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Abstract

The paper considers the seismic analysis of reinforced concrete (RC) coupled shear walls structures strengthened by bonded composite
plates having variable fibers spacing. An efficient analysis method that can be used regardless of the sizes and location of the bonded
plates is proposed in this study. In the numerical formulation, the adherents and the adhesives layers are all modeled as shear walls ele-
ments, using the mixed finite element method. Dynamic analysis was performed to investigates the influence of the fibers redistribution of
the bonded plates on the lateral deflections of RC coupled shear walls. This conceptual study has demonstrated the feasibility of miti-
gating the seismic response of RC coupled shear walls building structures by using composites plates having variable fibers spacing.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In medium to high-rise buildings, reinforced concrete
(RC) walls systems are commonly used to resist forces
induced by earthquake. However, these structural systems
are required to withstand earthquakes without collapsing
and without incurring major damage. To accomplish this
goals, the structure needs to have: (i) high lateral strength,
(ii) high ductility, (iii) high energy dissipation capacity and
(iv) sufficient shear stiffness to limit interstorey drifts.

Continuum approaches have been frequently proposed
for the dynamic analysis of coupled shear walls, where
the discrete system of connecting beams is replaced by
homogeneous medium of equivalent properties [1,2]. Cou-
pled shear walls have been also analysis by standard
numerical techniques such as the finite element method
[3,4] and the finite strip method [5], which can cope with
any type of material and geometric nonuniformity.
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In order to achieve satisfactory earthquake response of
RC coupled shear walls structures, three methods can be
identified as being practical and efficient. These are struc-
tural isolation, energy absorption at plastic hinges and
use of mechanical devices to provide structural control
[6–10]. The use of those methods is very efficient but expen-
sive and difficult to carry out.

From a technological point of view, the strengthening of
RC coupled shear walls structures has been accomplished
by adopting standard materials, mainly cement, concrete
and steel. However, new reinforcement approaches are ris-
ing; they are based on the idea that the strengthening
should be light and removable and, should not change
the structural scheme of the construction. Composite mate-
rials appear to be good candidates to substitute standard
materials. Since they are light, simple to install and are also
removable. Moreover, composite materials are character-
ized by high strength, good durability and lower installa-
tion and maintenance cost.

Thus, one promising technique to improve the overall
strength of RC coupled shear walls structures and to reduce
their seismic vulnerability is to retrofit the RC coupled shear
walls structures using fibers reinforced plastic (FRP).
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Fig. 1. Cheng’s beam type element (12 DOF).

v3

v1

v4

v2

u1

u2

1

2

Fig. 2. Kwan’s strain based element (8 DOF).

Fig. 3. Nonhomogeneous orthotropic composite plate.
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Extensive testing [11–15] has shown that externally
bonded carbon fibers reinforced polymer (CFRP) lami-
nates are particularly suited for improving the short-term
behavior of deficient reinforced concrete beams and slabs.

Therefore, few researches on efficient analysis and exper-
imental studies of strengthened shear wall has been under-
taken [16–18].

In order to fill the gap between the technological interest
and the development of appropriate design suggestions,
this paper is aimed at investigating the seismic response
of the RC coupled shear walls structures strengthened by
means of CFRP composite plates. In conventional config-
uration, these plates are made of plies, the fibers within
each ply being parallel and uniformly spaced. However, it
is possible that significant increases in structural efficiency
my be obtained by varying the fibers spacing of the bonded
plates i.e., packing them closely together in regions where
great stiffness is needed, but less densely in other regions.
Leissa et al. [19] are the firsts to study the effect of variable
fibres spacing on vibration and buckling problems.

If fibers spacing of the bonded plates varies, the analysis
is considerably more complicated than for uniform spac-
ing. Then the material must be treated as nonhomogeneous
on the macroscopic scale, as well as on the microscopic.

In the numerical formulation of the present study, the
adherents and the adhesives layers are all modelled as shear
walls elements, by using a mixed finite element method [3]
to deduce the stiffness matrix of the equivalent shear wall
element having variable fibers spacing. The finite element
method (FEM) is employed to carry out the dynamic anal-
ysis, in which a direct integration dynamic analysis was
used to obtain the response of the structure under seismic
loading. This analysis assemble the mass, stiffness and
damping matrices and solve the equations of dynamic equi-
librium at each point in time. The response of the structure
is obtained for selected time steps of the input earthquake
accelerogram. Numerical results are presented that relate
to the performance of reinforced concrete coupled shear
walls strengthened with composite sheets having parallel
and variable fibers spacing.

2. Finite element for analysis of shear walls

Many different finite elements are now available. How-
ever none of them are suitable for shear/core walls anal-
ysis. For instance, some of the lower-order elements
such as the bilinear element, are found to be afflicted by
the shear locking problem which renders the elements
overstiff under bending actions. Because displacement
shape functions of this element are expressed in linear
functions, deformation of element edges can be expressed
by straight lines and the shear stress in an element are
constant and cannot represent the actual stress distribu-
tion accurately if the finite element mesh is not fine. How-
ever, it is felt that the best method of dealing with
parasitic shear is to avoid them by using elements that
can exactly represent the strain state of pure bending.
To improve the computational efficiency of the finite ele-
ment method, finite strip element [20], and higher order ele-
ment [21,22] were developed to modelize the shear wall
with the rotational degrees of freedoms (DOF) for repre-
sent the strain state of pure bending so to avoid parasitic
shear problem.
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Therefore, the 12 DOF plane stress element as [23] and
Lee element [22] with drilling DOF (Fig. 1) was used in
many research works as [24].
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Fig. 4. A strengthened RC shear wall element: (a) fro
As suggested by Kwan [3,4], by neglecting the lateral
strain in the wall, which are generally of little significance.
The DOF can be reduced from 12 to 8 as shown in Fig. 2.
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Use of this simplified Cheung’s element, which is computa-
tionally more efficient, is recommended rather the original
Cheung’s element.

Using the mixed finite element method, Kwan [3] devel-
oped a wall element with the eight DOF. This element
included two existing elements, namely the simplified Che-
ung’s element [20] and Kwan’s strain based element [4].

3. Theory and solution procedure

3.1. The elastic modulus of composite plates having

variable spacing

The elastic modulus Ey and Gxy for the composite mate-
rial may be expressed in terms of the properties of the fibre
and the matrix material by applying the law of mixtures
[25]:

Ey ¼ Ef V f þ
1� V f

R1

� �
ð1Þ

Gxy ¼
Ef

2ð1þ mfÞ½R3ð1� V fÞ þ V f �
ð2Þ

where
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Fig. 5. (a) Strengthened coupled shear wall considered in the para
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ð3Þ

In the above equations the subscripts f and m are used to
denote properties of the fiber and matrix respectively,
and Vf is the volume fraction of the fibers in the composite
material. For material having variable fiber spacing, Vf is a
function of x, and therefore Ey and Gxy are each functions
of x.

Suppose, for example, the fiber volume fraction varies
parabolically as Vf = n2. Where n = 2x/b is the nondimen-
tional coordinate having its origin at the shear wall element
centre. With this severe variation in the fibers spacing, the
material at the wall edges n = ±1 is all fibers, whereas at
the centre it is all matrix, as shown in Fig. 3.

3.2. Stiffness matrix of a strengthened shear wall element and

connecting beam

As shown in Fig. 4, consider a strengthened shear wall
system, which is described as a combination of composite
thin plates having variable fibres spacing and a reinforced
concrete wall, attached to the two sides using adhesives
plates. The adhesives are assumed to be isotropic shear
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metric study. (b) Lumped mass model for coupled shear walls.
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Fig. 6. Earthquake records: (a) El Centro; (b) Hachinohe and (c) Kobe.
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walls of thickness t2, the external adherents are considered
to be composite shear walls of thickness t3 bonded to the
area se

b ¼ bh1. In static analysis problem, the shear wall ele-
ment which has the total area se

t ¼ bh is subjected to lateral
load. Let us denote by u the deflection, v the vertical dis-
placement and x the rotation of the vertical fibers.

In this paper, the mixed finite element method estab-
lished by Kwan [3] was deployed to deduce the stiffness
matrix of a proposed strengthened shear wall element.
Hence, the displacement components at any point within
the wall element may be expressed in the terms of the nodal
DOF of the element as follows:
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The strain energy for each wall element can be written as

U e ¼ U e
B þ U e

S ð6Þ
where Ue

B and U e
S are the strain energy due to the bending

and shear effects, respectively, which are written as a func-
tion of the strains on the shear wall element. The strain en-
ergy considering only the bending effect U e

B is done as

U e
B ¼

1

2

X3

i¼1

Z
vol

EðiÞy ðeyÞ2dvolðiÞ ð7Þ

According to the relationships (1), the strain energy Ue
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expressed as
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the expression of the strain energy which relate to the shear
effect may be written as

U e
S ¼

1

2

X3

i¼1

Z
vol

GðiÞxy ðcxyÞ
2dvolðiÞ ð10Þ

The insertion of the relationship (2) in the above equation
leads to the following expression:
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Fig. 7. Strengthened coupled shear walls: (a) plates bonded at the base; (b) plates bonded at the centre and (c) plates bonded at the top.
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cxy ¼
dv
dx
þ du

dy
ð12Þ

where EðiÞy and GðiÞxy ði ¼ 1 . . . 3Þ are the Young’s modulus in
the y direction and the shear modulus, of the RC shear
wall, adhesive and bonded material respectively. As shown
in Fig. 4, the patched region is applied along the wide b and
from y1 about the shear wall element centre.

The following form of the strain energy for each wall
element is expressed by

Ue ¼ 1

2
dt

eKwde ð13Þ

where the nodal displacement vector dt
e ¼ u1 x1 v1f

v2 u2 x2 v3 v4g
To carry out numerical analysis, we employ the stan-

dard finite element formulation to determine the stiffness
matrix Kw of a strengthened shear wall element. No explicit
procedure to determine the stiffness matrix needs to be
Table 1
Mechanical properties of materials

Material E (MPa) m

Epoxy 3445 0.35
Graphite 275 000 0.28

Table 2
Fibers distribution

Vf(n) (Vf)av(%) (Vf)max(%)

n2 0.33 100
1/2 + 1/2n2 0.67 100
1/2 + 1/4n2 0.58 75
given here. However, mores detailed information can be
found in reference [26].

The coupling beam may be modelling by a standard
two-nodes beam element with shear deformation taken
into account.
4. Dynamic analysis

For dynamic analysis of the structure, it is required to
determine both the mass and stiffness matrices. In order
to determine the mass matrix, the structure is considered
as a discrete lumped mass system as shown in Fig. 5b. It
is assumed that the floors slabs are considered to be rigid
in their planes and they move horizontally and vertically
as a rigid bodies, i.e rotatory inertia is neglected in compar-
ison to the lateral and vertical inertias effects. The lumped
mass matrix of this equivalent multi-degree-of-freedom sys-
tem commonly used for dynamic analysis of structure in
engineering is taken as a diagonal matrix.

The damping matrix of the model is assumed to be pro-
portional to the stiffness and mass matrices by the Ray-
leigh’s proportionality factors [27]. In the present
analysis, the 1st and 2nd vibration modes are used, and
the damping ratio is taken as 5%. The Newmark-b step-
by-step time-integration method [28] is employed to obtain
the solution of the dynamic equation.

Results (obtained via computer programs prepared in
FORTRAN) are presented in this section for coupled shear
walls strengthened by bonded composite thin plates having
variable fibers spacing. Many examples that relates on the
applicability of the present concept have already been given
in [16,17]. No attempt is made here to add any more
examples.
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4.1. Earthquake records

In general, earthquakes have different properties such as
peak acceleration, duration of strong motion and different
ranges of dominant frequencies and therefore have differ-
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Fig. 8. Effect of the fibers distribution on the top deflection: (a) El Centro;
(b) Hachinohe and (c) Kobe.
ent influences on the structure. Three earthquake excita-
tions are used in this study. For more consistent
comparison, all earthquake records were scaled to the peak
acceleration of 1g. El Centro; Hachinohe and Kobe earth-
quake records (see Fig. 6) have been selected to investigate
the dynamic response of the structure.

4.2. Numerical example

A 20-storey RC coupled shear wall structure strength-
ened by composite plates having variable fibers spacing
as shown in Fig. 5a was considered for a numerical study.
The purpose of this study is to illustrate how the fibers
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distribution; the location and the thickness of the compos-
ite sheets (see Fig. 7) affect the top deflection under the
three selected earthquake records.
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We note that SB is the area of the bonded composite
plates and ST is the total area of the two walls (Wall I
and Wall II as shown in Fig. 5a).
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Fig. 12. Typical plot of peak top response versus b: (a) 15 stories; (b) 20
stories and (c) 30 stories.
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stories and (c) 30 stories.
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The composite material investigated, consisting of
graphite with an epoxy matrix. Material properties are
given in Table 1.

Three different distributions of fibers were considered,
each characterized by variations of the fibers volume frac-
tion Vf, as given in Table 2. As can be seen from Table 2,
these fibers distribution fall into Vf of 75% and 100%.
Table 2 also gives (Vf)avr, which is the average value of
Vf for each distribution. That is

ðV fÞav ¼
Z 1

0

V fðnÞdn ð14Þ

The material properties of the reinforced concrete and the
adhesives adopted in this study are respectively:

Eð1Þy ¼ 30:0 GPa; mð1Þxy ¼ 0:18

Eð1Þy ¼ 3:0 GPa; mð1Þxy ¼ 0:35:

And the mass of each storey is taken as 120000 kg.
The results for all models of the strengthened coupled

shear walls structure under each of the three earthquake
records are presented below. Results plotted in Fig. 8 dis-
played good performance of the distribution such as
Vf = 1/4 + n2/2 with an average reduction of 13.6%. On
the other hand, the Vf = n2 distribution affect the top
deflection with an average reduction of 11%. The highest
reduction has been achieved by the Vf = 1/2 + n2/2 distri-
bution with an average reduction of 16%.

In term of the location of the bonded area. As shown in
Fig. 9 the best performance with an average reduction of
16% has been achieved by composite plates located at the
base. The bonded plates located at the center and the top
of the structures affect moderately the top deflection with
an average reduction of 2.33% and 0.1%, respectively.

Analyzing the effect of the thickness of the bonded com-
posite plates (see Fig. 10), it could be observed that a larger
thickness lead to small deflection, with an average reduc-
tion on the top deflection of 21.5% for composites bonded
plates with t3 = 0.01 m. The second highest reduction has
been achieved by bonded composite plates with
t3 = 0.006 m with an average reduction of 16%. This was
followed by a structure with t3 = 0.003 m with an average
reduction of 8%.

In term of efficiency of the bonded composite sheets
under a variety of earthquake loadings, the significantly
best performance has been achieved under El Centro earth-
quake with an average reduction 15.4%. The second best
performance with an average reduction of 8.7% has been
displayed under the Hachinohe earthquake. In the case of
the Kobe earthquake record, the efficiency of the bonded
composite plates has been slightly lower with a reduction
of 6.7%.
4.3. Parametric investigations

The seismic response of three examples coupled shear
walls having 15, 20 and 30 stories level are analyzed to
investigate the effect of the geometric characteristics of cou-
pled shear walls under Kobe earthquake Fig. 6c. The geo-
metric parameters of coupled shear walls are presented in
Fig. 7a; Hb varies from 0.2 to 1.5 m, b from 2 to 8 m and
L from 0.0 to 4.0 m. Results presented illustrated in Figs.
11–13 demonstrate the feasibility of using composite plates
having variable fiber spacing to mitigate the adverse seis-
mic response of RC coupled shear walls buildings struc-
tures. As the natural frequencies of theses structural
models range from 0.125 Hz to 1.897 Hz and were often
within the frequency range of dominant modes of Kobe
earthquake considered in this study (0.29–1.12 Hz), this
study treated resonant vibration. It was probably due to
this reason that there were no particular trends in the
responses under the seismic loading.

The figures show that the seismic response of coupled
shear walls structures strengthened with variable fibers
spacing that is Vf = 1/4 + n2/2 is practically the same to
that with uniform spacing. We found that 58% of fibers
are needed to have the same effect when we vary the fibers
spacing, which is more effective from economic point of
view. The outcome of this study is to find an efficiency con-
cept, both in new designs and retrofitting RC coupled shear
walls high-rise buildings.
5. Conclusions

An efficient seismic analysis method for the analysis of
RC coupled shear walls structures strengthened with thin
composites plates having variable fibers spacing was pro-
posed in this study by using the mixed finite element
method. In this study, a typical 20-storey RC strengthened
coupled shear walls was analyzed under three different
earthquakes. Significant improvement in the seismic deflec-
tions was observed when the fibers are clustering near the
wall edges. This study can be extended to provide an effi-
ciency concept in the field of strengthening RC coupled
shear walls buildings in some earthquake-prone countries
such as Algeria.
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