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Abstract— An optimistic scheme, called ODL, which uses
dummy locks to test the validity of a transaction for concurrency
control in distributed database systems, is suggested. The dummy
locks are long-term locks; however, they do not conflict with any
other lock. By the use of long-term dummy locks, the need for
the information about the write sets of validated transactions is
eliminated and during the validation test only the related sites
are checked. Also, the transactions to be aborted are immediately
recognized before the validation test, and therefore, the costs of
restarts are reduced. Furthermore, usual read and write locks
are used as short-term locks during the validation test. The use
of short-term locks in the optimistic approach eliminates the need
for the system-wide critical section and results in a distributed
and parallel validation test.

Although locking is used, the method is deadlock free;
therefore, the deadlock overhead is avoided. This is achieved by
preordering the data items, which is very convenient by the time
of certification since the access set is known. The ODL method is
very simple and easy to implement. The performance of ODL is
compared with strict 2PL through simulation, and it is found out
that for the low conflict cases they perform almost the same, but
for the high conflicting cases ODL performs better than strict
2PL.

Index Terms— Concurrency control, correctness of concur-
rency control, distributed database systems, optimistic locking,
optimistic schedulers, serializability, two-phase locking.

I. INTRODUCTION

METHOD called optimistic method with dummy locks
(ODL) is suggested for concurrency control in distributed
databases. We can summarize the distinguishing features of
the ODL method as follows:
* It combines locking and optimistic techniques
* By the use of dummy locks, the need for the information
on the write sets of the validated transactions is eliminated
and during the validation test, only the related sites
are communicated with. This reduces the communication
cost. Also, the transactions to be aborted are immediately
recognized before the validation test. This prevents one of
the major drawbacks of the previous optimistic methods,
that is, the costly restarts
* By the use of short-term read and write locks during
validation test, the need for system-wide critical section
is eliminated and a distributed and parallel validation test
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is achieved. This increases the performance of the method
compared to previous optimistic methods

* An invalidated transaction does not cause any other trans-
action to be invalidated, which increases the performance
of the method

* The method is deadlock free; therefore, deadlock over-
head is eliminated

» Two-phase commitment protocol is integrated into the

method; in other words, certification information is ex-

changed during commit protocol. Therefore, the total

number of messages necessary in ODL is comparable to

distributed two-phase locking (2PL), if there is no cost of

handling deadlock in 2PL, such as in timeout technique.

However, if deadlock is handled by considering wait-for-

graph, such as in Snoop, then the message cost of 2PL is

considerably greater than ODL

Contrary to some of the previous methods, ODL is very

simple and easy to implement

* Finally, a performance study carried out through simula-
tion has shown that ODL performs the same with strict
2PL using timeout for deadlock resolution in low-conflict
cases; however, it is superior to 2PL in high-conflict
cases. This performance achievement is the result of the
improvements cited above.

II. BACKGROUND

2PL is one of the most popular concurrency control tech-
niques in database systems and has been realized in most
of the commercial systems [6], [10], [12], [18], (28], [29],
[33]). A 2PL scheduler is defined by the following rules: 1)
Every transaction must lock a data item before it actually
reads or writes that data item. Different transactions can not
simultaneously hold conflicting locks. Two locks conflict if
they belong to conflicting operations. Two operations conflict
if they belong to different transactions and one of them is a
write operation; and 2) once the scheduler has released a lock
for a transaction, it may not subsequently obtain any more
locks for that transaction. On the other hand, strictness is a very
desirable property of histories and almost all implementations
of 2PL are strict [5]. A strict 2PL scheduler releases all
the locks held by a transaction after the transaction commits
[12], [15]. In this paper, unless otherwise stated, strict 2PL
is assumed.

Two-phase commitment (2PC) protocol is the most common
commit protocol used in distributed database systems. In the
first phase of 2PC, the values of data items in the write set of
the transaction are copied into the secure storage at the related
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sites. If the first phase terminates successfully, the transaction
commits. Then, in the second phase, the commit message is
sent to the related sites and the effects of the transactions on
the database are made permanent [17], [34].

In this paper a transaction execution model where the
read operations are multistep and write operations are single
step [14], [20], [22] is assumed. For this purpose, the read
operations are scheduled as they arrive. However, the write
operations are performed on the private workspace of the
transaction and are copied into the database when the trans-
action commits [2], [5], resulting in strict execution of the
transactions.

The locking methods when used in distributed databases
necessitate a distributed deadlock handling mechanism. There
are several deadlock prevention and detection algorithms, such
as wait-for-graph, Snoop, timeout, wound—wait, and wait—die
[13], [24], [29], [30], [37]. Among the various distributed
deadlock detection algorithms, the one implemented in System
R seems to be more widely known [30].

Kung [26] has suggested the optimistic approach to concur-
rency control to solve these problems. Optimistic schedulers
are also known as certifiers. A scheduler working in the cer-
tifier mode immediately schedules each operation it receives.
Only at the end of the transaction, if a validation test is passed
by the transaction, is the transaction committed [3], [26].

In the optimistic approach any transaction consists of two
or three phases: a read phase, a validation phase, and a
possible write phase. During the read phase, reads are done
unrestrictedly. However, all the writes take place on the private
workspace of the transaction. Then, if it can be established
during the validation phase that changes the transaction made
will not cause a loss of integrity, the writes are copied into
the database in the write phase [23], [26], [35].

In the Kung’s optimistic (KO) method, for each transaction
T4, the scheduler keeps the track of all the other transactions
that have been validated after 7' has started. For this purpose,
transactions are assigned monotonically increasing unique
transaction numbers when they are validated. During the
validation test of a transaction T'%, the intersection of the read
set of T¢ with the write sets of each of those transactions,
which are validated after 7% has started, are tested. If all
of the intersections are empty, then the transaction 7% is
validated and the write phase is performed. This is serial
validation. The disadvantages of this method are as follows:
1) Both validation phase and the write phase are realized in
a system-wide critical section; that is, there is parallelism
neither in the validation phase (serial validation) nor in the
write phase, which lowers the amount of concurrency; 2) the
write sets of all transactions that have been validated after T%
has started must be stored although they are terminated; and
3) furthermore, in the distributed case, either all of the sites
must be checked to validate any transaction, or there should
be a central scheduler at a site. Both of the schemes result in
high communication cost.

To increase concurrency the parallel validation test is pro-
posed in [26]). Here both the validation test and the write phase
are taken out of the critical section. The transactions that are
currently being validated are termed as active transactions.
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In parallel validation the active transactions are decided in a
critical section. Then for a transaction T'% to be validated, the
intersections of the read set of T4 with the write set of all
the other transactions that have been validated after 7% has
started must be empty, and also the intersection of the read
set or the write set of T% with the write sets of all active
transactions must be empty. The validated transactions are
assigned monotonically increasing unique transaction numbers
again in a system-wide critical section.

In the parallel validation of KO method, the active transac-
tions with conflicting write operations are aborted; however, in
the serial validation, since the write operations are performed
in critical section, the transactions with conflicting write
operations are not aborted, but blocked.

It should be noted that by assuming standard transac-
tion execution model, the class of histories produced by the
KO method is a subset of the class of histories produced
by the 2PL method. As an example, the history Ha =
R2[z) R1]y] R2[z] W2[z] R1{z] W1 [z,y] cannot be produced
by the KO method, because T2 is validated after T1 has
started execution, and the intersection of the read set of T1
and the write set of T2 is not empty. On the other hand, a
2PL scheduler produces every history that can be produced
by KO method. Let H be a history that can be handled by
the KO method, that is, the history H is handled without any
change on the order of the operations and all the transactions
in H are validated. The validation of a transaction T'i implies
that there were no conflicting write operations by any other
transaction 7°j during the time that 7 was executing its read
steps. This implies that T'j (T'7) can obtain immediately all the
write (read) locks it requests. Because T'j is also validated, T'j
obtains all read locks immediately as it requests. Therefore,
any transaction 7'j can obtain any lock it requires and the
history is in 2PL.

The major difficulty in locking approaches is deadlock.
The optimistic approach prevents this problem but in the KO
method the following disadvantages are observed even if the
parallel validation is used: 1) There is a system-wide critical
section; 2) all of the sites must be checked although the
transaction may not have executed at all in some of these
sites; and 3) the decision to abort a transaction is reached
only when the transaction is terminated, and the transaction
performs some unnecessary operations although it is to be
aborted.

There are several methods based on the optimistic approach.
In [11], the transactions are validated locally at each site
according to the parallel validation rules of KO method. The
algorithm is distributed by the use of happened before (HB)
sets. The HB(T'ij) for transaction T4 contains the identifiers
of those transactions that precede 7%j in the serialization
order at site j. During global validation, a subtransaction is
considered valid only if all global transactions that belong to
its HB set have been either committed or aborted. If it is not
yet known for some of those transactions whether they have
been committed or aborted, the validation of 745 is suspended.
This waiting can cause a deadlock; hence after a timeout, if
the subtransaction cannot be validated, it is aborted. In this



714 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 7, JULY 1991

method, although there is no system-wide critical section, there
is blocking and deadlock.

The backward-oriented optimistic method described in [23]
is the same as the KO method with serial validation. Forward-
oriented optimistic concurrency control technique (FOCC)
[23] checks, during the validation phase of T'j, whether its
write set WS(T'5) intersects with any of the read sets RS(7%)
of all transactions 7’7 having not yet finished their read phases.
Since the transactions to be checked during validation have
not yet been committed, this approach offers a flexibility
over the backward-oriented optimistic method in handling the
detected conflict. For example if T'j is a long writer and T' has
just started its execution, 7% may be the victim for abortion.
However, in this method, validation is made in a system-wide
critical section.

In [36], a timestamp-based optimistic concurrency control
algorithm is described. In this method, a read timestamp
and a write timestamp is maintained for each data item. For
edch read, the transaction must remember the write-timestamp
associatéd with the item when it was read. A read request is
certified if: 1) the version that was read is still the current
version of the item; and 2) no write with a newer timestamp
has already been locally certified. A write request is certified if:
1) no later reads have been locally certified and subsequently
committed; and 2) no later reads have been locally certified.
This algorithm suffers partially from the disadvantages of the
timestamp algorithms; that is, the timestamps assigned may
cause unnecessary abortions, and the timestamps kept with
each data item consumes a lot of storage space.

In [7], an optimistic concurrency control technique, which
uses the time interval technique [4], is introduced. However
the method is complicated and requires too many messages.

In [22] an optimistic concurrency control algorithm that
uses the time interval technique in conjunction with short-term
locks, called the OSN method, is described. It has been shown
through log classification that this method provides more
concurrency than 2PL. However the algorithm is complicated,
therefore, brings difficulty to the implementation.

In optimistic methods, it is difficult to distribute the valida-
tion test and restarts takes a long time. Most of the optimistic
methods use either local or system-wide critical section. The
performance of some of the previous optimistic methods have
been compared with locking methods [1}, {2], [8], [9], [16],
[27]. While in some studies 2PL is found superior [1], [27], in
[16] optimistic methods are found superior. In {2}, the differ-
ence among the decisions reached are explained by the differ-
ent assumptions made. In [8], it is predicted that “optimistic
locking,” where transactions lock remote copies of data only
as they enter into commit protocol may actually be the best
performer in replicated databases where messages are costly.

III. THE ODL METHOD AND THE IMPLEMENTATION

In the ODL method three types of locks—read locks, write
locks, and dummy locks—are used. The read and write locks
conflict in the usual manner. A dummy lock does not conflict
with any other lock. In fact, a dummy lock can be interpreted
as a special mark such that it is possible to check its existence,

and if it exists it is possible to know which transaction has put
the lock on which data item. When a transaction T issues
a read command for a data item z, if the data item is not
already in its workspace, a read lock is demanded on the data
item. When the lock is granted, a dummy lock is requested
on the data item by T%. A dummy lock request is always
granted because it does not conflict with any other lock. Then
the value of the data item x is read and the read lock is
released. A dummy lock can be released by the transaction
itself during the validation test or by another transaction T'j
when 7’7 performs an actual write operation on this data item.
The write operations performed in private workspace are not
actual write operations, and therefore, do not effect the dummy
locks. When the dummy lock of a transaction T’ is released by
another transaction 7', transaction 7' is said to be invalidated.

If the transaction 7' terminates successfully, then the vali-
dation test is applied on T%. During the validation test, the
short-term read and write locks are requested on the base set
of the transaction as explained in the following, and these
locks are retained until the transaction is either committed or
aborted. The validation test embodies the two-phase commit
(2PC) protocol, that is, the values in the write set of transaction
T are copied into secure storage in the related sites while
the validation test is applied. During the validation test of
transaction T’ all the data items in the base set of T%, that
is, the set of data item either in the read or write set of T,
are accessed in a predefined order. Such a total ordering on
the data items is obtained by ordering the sites and then the
data items within the sites. Total ordering of the data items is
necessary only for preventing the deadlocks. Obviously, other
techniques for prevention or detection of deadlocks caused by
short-term locks can be used instead of preordering the data
items. The validation test is as follows.

1) If the data item is only in the read set of the transaction,
then a read lock on the data item is requested. However, if
the data item is in both the write set and the read set of the
transaction, then a write lock is requested instead of the read
lock. When the lock is granted, the existence of the dummy
lock by the transaction on the data item is checked. If it has
been released by some other transaction, then the test fails;
otherwise, the dummy lock is released and the test continues.

2) If the data item is only in the write set of the transaction
then only a write lock is demanded on the data item and the
test continues when the lock is granted.

The test continues for all data items in the read set and
the write set of the transaction T until either both of these
sets are exhausted or the test fails. If the test fails, then the
transaction is restarted after releasing all the locks it owned.
If the test terminates successfully, that is, if the test does
not fail and the base set is exhausted, then the transaction is
committed and the data items in the write set of the transaction
T'i are updated by obtaining the values from the secure storage,
which corresponds to the second phase of the 2PC protocol.
Meanwhile, the dummy locks held by other transactions on
the data items in the write set of T'7 are released, which means
invalidation of those transactions. Also, all the locks owned
by T are released.
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The method is deadlock free, because: 1) the dummy locks
do not conflict with any other lock; 2) the read locks requested
during the read phase are immediately released after a dummy
lock is obtained; and 3) conflicting short-term read and write
locks are requested in a predefined order during the validation
test. The preordering is applicable due to the fact that by
the time of the certification the base set of the transaction
‘is known.

When transaction 7% invalidates another transaction 75 by
releasing a dummy lock held by T'j, the transaction T'j can
be immediately informed of this invalidation. Therefore, the
transactions to be aborted are immediately recognized and
such transactions are restarted without performing unnecessary
operations.

It should be noted that, in the ODL method, read—write con-
flicts are prevented by the validation test and the write—write
conflicts are prevented by blocking during the write phase.
This is the reason why all the histories produced by the method
are -serializable.

In the following the method is explained through an example
history:

Ha = R2{z] R1{y] R2[z] W2[z] R1[z] W 1]z, y].

First, R2[z] arrives and T2 demands a read lock on data item
. When the lock is granted, a dummy lock is requested on
the data item z by transaction T2 and the read lock is released
by leaving the dummy lock on the data item. Similarly, when
R1[y] arrives it is served by leaving a dummy lock on data
item y and then R2[z] operation is served by leaving a dummy
lock on z.

W2[z] arrives and the validation test for T2 starts. The
related data items are x and z. T2 demands a write lock on
data item = and meanwhile, the value of data item z is written
into a secure storage at the related sites, since z is in the write
set of T2. When the lock is granted, the existence of dummy
lock by T2 on z is checked, since z is also in the read set
of T2. The dummy lock exists; therefore, the dummy lock is
released and the test continues. Then T2 requests a read lock
on data item z. When the lock is granted, the existence of the
dummy lock on z by T2 is checked. Since the dummy lock is
still there, the test does not fail. The dummy lock is released.
Since all the items in the access set of T2 have been processed
and all the checks are turned out to be valid, the transaction T2
is validated and also committed. Its write operation is applied
into the database by copying from the secure storage. All the
dummy locks held by other transactions on the data items in
write set of T2 are released. However, note that in this example
there is no such dummy lock. Also, the short-term read and
write locks held by T2 are released.

R1 [z] arrives and the dummy lock on data item x is
obtained by T1.

Wz, y] arrives and the validation test for T1 starts. T1
demands write locks first on data item z and then on y.
Meanwhile, the values for data items z and y are copied into
secure storage. As the locks are granted, the existence of the
dummy locks on those data items that are in the read set of
T1 are checked and these dummy locks are released. Since the
test terminates successfully, the transaction T1 is validated. Its
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Fig. 1. The phases of a transaction and the duration of the locks.

write operations are applied into the database and the locks
are released.

Note that no transaction 7% can invalidate on already
validated transaction 7'j. Because in order for 7% to invalidate
T3, a data item z must be common to T'j’s read set and T'¢’s
write set. When 77 obtained a write lock on z, since z is in
the read set of T'j and T'j is already validated, either: a) T’y
already has a lock on z and this lock is conflicting with T'4’s
write lock, therefore, T cannot obtain the write lock unless
T'j releases its lock; or b) T'j has terminated its validation test
and released its locks; now 7'z can obtain the write lock but
cannot invalidate 7'j because T'j’s dummy locks have already
been released.

Because the dummy locks can be released only by a
transaction itself, or by the validated transactions, and because
a transaction cannot be invalidated if it is already validated, the
transactions cannot be invalidated by invalidated transactions.

Clearly, the validation test and the 2PC are integrated. A
validated transaction is also a committed transaction. If a
failure occurs in a related site before or when the transaction is
being validated, the transaction is aborted. If a failure occurs
after the transaction is validated, it is handled in the usual way
as the committed transactions are handled in 2PC.

In Fig. 1, how the phases of a transaction are interleaved
with the 2PC is shown. Furthermore, the duration of the locks
is demonstrated in the figure.

IV. THE HISTORY CLASSES AND THE AMOUNT
OF CONCURRENCY

In this paper, a transaction execution where several read
operations are followed by a single write operation [22] is
assumed. The quadruple H = (n,,V,S) is used to denote
a history (log), where n denotes the number of transactions,
V is the set of the data items, 7 is a permutation on the
set of the operations in the history showing the order of the
appearance of these operations in the history, and S is a
function mapping the set of operations to 2, indicating the
set of data items related to each operation. The symbol 7T is
used to denote the set of transactions in the history. 7% is
the sth transaction, Rij is the jth read operation of T, and
Wi is the write operation of 7. Unless otherwise stated, the
histories used in this paper include two special transactions, an
initial transaction T's, which initially writes all the data items,
and a final transaction T f, which finally reads all the data
items. Furthermore, in order to get rid of the extra notation
needed to indicate the beginning and the end of a transaction,
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we assumed that for a transaction T, Ril corresponds to the
beginning of the transaction and Wi indicates the end of it
although the read set or the write set of T¢ may be empty.

Therefore, the transactions 7'1 and T2 of history Ha =
R2[z|R1[y| R2[z)W 2[z]| R1[z]W 1]z, y], which is the one given
in Section II, can be expressed as follows:

T1 = Rl1[y|R1[z]W1[z,y] = R11R12W1
R11 = Rl[y| and m(R11) = 2 and S(R11) = {y}
R12 = R1[z] and 7(R12) = 5 and S(R12) = {z}
W1 =Wi|z,y] and 7(W1) =6 and S(W1) = {z,y}
T2 = R2[z) R2[z]W2[z] = R21 R22W2
R21 = R2[z] and m(R21) = 1 and S(R21) = {z}
R22 = R2[z] and 7(R22) = 3 and S(R22) = {2}
W2 = W2[z] and m(W2) = 4 and S(W2) = {z}.

A history is said to be serial if each transaction in the
history executes its write operation before the next transaction
executes any of its read operations. A history is assumed to
be correct if it is serial. A transaction T’ is said to read a data
item x from transaction Ta, if: 1) Ta writes x; 2) then Tb
reads x; and 3) no other transaction writes z between these two
operations. If an interleaved execution of transactions produces
the same effect as a serial execution of those same transactions,
then the history is said to be serializable. In this paper, view
serializability is chosen as the correctness criterion in which
the existence of a serial history having the same read from
relation on the same transaction set is required.

Fig. 2 demonstrates the amount of concurrency provided
by the existing concurrency control techniques through log
classification [22], [32]. In this figure, each area represents
a set of histories satisfying a particular property. Area H
contains the set of all histories, area VSR contains the set
of all view serializable histories, and area S contains only
serial histories. HD is the largest known view serializable
class that is introduced in [18] and [19]. Furthermore, CPSR
are the conflict preserving serializable histories, which are
produced by serialization graph testing, and 2PL are the
histories produced by strict 2PL, which is a subset of general
2PL. ODL are the histories produced by the ODL method,
and KO are the histories produced by the Kung’s optimistic
method. OSN is the subset of the histories produced by the
OSN scheduler introduced in [22], without the application of
Thomas Write Rule (TWR) [39]. BTO is the subset of the
histories produced by the basic timestamp ordering scheduler
{6], without TWR.

In [32] it is proved that the set CPSR covers the general
2PL class, which is a superset of S. In [18] and [22] it is
proved that OSN covers both 2PL and BTO; however, when
TWR is not allowed, OSN becomes a subset of CPSR. In
[25] it is proved that there is a class of histories called WRW,
which covers the class CPSR; however, WRW does not have
a scheduler. In [18] and [21] it is proved that HD is the largest
known view serializable history through concept of ordering
constraints defined on transaction sets in [18] and [19]. In the
following it will be proved that all histories in class ODL are
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Fig. 2. The amount of concurrency provided by the existing methods.

CPSR, and furthermore, the classes ODL and strict 2PL are
the same, and they cover the class KO.

CPSR is more restrictive than the view serializability and
requires the conflicting operations to appear in the same order
in a serial history as they appear in the original history. The
history class definition for CPSR, is given in the following.

Definition 4.1: A history H = (n,m, V,S) is in class CPSR
if and only if we can find real numbers {S1,---,Sn} such
that

CPSR1) if S(Wi)NS(Wm) # @ and m(W3) < n(Wm),
then Si < Sm.
CPSR2) if S(Rij) N S(Wm) # @ for some j,
¢ # m and = (Rijz)
< m(Wm),
then Si < Sm
CPSR3) if S(Wi)N S(Rmj) # & for some j and w(W73)
< w(Rmj), then Si < Sm.
]

Let H be a history satisfying the CPSR rules given in
Definition 4.1 and let Hs be the serial history having the
same set of transactions that are executed in the order of
the real numbers obtained in accordance with Definition 4.1.
The rule CPSR1 provides for the conflicting write operations
of Hs to be in the same order as in the history H itself.
The rules CPSR2 and CPSR3 provide for the ordering of the
conflicting read and write operations of Hs as they appear
in the history H. Therefore, there exists a serial history Hs
having the conflicting operations in the same order as they
appear in H, which is the requirement of the CPSR.

In order to see whether the history Ha is in the class CPSR,
we will try to find real number Si = {S1, 52} consistent with
the rules defining the class CPSR:

1)S(W1)NS(W2) # & and m(W1) < m(W2) then S2
< S1 by CPSR1
2)S(R21) N S(W1) # @ and w(R21) < w(W1) then S2
< S1 by CPSR2
3)S(W2) N S(R11) # @ and 7(W2)
< w(R11) then S2 < S1 by CPSR3.
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It is clear that we can find two real numbers such that
§2 < S1; then Ha is in class CPSR and in the serial equivalent
history

Hs = T2T1 = R2[z]|R2[z|W2[z])R1[y|R1[z|W 1|z, ]

transactions are executed in the order determined by S1 and
S2.

The history class definitions of strict 2PL, KO, and the
proposed method ODL, are provided in the following: .

Definition 4.2: A history H = (n,7,V,S) is in class strict
2PL if and only if we can find real numbers {S1,---Sn}
such that
2PL1)7w(Rij) S Si S m(Wi)fori=1,--- n,

i=12-- ki
2PL2) if S(Rij) N S(Wm) # & for some j,
t # m and 7(Rij) < 7(Wm),
then 7(Wi) < Sm
2PL3) if S(Wi)nS(Wm) # @ and w(Wi) < m1(Wm),
T(Wi) < Sm. |

Definition 4.2 is derived from the general 2PL definition
in [32]. Here rule 2PL2 has been restricted to #(Wi) < Sm
instead of Si < Sm as a consequence of using strict 2PL.

Definition 4.3: A history H = (n,m,V, S) is KO if and only
if we can find real numbers {S1,---,Sn} such that
KO1)Si = n(W1)

K02) if S(Rij)nS(Wm) # @ for some j,
1 # m and 7(Ril) < n(Wm),
then Si < Sm. |

In Definition 4.3, KO1 states that the transactions are
serialized in their validation order, which is determined by the
order of their write operations in the history. KO2 states that
for a transaction T to be validated, the following condition
must hold at the validation time: the intersection of the read
set of T'i with the write sets of each of those transactions 7'm
that are validated after 7" has started must be empty. It should
be noted that Ril denotes the start of transaction 7.

In order to decide whether a given history is in KO, we
will try to find real number Si = {51, S2} consistent with the
rules defining the class KO.

1)S1 =n(W1) =6 by KO1
2)S2 = n(W2) =4 by KO1,
therefore S2 < S1 by 1 and 2
3)S(R11) N S(W2) # @ and n(R11) < m(W2),
therefore, S1 < §2 by KO3
which makes it impossible to find real numbers consistent with
the constraints of KO.

Definition 4.4: A history H = (n,,V, S) is in class ODL if
and only if we can find real numbers {S1, .-, Sn} such that
ODL1)Si = n(W1i)

ODL2) if S(Rij) N S(Wm) # @ for some j,
i # m and 7(Rij) < 7(Wm), then Si < Sm. |

i [

7

In Definition 4.4, ODLI1 states that the transactions are
serialized in their validation order, which is determined by the
order of their write operations in the history. ODL2 states that
for a transaction T'i to be validated, the following condition
must hold at the validation time: the data item related to any
read operation Rij of T should not appear in the write set
of any of those transaction T'm that are validated after Rij
has been issued.

In order to show the correctness of a concurrency control
algorithm, it is necessary and sufficient to prove that it
produces only view-serializable histories. All the histories in
the class CPSR are view serializable. In order to show that
all the histories produced by the ODL scheduler are view
serializable, we will show that the class ODL is a subset of
the class CPSR. The following theorem is provided to prove
this fact.

Theorem 4.1: Any history in class ODL is in Class CPSR.

Proof: Let H be a history in class ODL. In the following
we show that each CPSR rule is implied by the ODL rules.

i) Let S(Wi)nS(Wm) # & and 7(Wi) < #(Wm). By

ODL1 Si < Sm. Hence CPSR1 is implied.

ii) CPSR2 is the same as ODL2.

iii) Let S(Wi) N S(Rmj) # @ for some j and 7(Wi) <
n(Rmj). w(Rmj) < «(Wm) for any j by
the assumed transaction execution model. Therefore,
m(Wi) < m(Wm) by transitivity and then Si < Sm
by ODLI1. Hence CPSR3 is satisfied. Therefore, by
i),1i), and iii), any history in class ODL is CPSR. W

In the following the class ODL is compared by the classes
KO and Strict 2PL.

Theorem 4.2: The class ODL is a proper superset of class
KO.

Proof: The rules KO1 and ODL1 are the same: however,
the rule KO2 is more restrictive than the rule ODL2. The
history Ha of section 2 is in class ODL, although it is not in
class KO. Therefore the class ODL is a proper superset of the
class KO. |

Theorem 4.3: The class ODL is equivalent to the class strict
2PL.

Proof: Let H be a history. We will prove that the history
H is in class strict 2PL if and only if H is in class ODL.

(if): In the following we show that each 2PL rule is implied
by the ODL rules.

i) Rule ODL1 is more restrictive than 2PL1.

ii) Let S(Rij) N S(Wm) # & for some j,i # m and
w(Rij) < w(Wm). Then Si < Sm by ODL2, and then
w(Wi) < Sm by ODLI1. Therefore, 2PL2 is implied.

iii) Rule ODL1 is more restrictive then 2PL3. Therefore,
any history in class ODL is also in class 2PL.

(only if): Assume H is not in class ODL. This implies
that there is at least one invalidated transaction in the history
H. A transaction T% is invalidated in the proposed method
only when the dummy lock on some data item z held by
Ti is released by some other transaction Tm, and this in
return implies that z € S(Rij) N S(Wm) for some j, and
7(Rij) < w(Wm) < n(Wi). However, this implies that
Sm < m(Wm) < n(Wt) by the rule 2PL1 and (W) < Sm
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TABLE 1
PERFORMANCE COMPARISON OF ODL AND 2PL FOR LoW-CONFLICT CASE
ODL 2PL
DBS MIAT MTBS RS AB% TC% MRT TO (ms) AB% TC% MRT
1500 10 000 5 0 0 100 1848 1250-10 000 0 100 1848
1000 10 000 5 0 0 100 1841 1250-10 000 0 100 1852
500 10 000 5 0 0 100 1841 1250-10 000 0 100 1852
100 10 000 5 0 0 100 1841 1250-10 000 0 100 1837
1000 10 000 2 0 0 100 934 1250-10 000 0 100 845
1000 10 000 4 0 0 100 1564 1250-10 000 0 100 1504
1000 10 000 5 0 0 100 1841 1250-10 000 0 100 1852
1000 10 000 10 0 0 100 3196 1250-10 000 0 100 3382
1000 20 000 5 0 0 100 1841 1250-10 000 0 100 1852
1000 10 000 5 0 0 100 1841 1250-10 000 0 100 1852
1000 5000 5 0 0 100 1841 1250-10 000 0 100 1852
1000 1000 5 3 2 100 1945 1250 1 100 1959
2500 1 100 1916
5000 1 100 1966
10000 1 100 2066

DBS: database size; MTBS: mean transaction base set size; AB%: Percentage of aborted transactions; TC%: Percentage of throughput capacity; MRT:

Mean response time; TO: Timeout duration.

by the rule 2PL2, which is a contradiction. Therefore, H is
not in class 2PL. ]

V. PERFORMANCE OF THE ODL METHOD
THROUGH SIMULATION

The performance of ODL method is compared to the per-
formance of the strict 2PL technique, which is the most
common concurrency control technique, through simulation
in {38]. The simulation study is carried out using GPSS, a
discrete simulation language. In the 2PL model, the deadlocks
are handled with the timeout technique, which is a widely
used deadlock resolution technique. However, the timeout is
a parameter that has to be tuned well. For this reason the
2PL model is experimented with a set of timeout values, and
then the best values of the evaluated performance metrics
are chosen for comparison with ODL. These experiments
revealed that the performance of 2PL is very sensitive to
the fine tuning of the timeout parameter. This is because the
timeout technique may abort a transaction that is not really
part of the deadlock, but is just waiting for a lock owned by
another transaction that is taking a long time to finish. There
is certainly a performance penalty to the transaction that was
unfairly aborted, although the overall effect may be to improve
transaction throughput [6].

In ODL method deadlocks are prevented by using dummy
locks and also by ordering the data items during the validation
test.

Both of the simulation models include the 2PC protocol,
which is a necessity for reliability. It should be noted that in
the ODL method, validation test is embedded in the first phase
of the 2PC, as explained in Section III.

The values of the parameters used during simulation runs
were chosen from [31]. These values are common to the most
of the similar studies [1], [2]:

Mean interarrival time of transactions (MIAT) : 1000-2000 ms

: 2-10 data items
: 100-1500 data items
: 1250-10000 ms

Mean base set size of transactions (MTBS)
The database size (DBS)
Timeout period for 2PL (TO)

Message transmission time : 100 ms
I/0 time to process an item 125 ms
Number of sites : 5 sites.

The network topologies, transmission media, communica-
tion protocols, network traffic density, and message size vary
to a great extent. Therefore, the ranges for transmission time
vary widely. In [31] the range is given as 50-250ms, and
100 ms is chosen as the typical value. Furthermore, in [31]
CPU time to process an item is taken as 1ms. We have
neglected this in comparison to I/O time to process an item
(25 ms) and message transmission time (100 ms).

The performance metrics evaluated are the throughput ca-
pacity (TC%) that can be supported by the method, which
is the percentage of already terminated transactions to all
the transactions created, and the mean response time (MRT),
which is the time elapsed between the start and the termi-
nation of a transaction by taking restarts into account. In
our simulation models, aborted transactions are immediately
restarted.

The performance results for TC% and MRT (ms) are sum-
marized in Table I, for low conflict cases, in Table II for
medium conflict cases, and in Table IIl for high conflict
cases. In these tables, AB% corresponds to the percentage of
transactions that are restarted at least once. Notice that timeout
TO is a parameter only for the 2PL method.

The graphs obtained through the experiments are given in
Figs. 3—8. In each figure, the behavior of either TC or MRT
is demonstrated for the following cases:

a) low conflict case, where database size = 1000 data items,

mean base set size = 5 data items, and mean interarrival
time = 10000 ms;
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TABLE 1I
PERFORMANCE COMPARISON OF ODL AND 2PL FOR MEDIUM-CONFLICT CASE
ODL 2PL
DBS MIAT MTBS RS AB% TC% MRT TO (ms) AB% TC% MRT
1500 5000 10 1 1 100 3245 1250 1 100 3515
2500 1 100 3540
5000 1 100 3590
10 000 1 100 3690
1000 5000 10 1 1 100 3252 1250 1 100 3505
2500 1 100 3530
5000 1 100 3580
10 000 1 100 3680
500 5000 10 3 3 100 3367 1250 5 100 3865
2500 3 100 3709
5000 3 100 3517
10 000 2 100 4041
100 5000 10 12 10 100 3792 1250 42 75 9121
2500 42 70 5319
5000 32 79 5946
10 000 42 63 5836
500 1000 2 0 0 100 937 1250-10 000 0 100 845
500 1000 4 0 0 100 1555 1250-10 000 0 100 1530
500 1000 5 5 4 100 2013 1250 6 100 2185
2500 4 100 2161
5000 4 100 2369
10 000 4 98 2552
500 1000 10 21 13 93 3419 1250 26 80 3946
2500 16 84 3795
5000 15 86 5088
10 000 15 77 5207
500 20 000 10 1 1 100 3238 1250 2 100 3496
2500 1 100 3448
5000 1 100 3498
10 000 1 100 3598
500 10 000 10 2 2 100 3308 1250 3 100 3628
2500 2 100 3591
5000 1 100 3517
10 000 1 100 3617
500 5000 10 3 3 100 3367 1250 5 100 3865
2500 3 100 3709
5000 . 3 100 3517
10 000 2 100 4041
500 1000 10 21 13 93 3419 1250 26 80 3946
2500 16 84 3795
5000 15 86 5088
10 000 15 77 5207

b) medium conflict case, where database size is 500 data
items, mean base set size is 10 data items, and mean
interarrival time is 1000 ms or 5000 ms;

¢) high conflict case, where database size is 100 data items,
mean base set size is 10 data items, and mean interarrival
time is 1000 ms.

In Fig. 3, throughput capacity is plotted against database
size. Fig. 3(a) depicts the low conflict cases where throughput
capacity is about 100% for both of the methods, which
implies that alrhost no transaction remains in the system. The
corresponding MRT’s are given in Fig. 4(a) which shows that
both methods peiforms almost the same.

Fig. 3(b) is the medium conflict case, and when database
size drops below about 500 items, which implies an increase
in the number of conflicts, ODL starts performing better than
2PL, both in terms of throughput and in terms of MRT

(Fig. 4(b)). This behavior becomes much apparent in Fig. 3(c)
which depicts the high conflict case. From Fig. 3(c) it is clear
that when database size drops below about 500 data items, 2PL
trashes for high-conflict cases, whereas ODL’s performance is
quite reasonable.

When 2PL trashes, it terminates very few transactions.
Although MRT is low (Fig. 4(c)) for 2PL in this region,
standard deviation is very close to MRT; therefore, the MRT
is not very meaningful.

Fig. 5 shows the throughput as a function of mean interar-
rival time for the: a) low-, b) medium-, and c) high-conflict
cases. The graphs of the MRT’s corresponding to these experi-
ments are given in Fig. 6. The graphs of Figs. 5 and 6 confirm
the conclusions we have obtained from the graphs. of Figs. 3
and 4, that is, ODL and 2PL perform the same in the low-
conflict case; however, as the number of conflicts increases,
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TABLE II
PERFORMANCE COMPARISON OF ODL AND 2PL FoR HIGH-CONFLICT CASE

ODL 2PL
DBS MIAT MTBS RS AB% TC% MRT TO (ms) AB% TC% MRT
100 20 000 10 4 4 100 3355 1250 5 100 3960
2500 6 100 4263
5000 6 100 6077
10 000 8 100 9165
100 10 000 10 5 5 100 3461 1250 9 100 4038
2500 6 100 3938
5000 6 100 4238
10 000 6 100 4903
100 5000 10 12 10 100 3792 1250 42 75 9121
2500 42 70 5319
5000 32 79 5946
10 000 42 63 5836
100 1000 10 78 29 87 5313 1250 65 38 3160
2500 58 40 2983
5000 60 35 4045
. 10 000 59 31 2464
100 1000 2 2 2 100 982 1250 2 100 992
2500 3 98 895
5000 3 97 804
10 000 2 95 854
100 1000 4 10 7 100 1851 1250 11 93 1756
2500 9 91 1649
5000 8 88 1443
10 000 6 88 1646
100 1000 5 17 10 98 2336 1250 19 89 2019
2500 15 86 1985
5000 15 84 2342
10 000 21 74 4001
100 1000 10 78 29 87 5313 1250 65 38 3160
. 2500 58 40 2983
5000 60 35 4045
10 000 59 31 2464
1500 1000 10 6 4 97 3419 1250 b 96 3554
2500 4 96 3700
5000 5 93 3723
10 000 4 93 3976
1000 1000 10 10 6 96 3319 1250 10 90 3279
2500 9 91 3655
5000 8 92 4041
10 000 6 87 4184
500 1000 10 21 13 93 3419 1250 26 80 3946
2500 16 84 3795
5000 15 86 5088
10 000 15 77 5207
100 1000 10 78 29 87 5313 1250 65 38 3160
2500 58 40 2983
5000 60 35 4045
10 000 59 31 2464

ODL starts performing better than 2PL, and even when 2PL
trashes, ODL still has a reasonable performance. Figs. 7 and
8, which show the throughput capacity and mean response
times as a function of transaction base set size, provide further
support to our conclusions. One can observe from Fig. 7(c)
that throughput of 2PL reduces drastically as the mean base
set size of transactions increases for the high-conflict case. The
MRT corresponding to this region is given in Fig. 8(c). Here
the MRT of 2PL seems to be better than ODL; however, this
is the region where 2PL trashes as throughput indicates, and
the MRT is not very meaningful, as explained above.

| ——

In the simulation the CPU time is neglected. Notice that
even if the CPU time is significant, this will not change the
conclusions about the simulation results with infinite resources
assumption. ODL does not incur any extra CPU cost; therefore,
the CPU cost will be the same for all the models. The
values obtained for performance metrics will change but the
conclusions will be the same when it comes to comparison of
the techniques. .

As a summary, in low conflict cases, almost no transaction
is restarted and also no transaction remains in the system
resulting in 100% throughput capacity both for the ODL and
2PL methods. In higher conflict cases, ODL performs better
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Fig. 3. Effect of database size on throughput capacity. (a) MIAT: 10000 ms, BS: 5 items (low conflict). (b) MIAT: 5000 ms, BS: 10 items
(medium conflict). (c) MIAT: 1000 ms, BS: 10 items (high conflict).
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Fig. 4. Effect of database size on MRT. (a) MIAT: 10000 ms, BS: 5 items (low conflict). (b) MIAT: 5000 ms, BS: 10 items (medium
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Fig. 7. Effect of mean base set size on throughput capacity. (a) MIAT: 10000ms, DBS: 1000 items (low conflict). (b)- MIAT:
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Fig. 8. Effect of mean base set size on MRT. (a) MIAT: 10000ms, DBS: 1000 items (low conflict). (b) MIAT:
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than 2PL. This is because the long-term locks used in 2PL rise
blocking beyond an unacceptable level. These results are in
agreement with our expectations. The use of dummy locks and
short-term locks in ODL works very much in advantage of the
method, by avoiding blocking and deadlock overhead, since
there is no deadlock in ODL. Furthermore, the certification
information is exchanged during 2PC protocol; therefore,
certification is almost free in terms of communication cost.
The most important feature of the ODL is the following:
the invalidated transactions are immediately recognized, and
therefore, the cost of restart is not high as in the previous
optimistic methods.

VI. CONCLUSION

In this paper, an optimistic scheme is introduced. The
synchronization of read—write conflicts are achieved through
dummy locks. The advantage of using dummy locks is that
although they are long-term locks, they do not block the
execution of transactions in any way. The nonexistence .of
an expected dummy lock informs a transaction that it has
been invalidated. During the validation test, it is decided on
whether a transaction is invalidated. However, a transaction
may be invalidated before it enters the validation test and such
a transaction is immediately recognized and aborted.

2PC is integrated into the validation test and parallelism is
achieved by the use of short-term read and write locks during
the validation test. The validation test is distributed. Although
locking is used the method is deadlock free.

The proposed method provides as much concurrency as
strict 2PL,, which is more than the KO method.

The performance of ODL is compared with strict 2PL using
timeout technique through simulation, and it is found out that
except for the low-conflict cases, the ODL performs better
than strict 2PL. In low-conflict cases, the throughput of the
two methods are almost the same.
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