p between 0 and 25̂ ". In each
figure, the limiting conditions of jamming in the width and length directions
are given by the bold curves labelled I and II, respectively. The significance
of the curve marked i/d =^ 20 in these figures will be discussed in section
6{b). Only those regions of the graphs shown by the unbroken curves are
geometrically feasible for the relaxed plain-knit structure. The broken
portion of the curves for p > 5° corresponds to structures that lie beyond the
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7-0

6-5

6-0

3-0

I WIOTH-JAMMING
H LENGTH-JAMMING

Fig. 9
Relation between and

condition of jamming in the width direction. The curves for p = 0 are shown
broken because, for all values of a, the resulting structure lies beyond the con-
dition of jamming in the length direction.

Figures 9-12 show that the actual values of the dry-relaxed-fabric
parameters are very critically dependent on x and ^. Figures 9 and 10 indicate
that the value of the parameter k^ decreases, whereas that of Av increases for
increasing values of either a or p. This is accompanied by a rapid decrease
in the ratio of courses to wales per unit length, kjku^, for increasing values of
either a or p, as is shown in Fig. II. The stitch-density parameter, k^, as is
shown in Fig. 12, varies with a in the same sense as A:,,,, but with p in the same
sense as kc- However, A% is much less critically dependent on a and ,3 than are
the linear fabric dimensional parameters, k^ and k^^-

6-0

5-5

5-0

3-0

2-5.

I WIDTH-JAMMING
H LENGTH-JAMMING

20 21 23 24 25 26 27 28
CC

Fig. 10
Relation between a and
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344 24—Analysis of the Dry-relaxed Knitted-loop Configuration

I WIDTH-JAMMING
E LENGTH-JAMMING

20 27 26

Fig. 11
Relation between a and kjk^

The curve labelled k,,, = 3-8 in Figures 9-12 gives an estimate of the aver-
age values of a and p for dry-relaxed plain-knit fabrics. Any equilibrium
loop configuration with values of a and p that fall on this curve would give a
dry-relaxed fabric having a value of k^j equal to 3*8, this being the average
value experimentally observed by Munden^ for wool fabrics (Table I). The
parameter k^a is chosen as a guide for the estimation of a and p because its
value is unaffected by the extension of the analysis to three dimensions,
whereas kc, and hence kjk^t, and k^, are increased by an amount governed
by the curvature of the loop out of the plane of the fabric; this will be fully
discussed in Part II of this series.

In each figure, the curve for A,̂ , = 3 8 converges towards the correspond-
ing curve for the limiting condition of jamming in the width direction as p
decreases towards zero. Constant values for both k^ and /r̂ , are obtained only

25-0

1 5 0

12-5

10-0.

I WIDTH-JAMMING
H LENSTH-JAMMIN6

20 21 22 23 24 25 26 27

Fig. 12
Relation between a and k.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ac
ed

on
ia

] 
at

 0
4:

25
 0

3 
D

ec
em

be
r 

20
13

 



Part 1: Two-dimensional Analysis—Postle and Munden 345

if a and p are fixed, i.e., constant values of kc and /:„, imply that the knitted-
loop configuration is similar for all dry-relaxed fabrics, independently of their
tightness of construction (in accordance with the ideas of Munden^).

(b) The Effect of Fabric Tightness
The tightness of a plain-knit fabric is generally specified by the *cover

factor', K, where Kis given by Equation (5), i.e.:

and where J i s the yarn linear density in tex.
The cover factor K is proportional to the ratio djl, where ^is the average

natural yarn diameter and / the knitted-loop length. This ratio is related in an
inverse manner to the parameter Ijd given by Equation (41) of the theory,
where d is the effective diameter of the yarn at the interlocking points in the
fabric. The average natural yarn diameter is a fixed quantity for any given
yarn, whereas the effective diameter is not a constant but varies with the
knitted-loop length for fabrics knitted from the same yarn. A decrease in loop
length produces a tighter fabric, and hence more yarn compression at the
interlocking points; this causes a reduction in the effective diameter of the yarn.
This effect has been noted quahtatively'-^-- for plain-knit wool fabrics.

(0 Experimental
The dependence of the parameter Ijd on the loop length was investigated

experimentally by measuring the variation of d with / for six plain-knit fabrics,
the cover factor of which lay between 10-0 and 16-2 tex* cm"^ They were all
knitted from 260-den (29-tex) silk yarn, silk being chosen because of its high
elasticity and regularity and clarity of diameter. Five of these fabrics were
knitted on a 3|-in.-diameter, 18-gauge machine, and the slackest was knitted
on a 4i-in.-diameter, 12-gauge machine.

The fabrics were allowed to dry-relax in a standard atmosphere (20°C,
65% r.h.) for seven days. The loop lengths of the samples were measured on
a H.A.T.R.A. Course-length Tester, a tension of 10 g being used; this tension
was found from the load-elongation curve of the yarn unravelled from the
fabrics. Fifty measurements of the effective yarn diameter were made on
each sample by means of a screen-projection microscope; 25 measurements
were made on each side of the loop. Each measurement was the average of
the two effective yarn diameters at the mid-point of the interlocking region;
this point corresponds to the interlocking point B of the theory.

Table II gives the knitted-loop length for each sample, together with its
cover factor K in units of tex* cm-\ The values of ^̂  and d.^ shown in the table
are the mean effective yarn diameters on each side ofthe loop. When the mean
values are taken, the left-hand side of one loop interlocks with the left-hand
side ofthe other (this giving a measure of d^. and there is a similar situation
for the right-hand side (this giving a measure of ^o)- n̂ general, both d^
and do decrease as the cover factor increases, i.e., as the structure becomes
tighter. The coefficient of variation of both d^ and do is between 5 and 7 % for
all the samples. The marked difference for each sample between the values of
d and d^ can be explained by the effect of the twist induced in different
directions" in the arms of the loop when it is bent in three dimensions (as will
be shown in Part II). This results in an asymmetrical structure, having a
different value ofl/dil/dj^ and l/d. as given in Table II) for each side ofthe loop.
This asymmetrical structure can be seen in the photographs ofthe silk fabrics
given in Fig. 13 (and is a common feature of plain-knit fabrics).
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346 24—A nalysis of the Dry-relaxed Knitted-loop Configuration

(c)

Fig. 13
Dry-relaxed silk fabrics
ia) sample 1 (K ^ 161)
(/>) sample 3 (A' - 14 0)
(c) sample 6 (K 10 0)

Averaging the values of //^i and /jd.. gives a measure of I/d for the fabric
as a whole. A systematic relation between //d and tightness is obtained such
that Ijd decreases as the structure becomes tighter. The range of values of
l/dis relatively small, and in commercially acceptable fabrics would be smaller
still, since here samples 1 and 6 both lie well outside the commercial range.
In practice, therefore, l/d will usually be less than 20.

Table II
Silk-fabric Parameters

Sample

I
2
3
4
5
6

I
(cm)

0335
0361
0383
0429
0439
0538

K
(tex'cm"^)

161
149
14 0
12-5
122
100

(mm)

0209
0220
0231
0252
0251
0-267

d.
(mm)

0185
0184
0192
0208
0197
0 222

l/d.

16 0
16-4
16-6
170
17-5
20-2

l/d.

181
196
200
20-6
22-3
24-2

lid

171
18-0
18-3
188
19-9
22-2
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I: Two-dimensional Analysis—Postle and Munden 347

('0 Theoretical

The theoretical relation between the loop shape (as defined by the loop
angle, a) and the parameter l/d is given by Equation (41) and is shown graph-
ically in Fig. 14 for constant values of the interlocking angle, p, between 0
and 25°. The limiting condition of jamming in the width direction is once
again shown by the curve labelled I, but for the sake of clarity the length-
jamming condition is not shown in this figure. Only regions of the graph
shown by the unbroken curves are allowed by the geometry. The curve for
k^ = 3-8 intersects with the curve for the width-jamming condition; this is
because there is a minimum value of Ijd for a given value of a when p is
between 5 and 10°.

20

I WIDTH-JAMMING
( Length-jomminq curve not shown)

14 16 18 20 22 24 26 26 30 32 34

Fig. 14
Relation between Ijd and a

The data of Fig. 14 show that the minimum value of I/d allowed by the
geometry is equal to 16-0 (corresponding to the completely jammed structure);
this value oH/d gives a dry-relaxed fabric ofthe tightest possible construction.
The values of the fabric parameters for this structure of maximum tightness
(as given by Figures 9-12) are shown in Table III.

Table Ul
Theoretical Values of the Fabric Parameters

Tight Fabrics

lld= 16
a = 27-5'
p = 4-5°

k, = 4-96
k — 3-95

kjk^= I 25
A:, = 19 6

23-7
3-7
5-4
3-3
1 6

17-7

Slack

^ < a
' < P

< A:
> k
> k

Fabrics

lid = 20
< 25 8°
< 18 0°
> 3-8

«, < 4-4
Jk^> 0-9
, > 16-5

The slackest dry-relaxed structure likely to be met in practice corres-
ponds to a value of l/d of about 20 (as obtained from the experimental data of
Table II). The variation of the fabric parameters for very slack dry-relaxed
struct.ures is therefore represented by the bold curve for i/d = 20 shown in
Figures 9-12. Table III gives the maximum range of values ofthe fabric para-
meters that are allowed by the geometry when l/d = 20. The first value in this
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348 24—A nalysis of the Dry-relaxed Knitted-loop Configuration

range corresponds to the limiting condition of jamming in the length direction
when fjd = 20, and the second value corresponds to the limiting condition
of jamming in the width direction.

Thus, the region of Figures 9-12 that is of practical importance is the area
enclosed by the curve for Ijd — 20 and the two jamming curves. The range
of values of the fabric parameters allowed by the geometry for a given value
of lid is largest for very slack fabrics {l\d = 20), and decreases as the structure
becomes tighter until, for the tightest possible construction (Ijd = 16), the
values of the fabric parameters are fixed by the concurrence of the two jam-
ming conditions.

It can be seen from Table III that the whole practical range of l/d (16 ^
I/d ^ 20) represents a maximum variation in the loop angle, a, of only 3-%''
(from 23-7 to 27*5"), whereas the interlocking angle, fi, exhibits a much larger
range of values, from 3-7 to 18-0°. Munden^ has suggested that all plain-knit
fabrics in a given state of relaxation have a similar loop configuration, which
is independent of the loop length and of the physical properties of the yarn.
The theory presented here indicates that this suggestion seems a reasonable
approximation for dry-relaxed fabrics. However, the values of the fabric
dimensional parameters for dry-relaxed fabrics are not necessarily constant.
The curves for A:», = 3-8 in Figures 9-12 have shown that, even if ^», is
assumed constant, the values of the other fabric parameters are very critically
dependent on the loop shape and exhibit relatively large variations for the
small changes in a accompanying changes in fabric tightness. Furthermore,
Table III has shown that, for the practical range of dry-relaxed fabrics, there
are relatively large variations of the fabric parameters inherent in the dry-
relaxed knitted structure. The values of the fabric dimensional parameters
given in Table 111 encompass corresponding variations for dry-relaxed fabrics
observed experimentally by several workers-^--*'*.

The analysis of the knitted loop put forward in the present work assumes
that the yarn is perfectly elastic; as a result, the theoretical loop configuration
is not subject to any residual fabric tensions introduced during the knitting
process. In practice, however, the dry-relaxed loop configuration may be
modified by the effect of tensions imparted to the fabric on the knitting
machine, which distort the loop by an amount depending on the fabric tight-
ness and which are not completely recovered during dry relaxation. These
residual fabric tensions usually tend to augment the inherent effects of loop
shape and fabric tightness on the dry-relaxed values ofthe fabric dimensional
parameters and result in greater variations for fabrics knitted from yarns of
relatively low elasticity (such as cotton) compared with fabrics knitted from
yarns of relatively high elasticity (such as

(c) Friction Considerations
The interlocking angle, p, is determined by the coefficient of static yarn

friction, î , according to Equation (7), i.e.:

tan p = pt.

The relation between ii (or p) and the resultant force parameter, PI-/B, given
by Equation (38), is shown graphically in Fig. 15 for all equilibrium loop
configurations having values of a in the range 20-28-5'' and p lying between
0 and 30' (corresponding to values of y. less than about 0-5). It can be seen
that this relation is unaffected by a, and that the force parameter PI^/B is
dependent only on the coefficient of yarn friction (and hence on the inter-
locking angle, p). Increasing î  causes a decrease in PI'^/B. This relation holds
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Par: I: Two-dimensional Analysis—Postle and Munden 349

to the jamming condition, beyond which other forces come into play (the
broken portion of the curve).

100

95

90

B5

flO

75

70

• 26-5 & 24-0
Q 28-0 « 23-0
• 27-0 0 22-0
A 26-0 X 21-0
7 25-0 • 20-0

J^0-1 0-2 - 0-3 0-i 0-5
-r-J T-J ,—I . 1 I

10 15 20 25

Fig. 15
Relation between y. (or {ii} and Pl-jB

(d) Knitted-fabric Cover

Knitted fabrics are characterized by their extremely good covering
properties. The fabric cover, C, is generally defined as the fraction of the fabric
area that is actually occupied by the yarn, i.e.:

area of yarn
~ area of fabric

Assuming, for a first approximation, that the effective yarn diameter remains
constant over the whole loop length, we have:

Id -
C =

l/S '
where S is the stitch density, and the second term in the numerator is the
effect that the four cross-over points per stitch have on the yarn area. From
Equation (3), namely.

S =
it follows that:

C = 1 - (45)

The fabric cover, C, is plotted against a in Fig. 16 for constant values of
p between 0 and 25". Once again, the jamming curves are shown, and only the
unbroken portions of the curves are allowed by the geometry. Increasing
a or decreasing p gives an increase in the fabric cover. As in Figures 9-12 for
the fabric dimensional parameters, the region of the graph that is of practical
importance is the area bounded by the two jamming curves and the curve
for l/d = 20; the curve for k^^, = 3-8 passes through the centre of this region.
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350 24—Analysis of the Dry-relaxed Knitted-loop Configuration

I-O

0-9

I WIOTH-JAMMING
H LENGTH-JAMMING

20 22 23 24 25 26 27 28

Fig. 16
Relation between a and knitted-fabric cover, C

By definition, the maximum value of the fabric cover possible is unity,
and in this case the yarn would occupy the whole fabric area. The practical
range of values of C is from 0-65-0'70 for very slack fabrics {lid = 20) to a
maximum of about 0-9 for the completely jammed structure (//J = 16).

The fabric 'cover factor', K, defined by Equation (5) is something of a
misnomer, since this parameter is not so much a direct measure of fabric
cover as one of fabric tightness. In practice, the 'cover factor', K, is an easier
parameter to evaluate than the parameter C given by Equation (45). The use
of Â  as a measure of cover depends on the existence of a direct relation between
fabric cover and tightness. This is generally true of any one state of relax-
ation, but K could not be used to compare the cover of fabrics in different
states of relaxation.

7. CONCLUSIONS
The dry-relaxed knitted loop can be considered as a force-determined

structure and can be analysed as a function of the forces acting in the plane
of the fabric at the points of loop-interlocking. The limiting cases for which
the analysis is applicable are governed by the conditions for which the
structure becomes jammed in either the width or the length direction.

The geometry of the plain-knit structure is completely specified by the
values of the loop angle, a, and the interlocking angle, p (which are shown
in Fig. 6). The value of a determines the actual shape ofthe loop, and the value
of fi determines the point on the loop at which interlocking occurs.

The fabric dimensional parameters can be expressed as functions merely
of a and p. This is true also of the fabric cover, C, and the parameter lid
(the ratio ofthe knitted-loop length to the effective diameter ofthe yarn at the
interlocking points in the fabric). This latter parameter is related to the fabric
slackness, and for the practical range of plain-knit fabrics 16 ^ lid ^ 20.
For any value of lid in this range, the interlocking angle, p, is a function of
y. (the coefilicient of static yarn friction), and the loop angle, a, can acquire any

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ac
ed

on
ia

] 
at

 0
4:

25
 0

3 
D

ec
em

be
r 

20
13

 



I: Two-dimensional Analysis—Postle and Munden 351

value that is compatible with the limitations of jamming. This allows a
maximum variation in a, for all dry-relaxed plain-knit fabrics, of less than
4°. However, even this small change in loop shape is accompanied by
marked variations in the values of the fabric dimensional parameters and the
fabric cover. These variations are greatest for slack fabrics and are inherent
in the dry-relaxed knitted structure.
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