
Software Visualization Tools for

Component Reuse

Craig Anslow Stuart Marshall James Noble Robert Biddle1

School of Mathematics, Statistics and Computer Science,
Victoria University of Wellington, New Zealand

1Human Oriented Technology Laboratory,
Carleton University, Canada

Email: {craig, stuart}@mcs.vuw.ac.nz

Abstract

This paper describes our experiences with our software visualization
tools for web-based visualization of remotely executing object-oriented
software. The motivation of this work is to allow developers to browse
web-based software repositories to explore existing code components and
frameworks by creating visual documentation. Components are test driven
to capture their static and run-time information in program traces and
are then transformed into useful visualizations. Visualizations can help
developers understand what a component does, how it works, and whether
or not it can be reused in a new program.

Keywords: software visualization, component reuse, web-based code reposito-
ries.

1 Introduction

To reuse a software component developers need to understand what a component
does, how it works, and how it can be reused. However, this is difficult in
practice. Helping developers understand components by creating visualizations
means that they will potentially be able to reuse a component in a new program.

We have created a series of software visualization tools within our Visual-
ization Architecture for REuse (VARE) to solve this problem. VARE is used
for test driving reusable components to create meaningful visualizations so that
developers can understand how components work.

To visualize a design or a software component, certain information has to be
selected. Extracting the correct information and gathering it in program traces
is a difficult procedure. There are many factors which can affect this procedure,
such as the language a component is written in, or the design complexity.



One method for deriving this information is to test drive a component. Test
driving is a method for examining the execution of a component and can be done
in various ways such as using debuggers or modified execution environments.
Test driving generates static and run-time information about a component such
as class descriptions and the methods that have been invoked on objects. We
have created two tools for examining C++ and Java programs.

Program traces are expensive to generate because they are extremely large
and take a long time to create. We have created two XML based program
trace languages for describing object-oriented programs. Our program traces
are stored in an XML database and can be queried and then transformed into
Scalable Vector Graphics (SVG) visualizations.

The paper is organised as follows. In section 2, we describe our motivation
for visualizing reusable components. Section 3 describes the experiences with
our software visualization tools. Section 4 addresses related work.

2 Motivation

The main reasons for wanting to reuse components are to save on time, effort,
and costs in both development and maintenance of quality software. This will
mean the developer will not have to implement a new solution to an old problem.
Instead they can recycle existing components to solve their problem. Research
into component reuse has been happening for a long time [11] and includes many
areas of focus; several overviews are available [4, 9, 14].

There are many ways component reuse can be applied. For example, copying
and pasting code into a new program, inheritance of classes, instantiation of
common methods within programs, using a framework, and using an application
programming interface. When reusing a component it may need to be modified
or extended in some way so that it will meet the requirements of the new
program. The assumption is that even modifying or extending a component
will result in the reduction of time, cost and effort compared with designing the
component from scratch.

A key benefit from reusing components is that when modifications, bug fixes
or updates occur, the developer can save time by incorporating them into their
program. Problems then don’t have to be solved for every instance. This can
happen on a global scale and examples include online updates of both propri-
etary and open source software.

We are interested in understanding reusable components so that developers
can reuse them in their new programs. Currently several techniques exist to help
understand how software works and these include documentation, experiment-
ing, and visualizations. Documentation is sometimes provided with software
either in online or in written form, but is often difficult to use, read and un-
derstand. Experimenting with reusable components means that developers will
gain practical experience and learn how components work. Visualizing a com-
ponent’s static or run-time information can show developers how a component
has been designed, and how it works when executed.



We are interested in visualizing reusable components for the purposes of
understanding and we separate software visualizations into two categories:

• Static visualizations: can be created from investigating the source or bi-
nary files, which can contain class descriptions along with their methods
and variables, inheritance hierarchies between classes, and dependency
hierarchies amongst classes.

• Run-time visualizations: can be composed by examining or spying on
programs during execution and gathering events in a program trace. The
types of information that can be gathered include object creation and
deletion, method calls and returns, field accesses and modifications, ex-
ceptions, and multi-threading issues.

When visualizing reusable components we have focused on three different
types of information. These include understanding what a component does,
how a component works, and how a component can be reused. For what a
component does, it is important to look at the external side-effects and the
results that occur as a consequence of interacting with a component’s public
interface. For how a component works, it is important to look at the internals
of a component. This is because it may open up opportunities for modifying
the component’s behaviour to what is required by replacing sub-components,
extending components or overloading methods. For how a component can be
reused or modified, it is important to look at how it has previously been used.

3 Software Visualization Tools

We have created an architecture, VARE [8], for web-based visualization of re-
motely executing object-oriented software. VARE is based on the Program
Mapping Visualization (PMV) conceptual model for describing program visual-
ization systems [18, 16]. The design of VARE supports multiple programming
languages and provides user control for the different parts in the visualization
process.

VARE is a client-server architecture, see figure 1. The server contains repos-
itories and processes. On the client side, the user manages the activities as-
sociated with creating and viewing a visualization. The component repository
interface lets the user select a component from the repository to create a compo-
nent set. Once this is created, the user can select an engine type from the engine
repository to control the test driving of these components. Test driving is defined
as “specifying a sequence of method invocation and field access/modifications
and then executing the sequence on a component” [5]. The engine component
is synonymous to the program component in the PMV model.

The engine generates a program trace/test drive trace as output, which
is stored in the test drive report repository. A program trace contains all the
information required to describe a program execution such as the order of object
creation, method invocations, field accesses and field modifications. A program



trace is then used as input to a transformer, which is synonymous to the mapping
component from the PMV model. The transformer repository interface lets the
user select the transformer to use and the program trace to use with it. The
transformer then transforms the program trace into an appropriate visualization.

Finally the finished visualization is stored in the visualization repository.
The visualizations contain information such as a description of the components
they are associated with, who created them, and notes that help the under-
standing of the visualization. The visualization interface lets a user choose
a particular visualization and control its presentation. The following sections
describe our experiences with our VARE tools.

Network

Repository
Interface

Test Drive
Interface

Component
Repository
Interface

Session Manager

Transformer

Test Drive
Report
Repository

Engine 
Repository

Transformer
Repository

Component
Repository

Engine TransformerComponent
Set

Test Drive
Program 
Interface

Visualization
Interface

Visualization
Repository

Figure 1: The VARE architecture is based on a client/server model, with the
server being split into repositories and processes. Dashed lines represent test
drive or visualization input/output, while solid lines represent control, queries
or responses [8].



3.1 Test Driving

Abstraction Tool (AT) [10, 8] is an implementation of an engine from VARE,
see figure 2. AT is a prototype utility that has been developed to extract
information from applications and present the information using the Process
Abstraction Language (PAL), so that visualizations tools can visually display
the information to a developer. AT test drives programs written in C++, using
the GNU Debugger (GDB). It is written in the Python scripting language. The
main tasks of AT are to drive GDB, and to output XML based on what was
seen during execution. AT also uses SOAP for remote method invocation, to
allow AT to be controlled by another application.

Figure 2: Abstraction Tool (AT) [8].

Spider [6] is a proof-of-concept prototype for exploring and documenting
reusable components in a web environment, see figure 3. Spider documents
components with Reusable Component Descriptions (RCD) and test drive traces
with eXtensible Trace Executions (XTE) by interpreting information stored in a
component, detecting events in the run-time environment, and interrogating the
runtime environment’s state. Spider uses existing Java libraries to achieve this
functionality: notably the Java Reflection and Java Debugger Interface (JDI)
technologies to extract information.



Figure 3: Spider [6].

3.2 Program Trace Languages

We have created a set of requirements for a program trace language [7] and
implemented two different XML based program trace languages. They each
have features for representing both static and run-time information.

The Process Abstraction Language (PAL) [10, 8] defines an XML specifica-
tion for object models designed to help visualization tools get the information
they need to generate useful visualizations. PAL describes object-oriented pro-
grams and has been used for representing information that can be test driven
from C++ and Java programs. It has elements for describing classes, super-
classes, methods, and fields. PAL can also describe the run-time behaviour of
programs, including objects, run-time representations of classes, method calls
with their arguments and return values, and different threads of control.

Experiments with AT and Spider identified weaknesses in PAL. PAL com-
bines both static and dynamic information, and stores the entire information
needed to describe a specific test drive. This leads to large amounts of re-
dundancy in situations where we were storing multiple test drives. The static



information is identical when we test drive the same component multiple times.
The component may also depend on other common components that are shared
by other components likely to be test driven. One example of this in the Java
language is the use of the Java libraries packaged in the standard development
kit. There are similar examples in all widely-used programming languages.

To remove the redundant information in the test drives, we decided it was
necessary to store static information relevant to a single component separately
from the dynamic information relevant to a single test drive. The result was
Reusable Component Descriptions (RCD), for static information, and eXtensi-
ble Trace Executions (XTE), for dynamic information [6].

There are a number of benefits to this approach. Firstly, the files are smaller,
which is beneficial both in storage and in transportation costs. Secondly, there
was no easy means of identifying which version of a component was contained
within a PAL file, however in RCD we have separate files for each component.
Thirdly, there was no easy means of identifying which types comprised a com-
ponent, and which types were used by the component.

3.3 Repositories

XML Data Storage Environment (XDSE)[1] is used for storing and retrieving
PAL, RCD and XTE program traces, see figure 4. XDSE is an implementation
of the test drive report and visualization repositories from VARE. The main
feature of XDSE is to store PAL, RCD and XTE program traces and then query
them for useful information to generate a visualization. XDSE is implemented
with an Ipedo native XML database, SOAP, Apache Tomcat, and XQuery.

Figure 4: XML Data Storage Environment (XDSE) [1].



3.4 Visualizations

Blur [3] is an implementation of a transformer from VARE. Blur takes a PAL
program trace and transforms it into a Scalable Vector Graphics (SVG) [20]
visualization for viewing over the web. Blur is implemented as a Java Servlet
running a version of Apache Tomcat.

Figure 5 shows a SVG UML interactive class diagram from a PAL program
trace generated by Blur. When the mouse covers a piece of code in the right
hand side frame, the left hand side highlights the appropriate class or method in
the UML class diagram. This is a helpful tool for developers, because it shows
where the code is located in a file, and how it is associated with other classes in
a program.

Figure 5: A SVG interactive class diagram generated by Blur [3].

Figure 6 shows a SVG sequence diagram generated by Blur from run-time
information found in the same PAL program trace as that of figure 5. The
sequence diagram is interactive and allows the user to navigate, zoom-in-out,
and fold and unfold call sequences to better understand the diagram.



Figure 6: A SVG interactive sequence diagram generated by Blur [3].

4 Related Work

Two similar software visualization systems are BLOOM [15, 21] and Jinsight
[12, 13, 17]. Other systems have also been documented [19, 2].

BLOOM is a system for doing software understanding through visualization.
It provides facilities for static and dynamic data collection. It offers a wide
range of data analysis. It includes a visual query language for specifying what
information should be visualized. All these are used in conjunction with a back
end that supports a variety of 2D and 3D visualization strategies.

Jinsight is a tool for visualizing and analysing the execution of Java pro-
grams. The aim of Jinsight is to help a user better understand, tune, and debug
a program. It is useful for performance analysis, memory leak diagnosis, de-
bugging, or any task in which a user needs to better understand what a Java
program is really doing.



5 Conclusion

In the future, we plan to integrate the different parts of VARE to provide
an overall system for an end user. We are currently exploring test driving of
reusable components and program trace 3D visualization.

In this paper we have described our experiences with our software visualiza-
tion tools. Visualizations are created by test driving components and extracting
static and run-time information. Our visualizations help developers understand
what a component does, how it works, and whether or not it can be reused in
a new program.

References

[1] Craig Anslow, Stuart Marshall, Robert Biddle, Kirk Jackson, and James
Noble. Xml database support for program trace visualisation. In Proceed-
ings of the Australian symposium on Information visualisation. Australian
Computer Society, Inc., 2004.

[2] Stephan Diehl. Revised lectures on software visualization, international
seminar, 2002.

[3] Matthew Duignan, Robert Biddle, and Ewan Tempero. Evaluating scalable
vector graphics for use in software visualisation. In Proceedings of the Aus-
tralian symposium on Information visualisation, pages 127–136. Australian
Computer Society, Inc., 2003.

[4] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse: Archi-
tecture, Process and Organization for Business Success. Addison-Wesley,
1997.

[5] Stuart Marshall. Understanding code for reuse. Master’s thesis, School of
Mathematical and Computing Sciences, Victoria University of Wellington,
1999.

[6] Stuart Marshall, Robert Biddle, and James Noble. Using software vi-
sualisation to enhance online component markets. In Proceedings of the
Australian symposium on Information visualisation. Australian Computer
Society, Inc., 2004.

[7] Stuart Marshall, Kirk Jackson, Craig Anslow, and Robert Biddle. Aspects
to visualising reusable components. In Proceedings of the Australian sym-
posium on Information visualisation, pages 81–88. Australian Computer
Society, Inc., 2003.

[8] Stuart Marshall, Kirk Jackson, Robert Biddle, Michael McGavin, Ewan
Tempero, and Matthew Duignan. Visualising reusable software over the
web. In Proceedings of the Australian symposium on Information visuali-
sation, pages 103–111. Australian Computer Society, Inc., 2001.



[9] Carma McClure. Software Reuse Techniques: Adding Reuse to the System
Development Process. Prenctice-Hall Inc., 1997.

[10] Mike McGavin. Extracting software reuse information for visualisation
tools. Honours Report, School of Mathematical and Computing Sciences,
Victoria University of Wellington, October 2001.

[11] M. D. McIllroy. Mass produced software components. In P Naur and
B Randell, editors, Report on a Conference of the NATO Science Commit-
tee, pages 138–150, 1968.

[12] W. De Pauw, D. Kimelman, and J. Vlissides. Modeling object-oriented
program execution. In Lecture Notes in Computer Science, volume 821,
pages 163–182, Bologna, Italy, July 1994. European Conference for Object
Oriented Programming, Springer Verlag.

[13] W. De Pauw, N. Mitchell, M. Robillard, G. Sevitsky, and H. Srinivasan.
Drive-by analysis of running programs. In Proceedings for Workshop on
Software Visualization, Toronto, Canada, May 2001. International Confer-
ence on Software Engineering.

[14] Jeffrey S. Poulin. Measuring Software Reuse: principles, practices, and
economic models. Addison-Wesley Longman Inc., 1997.

[15] Steven P. Reiss. An overview of BLOOM. In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pages 2–5. ACM Press, 2001.

[16] Gruia-Catalin Roman and Kenneth C. Cox. A taxonomy of program visu-
alization systems. IEEE Computer, 26(12), December 1993.

[17] G. Sevitsky, W. De Pauw, and R. Konuru. An information exploration tool
for performance analysis of java programs. In Proceedings for TOOLS Eu-
rope 2001, Zurich, Switzerland, March 2001. Technology of Object-Oriented
Languages and Systems (TOOLS) Conference Series.

[18] John T. Stasko. Tango: A framework and system for algorithm animation.
Computer, 23(9):27–39, 1990.

[19] John T. Stasko, Marc H. Brown, and Blaine A. Price. Software Visualiza-
tion. MIT Press, 1997.

[20] World Wide Web Consortium (W3C). Scalable Vector Graphics (SVG)
1.1 specification, 2003. http://www.w3.org/TR/SVG11.

[21] Kang Zhang. Software Visualization: From Theory to Practice, chapter 11.
Kluwer Academic Publishers, 2003.


