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Mapping the spatio-temporal characteristics of wetland inundation has an important significance to the study of
wetland environment and associated flora and fauna. High temporal remote sensing imagery is widely used for
this purpose with the limitations of relatively low spatial resolutions. In this study, a novel method based on
integration of back-propagation neural network (BP) and genetic algorithm (GA), so-called IBPGA, is proposed
for super-resolution mapping of wetland inundation (SMWI) from multispectral remote sensing imagery.
The IBPGA-SMWI algorithm is developed, including the fitness function and integration search strategy.
IBPGA-SMWI was evaluated using Landsat TM/ETM+ imagery from the Poyanghu wetland in China and the
Macquarie Marshes in Australia. Compared with traditional SMWI methods, IBPGA-SMWI consistently achieved
more accurate super-resolution mapping results in terms of visual and quantitative evaluations. In comparison
with GA-SMWI, IBPGA-SMWI not only improved the accuracy of SMWI, but also accelerated the convergence
speed of the algorithm. The sensitivity analysis of IBPGA-SMWI in relation to standard crossover rate, BP
crossover rate and mutation rate was also carried out to discuss the algorithm performance. It is hoped that
the results of this study will enhance the application of median-low resolution remote sensing imagery in
wetland inundation mapping and monitoring, and ultimately support the studies of wetland environment.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Wetlands are areaswherewater is the primary factor controlling the
environment and associated plant and animal life (Ramsar, 2009). They
are cradles of biological diversity, providing water and primary produc-
tivity upon which species of plants and animals depend for survival
(Ramsar, 2009). Wetlands experience periodic flood inundation which
exhibits changes in spatial distribution and temporal duration (Zhao,
Stein, & Chen, 2011). Spatio-temporal characteristics of inundation
have been studied using multi-spatial, multi-temporal and multispec-
tral remote sensing imagery (Chen, Barrett, et al., 2014; Chen, Cuddy,
Wang, & Merrin, 2011; Chen, Huang, Ticehurst, Merrin, & Thew, 2013;
Chen, Wang, et al., 2014; Huang, Chen, & Wu, 2014b; Huang, Chen,
Wu, Chen, et al., 2014; Huang, Chen, Wu, & Yu, 2012; Huang, Peng,
Lang, Yeo, & McCarty, 2014; Marti-Cardona, Dolz-Ripolles, &
Lopez-Martinez, 2013; Ticehurst, Chen, Karim, & Dushmanta, 2013).
However, the current remote sensing systems generally do not have
rnica.ir
high temporal and spatial resolutions at the same time (Huang, Chen,
& Wu, 2014a; Li, Chen, Yu, Liu, & Huang, 2015). It is worth mentioning
that the new sensor systems, specifically constellation systems such as
RapidEye, are beginning to shift this paradigm. The current high tempo-
ral remote sensing imagery usually has relatively low spatial resolution
(Huang, Chen, &Wu, 2014a; Li et al., 2015). The spatial resolution range
ofmedium-low resolution remote sensing imagery here is 10m–1000m.
The accuracy of wetland inundationmapping fromhigh temporal remote
sensing imagery is severely compromised due to spatial resolution
constraints. One of the most popular methods to tackle this issue is
super-resolution mapping.

Super-resolution mapping, also termed as sub-pixel mapping, is
designed to obtain more sub-pixel spatial information within mixed
pixels based on the spatial dependence assumption that observations
close together are more alike than those that are further apart (Aplin
& Atkinson, 2001; Atkinson, 1997, 2005). There are many methods
developed for super-resolution mapping. Atkinson (1997) proposed a
method to allocate land cover class proportions to sub-pixels based on
a distance measure (proximate sub-pixels contributing more than
distant ones). Verhoeye and De Wulf (2002) explored a method in
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which the super-resolutionmapping conceptwas formulated as a linear
optimization problem to maximize spatial autocorrelation within an
image. Atkinson (2005) presented an algorithm to exchange sub-
pixels based on the swap which resulted in an increase in spatial
correlation between sub-pixels. Mertens, De Baets, Verbeke, and De
Wulf (2006) established a sub-pixel mapping algorithm based on
spatial attractionmodels (SAM) to increase accuracy. As classic artificial
intelligent methods, artificial neural networks (ANNs) have been ap-
plied to super-resolution mapping and obtained relatively satisfactory
results (Li, Ling, Du, Feng, & Zhang, 2014; Mertens, Verbeke, Westra, &
De Wulf, 2004; Quang, Atkinson, & Lewis, 2011; Zhang, Wu, Zhong, &
Li, 2008). Some other well-known artificial intelligent methods, such
as Markov random field (Ardila, Tolpekin, Bijker, & Stein, 2011;
Kanemura, Maeda, & Ishii, 2009; Li, Du, & Ling, 2014) and particle
swarm optimization (Li et al., 2015), have also proven to be useful for
the purpose. However, due to the complexity and uncertainty of remote
sensing imagery (Melin, Zibordi, & Berthon, 2012; Wu, Yi, & Zhang,
2009), super-resolution mapping of wetland inundation (SMWI) from
remote sensing imagery is still a difficult task and needs further
development. Integration of artificial intelligent methods may provide
potential solutions to resolve this issue.

As classic artificial intelligent methods, ANNs are trained to learn
the most appropriate sub-pixel distributions within mixed pixels in
super-resolution mapping. The back-propagation (BP) algorithm is a
typical and widely used algorithm to find the appropriate network
weights, but the convergence of BP is confronted with locally optimal
phenomenon (Zhang et al., 2008). Therefore, it is usually difficult
for BP neural network to find the optimal sub-pixel distributions in
super-resolution mapping. Genetic algorithm (GA) is a classic artificial
intelligence method based on natural selection and genetics (Faghihi,
Reinschmidt, & Kang, 2014; Van Coillie, Verbeke, & De Wulf, 2007).
It has already proven to be effective in solving optimization issues
encountered in many fields such as electricity industry (Ozturk &
Ceylan, 2005; Suksonghong, Boonlong, & Goh, 2014; Vazhayil &
Balasubramanian, 2014), chemical industry (Preechakul & Kheawhom,
2009; Qian, Sun, Zhong, & Luo, 2013; Yang & Yan, 2011), transportation
(Delavar, Hajiaghaei-Keshteli, & Molla-Alizadeh-Zavardehi, 2010;
Mahmoudabadi & Tavakkoli-Moghaddam, 2011; Mesbah, Sarvi, &
Currie, 2011), environmental science (Oyana & Dai, 2010; Shad & Shad,
2012; Yang, Yang, Shen, & Li, 2006), economics (Acosta-Gonzalez &
Fernandez-Rodriguez, 2014; Wiesinger, Sornette, & Satinover, 2013),
and remote sensing (Song et al., 2012; Tong, Zhang, & Liu, 2010; Yang,
2007). SMWI is an optimization issue in essence. Therefore, the assump-
tion of this study is that coupled with BP, GA has the potential to be
applied to SMWI. The results of BP could be used as prior knowledge
to be integrated into GA in the evolution process for finding optimal
solutions. Compared with the standard GA method, the integration
method is expected not only to improve the accuracy of SMWI, but
also to accelerate the convergence speed of the algorithm.

In this study, the above assumption was tested by developing an
integration method of BP and GA for SMWI (IBPGA-SMWI) frommulti-
spectral remote sensing imagery. The main objectives are (1) to build
the IBPGA-SMWI algorithm, including the fitness function and the inte-
gration search strategy; (2) to compare the effects of IBPGA-SMWIwith
SAM-SMWI, BP-SMWI and GA-SMWI using Landsat TM/ETM+ imagery
fromwetlands in China and Australia; and (3) to discuss the parameter
sensitivity of IBPGA-SMWI.

2. Methods

2.1. Concept of SMWI

SMWI aims to obtain the most likely sub-pixel distributions of
wetland inundation within a mixed pixel in such a way that the spatial
dependence is maximized and the original proportion of inundation
is maintained. The input to SMWI is a fraction image of wetland
inundation where every fraction value only represents the proportion
of inundationwithout specifying the location of inundation. The fraction
image can be obtained by soft classification (Cheng, Varshney, & Arora,
2006; Hu, Xu, Zhang, Wang, & Zhang, 2013; Xu, Watanachaturaporn,
Varshney, & Arora, 2005) of wetland inundation from remote sensing
imagery. SMWI can be considered as the post processing of the soft
classification to obtain more spatial distribution information of wetland
inundation at a sub-pixel scale. Let S represent the scale factor between
a mixed pixel and its sub-pixels in the fraction image. SMWI divides
each mixed pixel into S × S sub-pixels. The basic principle of SMWI is
shown in Fig. 1which is a simple examplewith two classes representing
wetland inundation and non-inundation, respectively. The fraction
value in the fraction image represents the proportion of wetland
inundation in a mixed pixel (Fig. 1(a)). Possible sub-pixel distributions
of inundation in the central mixed pixel are shown in Fig. 1(b). Here,
S equals to 3, so 9 sub-pixels in the center mixed pixel are created.
The fraction value in the central mixed pixel is 33.3%, so there are 3
inundation sub-pixels and 6 non-inundation sub-pixels in this mixed
pixel. Because the fraction value only represents the proportion of
inundation without specifying the location of inundation, there are
manydifferent possible sub-pixel inundation distributions in the central
mixed pixel. Fig. 1(c) describes themost likely sub-pixel distributions in
the centralmixed pixel according to the spatial dependence assumption
that observations close together are more alike than those that are
further apart (Aplin & Atkinson, 2001; Atkinson, 1997, 2005).

2.2. SAM-SMWI method

The SAM method is based on the fraction values in neighboring
pixels acting towards sub-pixels inside a central pixel (Mertens et al.,
2006). A sub-pixel is attracted only by pixels surrounding the central
pixel which means that a maximum of eight neighboring pixels are
considered for attraction. The inundation attraction value (IAV) and
non-inundation attraction value (NAV) for a sub-pixel pa,b can be
calculated as follows (Mertens et al., 2006):

IAV pa;b
� �

¼

XN

c¼1

FV P cð Þð Þ=d pa;b; P cð Þ
� �

N ð1Þ

NAV pa;b
� �

¼

XN

c¼1

1−FV P cð Þð Þð Þ=d pa;b; P cð Þ
� �
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d pa;b; P cð Þ
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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where S is the scale factor, N is the number of the neighboring pixels,
FV(P(c)) is the inundation fraction value of the pixel P(c), d(pa,b,P(c))
is the distance between a sub-pixel pa,b and a neighboring pixel P(c), a
and b are the row and column of the sub-pixel pa,b in the central pixel
respectively, and i and j are the row and column of the neighboring
pixel P(c) relative to the central pixel respectively.

If IAV(pa,b) ≥ NAV(pa,b), then the sub-pixel pa,b is inundation.
Otherwise the sub-pixel pa,b is non-inundation.

2.3. BP-SMWI method

ANNs are classic artificial intelligence methods, which can learn
relations fromexampleswithoutmaking assumptions about data distri-
bution (Paola & Schowengerdt, 1995; Zhang et al., 2008). BP-SMWI
constructs a local SMWI model describing the relationship between
fractions in a local area and sub-pixel distributions within the central
mixed pixel in the area. BP neural network consists of an input layer,
an output layer and one or more hidden layers. The local area consists
of 3 × 3 pixels including a central pixel and its eight surrounding



Fig. 1. An example of SMWI (S = 3). (a) Fraction image of wetland inundation. (b) Possible SMWI results. (c) The most likely SMWI result.

Fig. 2. BP neural network architecture with one hidden layer (S = 3).
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neighbors, so there are eight neurons in the input layer, corresponding
to eight surrounding neighbors. When the scale factor S equals to 3,
there are nine neurons in the output layer, corresponding to sub-pixel
distributions within the central mixed pixel. The BP neural network
architecturewith one hidden layer is shown in Fig. 2. The BP neural net-
work is trained tomap the input samples on the correct outputs through
multiple feed-forward and back-propagated phases (Zhang et al., 2008).
Each input sample is first propagated through the neural network in the
feed-forward phase. Then the difference between the calculated and the
reference output is back-propagated from the output layer to the input
layer, thereby adjusting the neural network weights in the opposite
direction of the derivative of the neural network errors. However, the
convergence of BP neural network is confronted with a locally optimal
phenomenon in the training process (Zhang et al., 2008), which affects
the results of the BP-SMWI method.

2.4. IBPGA-SMWI method

2.4.1. Basic principle of GA
The basic principle of GA is based on the Darwinian theory of evolu-

tion (Faghihi et al., 2014; Van Coillie et al., 2007). It applies the principle
of survival of the fittest to find an optimal solution for optimization
problems. GA deals with a population of solutions directly. Individuals
spread throughout the solution space, so the chance of reaching the
global optimum increases significantly. GA is also an iteration algorithm.
New individuals are created through the evolutionary process of their
parents according to the fitness level associated to the optimization
problem. The fitness level of the individual is measured by a fitness
function, which is a mathematically defined objective function. Individ-
uals are represented as chromosomes and are randomly generated for
the first generation. The evolutionary process includes three key opera-
tions, i.e. selection, crossover and mutation. Individuals are selected
through a fitness-based process, where fitter individuals aremore likely

Image of Fig. 1
Image of Fig. 2


Fig. 3. Flow chart of IBPGA-SMWI.
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to be selected. Crossover is the operation which swaps gene values
between two parent individuals to breed two new individuals as
their children.Mutation is used to alter the value of a gene in an individ-
ual randomly. This process leads to the evolution of more suitable
Fig. 4. An example of discrete encoding for SMWI (S = 3). (a) Possible distributions of inun
distributions. (c) Corresponding discrete encoding of the individual.
generations, similar to the natural adaptation. Comparedwith the tradi-
tionalmethodswhichdependonexistence and continuity of derivatives
or other auxiliary information, GA only uses fitness information or
objective function, and therefore has a wider range of applications.
dation in a mixed pixel. (b) Corresponding discrete binary representation of inundation

Image of Fig. 3
Image of Fig. 4


Fig. 5. A simple example of standard crossover (S = 3).
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2.4.2. IBPGA-SMWI algorithm
The two key points in the development of the IBPGA-SMWI

algorithm are: (1) fitness function designing and (2) integration search
strategy.

(1) Fitness function designing
According to spatial dependence principles (Atkinson, 1997,
2005), SMWI can be formulated as a maximum combined opti-
mization issue. For a mixed pixel, the wetland inundation spatial
dependence index (WISDI) can be calculated considering the
spatial correlation between its sub-pixels and neighboring
mixed pixels:

WISDI ¼
XS�S

i¼1

WISDIi ð4Þ

WISDIi ¼ bi �
XJ

j¼1

wj � fractionj

0
@

1
Aþ 1−bið Þ �

XJ

j¼1

wj � 1−fractionj

� �2
4

3
5

ð5Þ

where S represents the scale factor which refers to the scale ratio
between the mixed pixel and its sub-pixels, bi is the binary class
of each sub-pixel i (1 for the inundation class and 0 for the non-
inundation class), J is the number of the neighboring mixed
pixels, wj is usually calculated as the distance inverse of each
sub-pixel i to the jth neighboringmixed pixel center, and fractionj
is the wetland inundation fraction value of the jth neighboring
mixed pixel.
The evaluation criterion of SMWI can be formulated as: the
higher the WISDI value, the higher the possibility of the sub-
pixel distributions. Therefore, SMWI spatially allocates wetland
inundation to the sub-pixels in a mixed pixel while maximizing
the WISDI.
Fitness function value is ameasure of an individual. If an individual
has a larger fitness function value, the distributions of inundation
Fig. 6. A simple example of
represented by the individual are more likely. The fitness function
for SMWI can be defined as follows:

FitnessFunctioni ¼ WISDI Individualið Þ ð6Þ

where FitnessFunctioni is the fitness function of the ith individual,
andWISDI is the spatial dependence index of the ith individual.

(2) Integration search strategy
A flow chart of IBPGA-SMWI is shown in Fig. 3.
For each mixed pixel in the fraction image, the integration search
strategy is described below.

(a) Population initialization and discrete encoding
Each individual Gi(gi1, gi2 ⋯, giM) represents a possible solution
of SMWI, where M is equal to S ∗ S. The basic principle of the
discrete encoding for SMWI is illustrated in Fig. 4. Possible distri-
butions of wetland inundation in a mixed pixel are depicted in
Fig. 4(a). The corresponding binary representation of inundation
distributions is in Fig. 4(b), where inundation is represented by 1
and non-inundation is represented by 0. Fig. 4(c) shows the
corresponding discrete encoding of the individual by placing
each row in Fig. 4(b) end to end.
All individuals of the population compose a matrix G as follows:

G ¼
G1
G2
⋮
GN

2
664

3
775 ¼

g11 g12 ⋯ g1M
g21 g22 ⋯ g2M
⋮ ⋮ ⋮ ⋮

gN1 gN2 ⋯ gNM

2
664

3
775 ð7Þ

where gim represents a gene (1 ≤ i ≤ N, 1 ≤ m ≤ M), G ¼
i gi1 gi2 ⋯ giM½ � , N is the number of individuals of the
population, and M is the dimension of each individual.
The population matrix G is initialized according to Eq. (7),
where the elements are initialized according to the following
equations:

gim ¼ rand intðÞ ð8Þ
BP crossover (S = 3).

Image of Fig. 5
Image of Fig. 6


Fig. 7. A simple example of mutation (S = 3).

Table 1
Key characteristics of the two study areas.

Study area 1 Study area 2

Location Poyanghu, Jiangxi, China Macquarie Marshes, New
South Wales, Australia

Area 225 km2 5625 km2

Data A Landsat 7 ETM+ image A Landsat 5 TM image
Date August 2, 2010 December 20, 2010
Image size 500 × 500 pixels 2500 × 2500 pixels
Image resolution 30 m 30 m
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XM

m¼1

gim ¼ Fraction ¼ fraction� S2 ð9Þ

where rand int() is the random number with the value of ‘0’ or
‘1’, and fraction is the fraction value of wetland inundation of
the mixed pixel.

(b) Calculation of the fitness function
The fitness of each individual is measured by the fitness
function in SMWI:

FitnessFunctioni ¼ WISDI gi1; gi1; ⋯; giMð Þ ð10Þ

where FitnessFunctioni is the fitness function of the ith individ-
ual (gi1, gi1, ⋯, giM), and WISDI is its corresponding spatial
dependence index when inundation distributions in a mixed
pixel are represented by the ith individual.

(c) Updating the optimal individual (Gb)
This step updates the optimal individual of the population.
Compare the evaluated fitness value of each current individual
with the fitness value of the optimal individual Gb in the histo-
ry of the whole population. If the current value is better, then
set the current individual as Gb.

(d) Selection and replacement
The individuals are firstly ranked based on their fitness values.
Those individuals that have higher fitness values are ranked
higher and those with lower fitness values have lower ranks.
Then the individuals are selected according to their ranks.
Those individuals that have low ranks are replaced by those
have high ranks.

(e) Standard crossover
Standard crossover swaps gene values between two individuals
so as to generate two new individuals. The standard crossover
rate is the probability of the individuals participating in the stan-
dard crossover process. The individuals are randomly selected
according to the standard crossover rate. A simple example of
standard crossover is shown in Fig. 5 where the crossover point
is randomly generated within the integer domains 1 to 9. The
crossover attaches the first part of individual 1 to the second
part of individual 2 to generate new individual 1. And it attaches
the first part of individual 2 to the second part of individual 1 to
generate new individual 2.

(f) BP crossover
The results of the BP method can be used as prior knowledge and
integrated into the GA evolution process by BP crossover. The BP
crossover rate is the probability of the individuals participating in
the BP crossover process. The individuals are randomly selected
according to the BP crossover rate. BP crossover swaps gene values
between the individual and BP result so as to generate a new indi-
vidual. A simple example of BP crossover is shown in Fig. 6 where
the crossover point is randomly generated within the integer do-
mains 1 to 9. The crossover attaches the first part of the individual
to the second part of BP result to generate a new individual.
Compare the fitness value of the new individual with the fitness
value of the previous one. If the fitness value of the new individual
is higher, then replace the previous individual with the new one.

(g) Mutation
Mutation is to alter the binary value of a gene in an individual
randomly. The mutation rate is the probability of the individuals
participating in themutationprocess. The individuals are randomly
selected according to themutation rate. A simple example ofmuta-
tion is shown in Fig. 7 where the mutation point is randomly
generated within the integer domain 1 to 9. Here the value of a
gene at the mutation point is changed from 0 to 1.

(h) Maintaining the original proportion of inundation
This step maintains the original proportion of inundation. If

∑
M

m¼1
gimNFraction , then compare each individual with Gb, and

retain genes in common whose value is equal to 1. Randomly
change the value of other genes whose value is equal to 1 to

satisfy ∑
M

m¼1
gimNFraction. If ∑

M

m¼1
gimNFraction, randomly change the

value of genes whose value is equal to 0 to satisfy

∑
M

m¼1
gimNFraction.

(i) Termination conditions
If the generationmeets themaximum iteration time, the loop is ter-
minated. The output is the optimal individual Gb which represents
the optimal distributions of wetland inundation in a mixed pixel.
Otherwise, go to step (b).

3. Materials of case study

Two comparative study areaswere selected from twowetlands of in-
ternational importance. The first wetland is Poyanghu, which is located
in Jiangxi, China and was included in the Ramsar List on March 31,
1992 (Ramsar, 2014). The second wetland is Macquarie Marshes,
which is located in New South Wales, Australia and was included
in the Ramsar List on August 1, 1986 (Ramsar, 2014). The Landsat
TM/ETM+ images were acquired when there were significant flood
events in the wetlands. These images are the L1T products, which pro-
vide systematic radiometric and geometric accuracy. In order to analyze
and compare the performance of SMWI methods comprehensively,
study areas with different size were selected: one small area from
Poyanghu and one large area from Macquarie Marshes, respectively.
Key characteristics of the two study sites are summarized in Table 1.

Locations of the study areas are shown in color composite (R5G2B1)
Landsat images in Fig. 8(a) and (d) respectively. The reference images
(Fig. 8(b) and (e))were derived from the corresponding Landsat images
at 30 m resolution using the modified normalized difference water
index (mNDWI; Xu, 2006). The mNDWI was calculated according to
the following equation (Xu, 2006):

mNDWI ¼ Green−SWIRð Þ= Greenþ SWIRð Þ ð11Þ

Image of Fig. 7


Fig. 8.Materials of the two comparative study areas. (a) Location of the study area 1 shown in a color composite (R5G2B1) Landsat 7 ETM+ image (500 × 500 pixels) at 30m resolution
after image enhancement. (b) Inundation reference image (500 × 500 pixels) at 30m resolution. (c) Inundation fraction image (100 × 100 pixels) at 150m resolution. (d) Location of the
study area 2 shown in a color composite (R5G2B1) Landsat 5 TM image (2500 × 2500 pixels) at 30 m resolution after image enhancement. (e) Inundation reference image
(2500 × 2500 pixels) at 30m resolution. (f) Inundation fraction image (500× 500 pixels) at 150m resolution. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 2
Parameters of different methods.

Method Parameter description Parameter value

SAM-SMWI None None
BP-SMWI Number of hidden layers 1

Marquardt adjustment parameter (MAP) 0.005
Decrease factor for MAP 0.1
Increase factor for MAP 10

GA-SMWI Standard crossover rate 0.5
Mutation rate 0.5
Size of the population 10
Maximum iterative time 10

IBPGA-SMWI Standard crossover rate 0.5
BP crossover rate 0.5
Mutation rate 0.5
Size of the population 10
Maximum iterative time 10
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where Green is the Green band (band 2 of the Landsat TM/ETM+
images), and SWIR is the Short-Wave Infraredband (band5of the Landsat
TM/ETM+ images). A threshold value was used to convert the mNDWI
values into a reference image which was an inundation classification re-
sult. The threshold value was set at 0 in the study area 1 and was set at
−0.4 in the study area 2 by visual interpretation, respectively. In this
case, the scale factor was set at 5. The inundation fraction images
(Fig. 8(c) and (f))werederivedby aggregating the corresponding inunda-
tion reference images. The aggregated pixel value is equal to the propor-
tion of inundation pixels inside a 5 × 5window. Therefore, the resolution
of the fraction images is 150 m. By simulating 150 m resolution fraction
images using 30 m TM/ETM+ binary classification results, we can focus
on the algorithm comparison by avoiding the need to validate the real-
world inundation mapping accuracies of the study areas. The inundation
fraction images were used as the inputs of the four SMWI methods.

The four SMWImethods for comparison in the study are SAM-SMWI,
BP-SMWI, GA-SMWI and IBPGA-SMWI. The inputs to these methods
were the samewetland inundation fraction images. The same surround-
ing neighboring typewas used for all themethods. The back-propagation
training algorithmof BP-SMWIwas based on Bayesian regulation. Due to
the difference of area size, the number ofmixed pixels in the study area 1
ismuch smaller than that in the study area 2. In order to train the BP net-
work sufficiently, 20% mixed pixels were randomly selected as training

Image of Fig. 8


Fig. 9. Visual comparisons of the four SMWImethods in the study area 1 (500 × 500 pixels).
(a) Inundation reference image. (b) SAM-SMWI. (c) BP-SMWI. (d) GA-SMWI. (e) IBPGA-
SMWI.

Fig. 10. Visual comparisons of the four SMWI methods in the study area 2 (2500 ×
2500 pixels). (a) Inundation reference image. (b) SAM-SMWI. (c) BP-SMWI. (d) GA-SMWI.
(e) IBPGA-SMWI.
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Table 4
Convergence performance of GA-SMWI and IBPGA-SMWI in the study area 1. The bold da-
ta are the accuracy values of GA-SMWI at the 20th iteration and the accuracy values of
IBPGA-SMWI at the 10th iteration, respectively.

ITs GA IBPGA

OA (%) Kappa APA (%) AUA (%) OA (%) Kappa APA (%) AUA (%)

2 74.8 0.462 73.1 73.1 76.9 0.507 75.3 75.3
4 75.9 0.486 74.3 74.3 78.7 0.546 77.3 77.3
6 76.9 0.508 75.4 75.4 79.2 0.556 77.8 77.8
8 77.6 0.522 76.1 76.1 79.7 0.568 78.4 78.4
10 78.5 0.541 77.0 77.0 80.1 0.576 78.8 78.8
12 78.9 0.550 77.5 77.5 80.3 0.580 79.0 79.0
14 79.1 0.555 77.7 77.7 80.4 0.582 79.1 79.1
16 79.5 0.562 78.1 78.1 80.7 0.588 79.4 79.4
18 79.8 0.570 78.5 78.5 80.8 0.590 79.5 79.5
20 79.9 0.573 78.6 78.6 80.9 0.594 79.7 79.7

Table 5
Sensitivity of IBPGA-SMWI.

Parameter Study area 1 Study area 2

OA
(%)

Kappa APA
(%)

AUA
(%)

OA
(%)

Kappa APA
(%)

AUA
(%)

SCR 0.1 79.7 0.568 78.4 78.4 82.1 0.635 81.7 81.7
0.3 80.0 0.574 78.7 78.7 82.2 0.636 81.8 81.8
0.5 80.1 0.576 78.8 78.8 82.5 0.643 82.2 82.2
0.7 80.1 0.576 78.8 78.8 82.6 0.644 82.2 82.2
0.9 80.2 0.577 78.9 78.9 82.8 0.649 82.5 82.5

BPCR 0.1 79.5 0.564 78.2 78.2 81.9 0.629 81.5 81.5
0.3 80.0 0.574 78.7 78.7 82.3 0.638 81.9 81.9
0.5 80.1 0.576 78.8 78.8 82.5 0.643 82.2 82.2
0.7 80.0 0.574 78.7 78.7 82.4 0.641 82.0 82.0
0.9 79.9 0.572 78.6 78.6 82.3 0.638 81.9 81.9

MR 0.1 79.4 0.561 78.0 78.0 81.7 0.625 81.3 81.3
0.3 79.6 0.566 78.3 78.3 82.2 0.636 81.8 81.8
0.5 80.1 0.576 78.8 78.8 82.5 0.643 82.2 82.2
0.7 80.2 0.578 78.9 78.9 82.7 0.647 82.4 82.4
0.9 80.3 0.580 79.0 79.0 82.8 0.648 82.4 82.4

Table 3
Quantitative comparisons of the four SMWI methods.

Index Study area 1 (500 × 500 pixels) Study area 2 (2500 × 2500 pixels)

SAM BP GA IBPGA SAM BP GA IBPGA

OA (%) 72.4 75.4 78.5 80.1 74.1 77.8 79.3 81.0
Kappa 0.375 0.456 0.541 0.576 0.439 0.532 0.569 0.606
APA (%) 67.7 72.0 77.0 78.8 71.0 76.2 78.5 80.3
AUA (%) 71.2 74.3 77.0 78.8 74.2 77.3 78.5 80.3
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samples in the study area 1 and 5%mixed pixels were randomly selected
as training samples in the study area 2, respectively. The parameters of
different methods are shown in Table 2.
Fig. 11. Convergence performance of GA-SMWI and IBPGA-SMWI. (a) Convergence perform
performance related to APA. (d) Convergence performance related to AUA.
4. Results and discussion

4.1. Comparative analysis of four SMWI methods

Visual comparisons of the four SMWI methods in the two study
areas are shown in Figs. 9 and 10 respectively. The same small regions
from both reference and result images were zoomed to enhance the
clarity. As shown in Figs. 9 and 10, GA-SMWI performed better than
SAM-SMWI and BP-SMWI, because the results of GA-SMWI are more
ance related to OA. (b) Convergence performance related to Kappa. (c) Convergence

Image of Fig. 11
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similar to the inundation reference images. IBPGA-SMWI obtained
the most satisfactory results among the four SMWI methods in the
two wetlands. It mapped the inundation more continuously and
smoothly than other SMWI methods.

Table 3 shows the quantitative comparisons of the four SMWI
methods in the two study areas. We compared the results using
measures of overall accuracy (OA), Kappa coefficient, average
producer's accuracy (APA) and average user's accuracy (AUA) (Foody,
2002; Liu, Frazier, & Kumar, 2007). All pure pixels in the inundation
fraction images were excluded from calculations. From Table 3, we
can see that IBPGA-SMWI exhibits the highest OA, Kappa, APA and
AUA in the two study areas. For example, the OA values of SAM-
SMWI, BP-SMWI, GA-SMWI and IBPGA-SMWI are 72.4%, 75.4%, 78.5%,
and 80.1% in the study area 1, respectively. The OA values of SAM-
SMWI, BP-SMWI, GA-SMWI and IBPGA-SMWI are 74.1%, 77.8%, 79.3%,
and 81.0% in the study area 2, respectively. In the process of SMWI,
IBPGA-SMWI searches for the most likely distributions of sub-pixels
within each mixed pixel and obtains the SMWI results in a pixel-by-
pixel fashion regardless of the total number of pixels processed.
Therefore, IBPGA-SMWI can obtain satisfactory results in both small
and large areas.

We further compared GA-SMWI with IBPGA-SMWI in terms of the
convergence performance in the study area 1 because both are based
on GA which is a stochastic optimization algorithm. The results are
shown in Table 4 and Fig. 11 where ITs represent iterative times.
Compared with GA-SMWI, IBPGA-SMWI has better convergence
performance in SMWI accuracy and convergence speed. For example,
the OA value of GA-SMWI is 79.9% at the 20th iteration while the OA
value of IBPGA-SMWI is 80.1% only at the 10th iteration.
Fig. 12. Sensitivity of IBPGA-SMWI. (a) Sensitivity in relation to SCR. (b) Sensitivity in relation
4.2. Sensitivity analysis of IBPGA-SMWI

Crossover and mutation are the key operations of GA (Faghihi et al.,
2014; Van Coillie et al., 2007). Compared with standard GA, BP crossover
is a characteristic operation of IBPGA. Therefore, the sensitivity analysis of
IBPGA-SMWI in relation to standard crossover rate (SCR), BP crossover
rate (BPCR) and mutation rate (MR) was carried out to evaluate their
roles in performance. The ETM+ image of the study area 1 (in Fig. 8(a))
and the TM image of the study area 2 (in the red rectangle area in
Fig. 8(d)) were tested using different parameter values. To analyze the
IBPGA-SMWI sensitivity in relation to SCR, BPCR and MR, other parame-
ters were kept the same as those in the case study. SCR, BPCR and MR
values were assumed as: {0.1, 0.3, 0.5, 0.7, 0.9}.

Sensitivity of IBPGA-SMWI is shown in Table 5 and Fig. 12. It can be
observed that IBPGA-SMWI obtained high SMWI accuracy when SCR,
BPCR and MR were set to different values. The higher the SCR and MR
values, the higher the SMWI accuracy. For example, OA value increases
from 79.7% to 80.2% when SCR value is from 0.1 to 0.9 in the study area
1. The values of Kappa, APA and AUA have the similar increasing trend
as that of OA. That is because the higher the SCR and MR values, the
more chances for individuals to participate in the standard crossover
and mutation process. More new individuals will be produced which
can increase the diversity of the population and be in favor of getting
the optimal solutions. With the increase of the BPCR value, SMWI
accuracy first increases to the maximum value and then decreases. For
example, the OA value first increases from 79.5% to 80.1% when the
BPCR value is from 0.1 to 0.5 in the study area 1. Then the OA value
decreases from 80.1% to 79.9% when the BPCR value is from 0.5 to 0.9.
The OA value reaches a maximum when the BPCR value is 0.5. That is
to BPCR. (c) Sensitivity in relation to MR.
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because high BPCR value will increase the possibility of individuals' in-
volvement in the BP crossover process. As prior knowledge, the results
of BP can be integrated into the new individuals by BP crossover,
which will improve the SMWI accuracy. However, if BPCR value is
too large, new individuals will be much alike and the diversity of the
population will decrease.
4.3. Discussion of a real world situation

Wetland inundation has spatio-temporal distributions. In order to
apply and evaluate IBPGA-SMWI in a real world situation, two multi-
spectral remote sensing images with different resolutions at the same
time in the same study area are needed. One image is a low resolution
image fromwhich the inundation fraction image can be derived. Another
image is a high resolution image from which the inundation reference
image can be obtained. Although there have been so many remote sens-
ing satellites flying in the key, it is still a difficult job to have valid image
data from two different satellite systems at a close enough time in a spe-
cific study area. However, if it is the case that those image data are from
two satellite systems, there should be no technical obstacles to apply the
methodology to those image data. The processing proceduremayhave to
be slightly tuned to coordinate those data. Take 30 m Landsat ETM+
multispectral image and 4 m IKONOS multispectral image for example.
First, a geometric registration on the IKONOS image is needed to be im-
plemented so that each corrected pixel of the output IKONOS image
has the same coordinate as the ETM+ image. Second, the resolution of
the ETM+ image is needed to be resampled to 28 m, which is seven
times the resolution of the IKONOS image. Third, the inundation fraction
image at 28 m resolution can be derived from the 28 m ETM+ image
using the least squares linear spectral mixture analysis method (Heinz
& Chang, 2001) by ENVI remote sensing image processing software
(Exelis Visual Information Solutions, Inc., 2015). Fourth, IBPGA-SMWI
can be applied to obtain a 4 m SMWI result from the 28 m fraction
image. Fifth, supervised image classification methods, such as neural
networks, can be used to classify the IKONOS image into an inundation
reference image with two classes representing inundation and non-
inundation respectively. Finally, the SMWI result can be evaluated
using the similar visual and quantitative comparisons with the inunda-
tion reference image.

IBPGA-SMWI is likely to have a lower accuracy if the coarse and fine
resolution images come from different satellite systems. The following
elements may potentially compromise the accuracy of IBPGA-SMWI:
a) the temporal mismatching between the coarse resolution image
and the fine resolution image, in particular in a wetlandwith a dynamic
hydrological condition. Any inundation fluctuations during the time gap
may undermine the accuracy; b) the accuracy of implementing geometric
registration between those two image data from different satellites;
c) any other possible mismatching issues between two different satellite
platforms.
5. Conclusions

In this study, a new integration method called IBPGA-SMWI was pro-
posed to achieve improved performance in mapping wetland inundation
at a sub-pixel scale from multispectral remote sensing imagery. The
IBPGA-SMWI algorithm was developed, including the fitness function
and integration search strategy. We assessed the results of IBPGA-SMWI
using Landsat TM/ETM+ imagery from the Poyanghu wetland in China
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and theMacquarieMarshes inAustralia. The sensitivity analysis of IBPGA-
SMWI in relation to SCR, BPCR andMRwas also carried out to discuss the
algorithm performance.

IBPGA-SMWI mapped the inundation more continuously and
smoothly than other three SMWImethods in the two wetlands. Besides
visual comparisons, IBPGA-SMWI consistently achieves more accurate
results in terms of quantitative evaluations using measures of OA,
Kappa, APA and AUA. Both GA-SMWI and IBPGA-SMWI are based
on GA which is a stochastic optimization algorithm. Compared with
GA-SMWI, IBPGA-SMWI not only improves the accuracy of SMWI, but
also accelerates the convergence speed of the algorithm. IBPGA-SMWI
can obtain satisfactory results in both small and large areas. In the
process of SMWI, IBPGA-SMWI searches for themost likely distributions
of sub-pixels within each mixed pixel and obtains the SMWI results in
a pixel-by-pixel fashion regardless of the total number of pixels
processed. Therefore, the assumption that coupled with BP, GA has the
potential to be applied to SMWI has proved to be valid.

The study of wetland inundation has an important significance to
the environment and associated plant and animal life. We hope that
the results of this study will enhance the application of median-low
resolution remote sensing imagery in wetland inundation mapping and
monitoring, and thereby benefit the studies of wetland environment.
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