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a b s t r a c t

Although hyperspectral imagery (HSI) has been successfully deployed in a wide range of applications, it
suffers from extremely large data volumes for storage and transmission. Consequently, coding and
compression is needed for effective data reduction whilst maintaining the image integrity. In this paper,
a multivariate vector quantization (MVQ) approach is proposed for the compression of HSI, where the
pixel spectra is considered as a linear combination of two codewords from the codebook, and the
indexed maps and their corresponding coefficients are separately coded and compressed. A strategy is
proposed for effective codebook design, using the fuzzy C-mean (FCM) to determine the optimal number
of clusters of data and selected codewords for the codebook. Comprehensive experiments on several real
datasets are used for performance assessment, including quantitative evaluations to measure the degree
of data reduction and the distortion of reconstructed images. Our results have indicated that the
proposed MVQ approach outperforms conventional VQ and several typical algorithms for effective
compression of HSI, where the image quality measured using mean squared error (MSE) has been
significantly improved even under the same level of compressed bitrate.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Hyperspectral imagery (HSI), through capturing hundreds of
narrow and contiguous spectral bands from a wide range of the
electromagnetic spectrum, has great capability in deriving com-
prehensive details about the spectral and spatial information of
the ground material. As a result, it has been widely used in many
remote sensing applications such as agriculture [1], mineralogy [2]
and military surveillance [3].

In HSI, improved image quality is always desirable for better
processing, which in turn results in a trend for an increase in
spatial/spectral resolution, radiometric precision and a wider spectral
range. Consequently, the data volume in the 3-D hypercube increases
dramatically, resulting in challenges for data transmission, storage, and
processing. To reduce the volume of data, effective coding and
compression become a natural choice in this context.

Existing approaches for HSI compression can be divided into
two main categories, i.e. lossless and lossy compression [4].
Lossless compression has been traditionally desired to preserve
all the information contained in the image. However, the compres-
sion ratios which can be achieved with lossless techniques are
limited. Lossless coding techniques include entropy coding and
predictive modelling [5,6], where typical lossy compression
approaches are transform based techniques [7,8] and vector
quantization (VQ) [9,10]. In lossless compression such as predic-
tive modelling, both intra-band spatial correlation and inter-band
spectral correlation are used to determine a statistical model to
estimate image values using partially observed data. The model
and the estimation error are then encoded to represent the
hypercube, where the performance relies on the correlation and
statistical modelling [11,12].

Lossy compression yields higher compression ratio at the cost
of introduced information loss. Despite the quality in the recon-
structed image, these techniques are very popular, especially when
the required compression could be achieved by lossy techniques.
Moreover, the effect of the losses on specific applications in HSI
have been assessed, such as target detection and data classifica-
tion, showing that high compression ratio can be achieved with
little impact in performance [7]. Several methods have been
proposed for lossy compression of HSI, some of which are general-
izations of existing 2D image or video algorithms, such as JPEG
2000 [13]. In [14], a Karhunen–Loeve transform was used to
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compress hyperspectral cubes. Discrete wavelet transform and
Tucker decomposition were applied in [8], while a pairwise ortho-
gonal spectral transformwas developed in [15]. Also, the H.264/AVC
standard for video compression was applied to hyperspectral cubes
[16]. Low-complexity paradigm which is based on a prediction
stage, followed by quantization, rate-distortion optimization and
entropy coding was proposed [17]. It leverages the simplicity and
high-performance of prediction-based compression, requiring very
few operations and memory, while advanced quantization and rate-
distortion optimization ensure state-of-the-art compression perfor-
mance.

In VQ-based lossy compression, the spectral signature of each
pixel is used to determine an optimal codebook, which is then
coded along with the indexed map of each spectral vector and
transmitted for decoding. Although VQ-based approaches benefit
from very high compression ratios for effective data reduction,
they may suffer from significant distortion of image quality in
coding and compression of HSI [9,18]. Since such degradation of
image quality may lead to unrecoverable information loss in
follow-on data analysis, the compression should be avoided as
suggested in Ref. [19]. As a result, an ideal solution is to keep the
quality and preserve essential information whilst the image is
compressed.

To achieve this, a novel multivariate vector quantization (MVQ)
approach is proposed. For the effective compression of HSI, the pixel
spectra is considered as a linear combination of two codewords from
the codebook rather than only one codeword as in the conventional
VQ approach. To this end, for each spectral vector, two indexed maps
and one or two coefficients are determined for coding. As a result, the
information contained in the reconstructed imagery is better main-
tained than conventional VQ based approaches.

The remaining part of this paper is organised as follows. In
Section 2, a strategy for codebook design based on FCM is
presented. In Section 3, the proposed MVQ approach is presented,
along with discussions of conventional VQ approach and techni-
ques used in the MVQ approach. Experimental results and evalua-
tions are presented in Section 4. Finally, some concluding remarks
are drawn in Section 5.

2. The strategy for codebook design

In this section, a strategy of codebook design for coding and
compression of HSI is presented, followed by the evaluation.
Details regarding the associated technique, FCM, to be embedded
in codebook design are also discussed.

2.1. Fuzzy C-mean algorithm

Developed by Dunn [34] and improved by Bezdek [20], fuzzy C-
means (FCM) is a method of clustering which allows a data sample
to belong to more than one cluster, yet with different degrees of
membership. In general, FCM is based on minimization of the
following objective function:

JN ¼ ∑
N

i ¼ 1
∑
C

j ¼ 1
um
ij xi�c2j ð1Þ

where m is any real number greater than 1, um
ij is the degree of

membership of pixel spectrum xi in the cluster j, xi is the ith of
d-dimensional measured data, cj is the d-dimension center of the
cluster, and jj jj is any norm expressing the similarity between
any measured data and the centre.

For fuzzy partitioning, an iterative optimization of the objective
function is employed, where the degree of membership uij and the

cluster centres cj are updated by

uij ¼ ∑
C

k ¼ 1

xi�cj
xi�ck

� �2=m�1
( )�1

ð2Þ

cj ¼
∑N

i ¼ 1u
m
ij � xi

∑N
i ¼ 1u

m
ij

ð3Þ

This iteration stops when

maxij ju ðkþ1Þ
ij �uðkÞ

ij j
n o

oδ ð4Þ

where δ is a pre-set termination criterion between 0 and 1; k is the
iteration steps. This procedure converges to a local minimum or a
saddle point of JN.

2.2. Codebook design via blind clustering (CBC)

The best method of codebook design is to carry out an
exhaustive search, which helps to determine an unstructured
collection of codewords. As the full search is very time- consum-
ing, a constrained search is usually employed to speed up this
process to obtain a structured codebook. The approaches most
commonly used for codebook design include the Linde, Buzo, Gray
(LBG) algorithm [21], fuzzy vector quantization (FVQ) [22], Kekre's
Fast Codebook Generation (KFCG) [23], and discrete cosine trans-
form (DCT) based method.

In this paper, we present a codebook design strategy using a
fuzzy C-mean (FCM) based blind clustering algorithm. According
to the cost of FCM at different cluster numbers, the one with the
minimum cost is chosen as the optimized cluster number. The cost
in CBC is defined as follows:

C ¼Nθ � JN ð5Þ
where N is the number of clusters, corresponding to N possible
codewords; θ40 is a constant, and JN is an objective function of
FCM when the data is clustered into N classes.

For a dataset, usually the sum of distortion JN decreases with
the rise of cluster numbers. If the codebook contains sufficient
codewords, the distortion would approach zero. By combining the
codebook size N into the defined cost function in (5), an adaptive
solution for codebook design is achieved, where the codebook size
and the final distortion is compromised.

2.3. Evaluation for codebook design strategy

To validate the efficacy of our proposed codebook design
strategy, one simulated HSI dataset is used as an example and
presented below. The simulated dataset has 30�30 pixel, includ-
ing 6 classes represented in 6 vertical bars of a size 30�5 pixel, i.e.
each class contains 150 pixel. Actually, the spectral data are
extracted from the first HSI dataset, Salinas, as further described
in Section 4, where in each class the 150 pixel are randomly
selected within the corresponding class. The false colour images of
the simulated hypercube are shown in Fig. 1 (left).

When CBC is applied for codebook design, 12 codewords are
selected. Due to the spectral similarity of pixels from the same
class, most codewords are actually selected from the correspond-
ing class. This is illustrated in Fig. 1 (right), where pixels presented
by the same colour belong to the same class.

3. Multivariate vector quantization approach

In this section, MVQ, the proposed approach for HSI compres-
sion, is presented. Relevant techniques along with descriptions of
conventional VQ are introduced in detail below.
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3.1. Conventional VQ approach (CVQ)

As a popular algorithm for image compression, CVQ is applied
to vectors rather than scalars, and the latter is usually referred to
as scalar quantization (SQ) [24]. SQ maps a large set of numbers to
a smaller one, e.g. through rounding to the nearest code, although
the quantization levels do not have to be evenly spaced. VQ rounds
off or quantizes groups of numbers together instead of one at a
time. These groups of numbers are called input vectors, and the
quantization levels are called reproduction vectors, which are also
the codewords from the codebook.

Note that VQ is a lossy compression technique. To specify a VQ
encoder, one needs a set of reproduction vectors as the codebook,
and a rule for mapping input vectors to the reproduction vectors.
For an input vector, the VQ encoder maps it to one of the N
possible reproduction vectors, where N is the number of code-
words in the codebook. This reproduction vector is then selected
as a codeword for the input vector. In addition to the codebook,
only the index of the codeword needs to be coded in reconstruct-
ing the original vector for efficiency.

The mapping rule in VQ is defined to minimize an average
distortion as follows. Let dðY ;XiÞZ0 measure the distortion or the
cost of reproducing an input vector Y as a reproduction vector Xi,
the optimal Xi is simply determined as

dðY ;XiÞrdðY ;XjÞ; all j ð6Þ
In other words, the minimum distortion criterion in VQ

encoder operates in the nearest neighbour fashion. In this case,
the input vector can be presented as follows

Y ¼ Xiþε ð7Þ
where ε is the residual usually neglected in lossy compression.

With the codebook and the indices of the codewords coded in
the compressed image, decoding for image reconstruction is easily
achieved in a simple lookup table. Upon receiving an index, the
decoder puts out the stored codeword, the codeword in the code-
book. The operation of the decoder is thus completely described
once we have the specified codebook.

3.2. MVQ approach

Although CVQ has the advantages of simplicity and high data
compression, in most cases it suffers from one series disadvantage,
i.e. severe distortion of the image quality. This is because for
each input vector of the original spectrum in CVQ, only one

codeword from the given codebook is used for its approximated

representation. As a result, the image distortion caused by the
residual can be large, especially when the number of codewords
is small.

To reduce this distortion, a multivariate vector quantization
(MVQ) approach is proposed for the compression of HSI, where
the spectral vector is considered as a linear combination of at least
two codewords from the codebook. To this end, the residual and
the image distortion is expected to be reduced for improved
quality. However, the compression rate is degraded as two indexed
maps and their corresponding coefficients need to be compressed
and coded, rather than only one indexed map is needed in CVQ.

In the MVQ approach, the first model proposed is that the input
vector is represented by a linear combination of two codewords
from the codebook as follows

Y ¼ α1Xi1þα2Xi2þϵ1 ð8Þ

where Xi1 and Xi2 refers to two codewords from the given code-
book, while their corresponding coefficients are α1 and α2, and ϵ1
is the residual which is neglected in lossy compression. In this
model, there are two indices and two corresponding coefficients
that need to be coded for compression. It is clear that the value of
ϵ1 in this new model is smaller than the value of ε in the CVQ
approach. As a result, the distortion of image quality caused by the
residual will be reduced.

For better data reduction, an improved MVQ model using only
one coefficient for the two selected codewords is given below,
which is a particular case of Eq. (8) where α1þα2 ¼ 1.

Y ¼ βXi1þð1�βÞXi2þϵ2 ð9Þ

The residual ϵ2 is also neglected in compression. In this model,
two indices and one coefficient must be coded for each input
vector. Again, the image distortion caused by the residual is
smaller than that of CVQ resulting in better preservation of image
information.

3.3. Multiple regression for parameter optimization

Based on the models defined in Eqs. (8) and (9), a multiple
regression analysis is employed to solve the optimization problem
in determining the associated parameters. The general purpose of
the multiple regression is to learn more about the relationship
between several independent variables. The general computa-
tional problem that must be solved in multiple regression analysis
is to fit corresponding coefficients to the regression model. Thus,
this general procedure is sometimes referred to as least squares

Fig. 1. Simulated image dataset in false colour (left, using the 50th, 100th and the 150th bands) and codewords of codebook determined using CBC (right). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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estimation. For the multiple regression

Y ¼ f ðXÞþθ ð10Þ
Note that f ðXÞ is a known function, X is one of the probable

codewords from the codebook, and θ is a random variable or
vector, usually assumed to have expectation of 0. In most general
terms, least squares estimation is aimed at minimizing the sum of
squared deviations of the observed values for the dependent
variable from those predicted by the model. Technically, the least
squares estimator of the parameter θ is obtained by minimizing Q
with respect to θ as

Q ¼ d2ðY ; f ðXÞÞ ð11Þ
where dð Þ measures the distortion as defined in (6).

Regression aims to determine the optimal representation of
the dependent variable Y , given the independent variables from
the codewords Xi of the codebook ði¼ 1;2;…;nÞ. However, due to
the complexity of the problem, it generates some residuals, i.e. the
difference between the predicted values and the real observed
data. As a result, the model with the minimum average residual is
taken as optimal.

The residuals in multiple regression are often assumed to
satisfy the normal distribution. For CVQ as given in Eq. (7), the
function f ðXÞ is actually Xi. Since the corresponding coefficient is
set as a constant 1, the only task is to select the appropriate
codeword to minimise the residuals. To this end, the variable Y can
be expressed in terms of a residual ε and an index i, denoting the
selected codeword from the codebook Xi variable.

In the multivariate case such as the MVQ models defined in
Eqs. (8) and (9), a linear equation is constructed by containing two
variables Xi1 and Xi2. Note that in these equations, the regression
coefficients actually represent the contributions of each indepen-
dent variable to the input vector of the dependent variable.
Another way to express this property is to say that, for example,
variable X1 is correlated with the Y variable, after controlling for all
other independent variables. This type of correlation is also
referred to as a partial correlation.

3.4. Schemes for automatic codeword selection in MVQ

For correlation analysis, a common problem here is how to
determine the most suitable one or more codeword measures X to
represent a variable Y. In multiple regression analysis such as
MVQ, this must be solved to determine the two codewords. Two
schemes are used in our work, which are discussed in detail below.

Scheme A—two full searches: In this scheme, both the two
codewords are determined using a full search of all possible
combinations, which guarantees the least distortion in approx-
imating the data for compression. However, it is the most time
consuming as the multiple regression is computed N2 times with
the codebook size of N codewords. In each loop, the codeword has
up to S possible options, where S refers to the number of pixels in
the hypercube. To reduce the computational cost, another two
schemes are given below, where one of the codewords is deter-
mined without a full search for efficiency.

Scheme B—one local search plus one full search: For a given
variable Y, the first codeword is determined to be the most similar
one from the codebook, based on the Euclidean distance of Y and
the candidate codeword. Then, the second codeword is decided,
through a full search. The computational cost of Scheme B contains
N�1 loops of multiple regression and N times distance measure-
ment of vectors, a dramatic reduction from N2 loops of multiple
regression as required in Scheme A.

In all regression techniques, there is a major conceptual
limitation as one can only ascertain relationships rather than
disclose underlying causal mechanism. In most real cases, causal

explanations are usually ignored provided that the regression
achieves satisfactory results. To this end, the two schemes are
presented for MVQ, where the results are compared in detail in
Section 4.

4. Experimental results and analysis

For the MVQ approach proposed, four real HSI datasets are
used in comprehensive experiments to validate its efficacy. Both
subjective and objective evaluations are used for visual and
quantitative assessment. Relevant results are presented below
for comparisons.

4.1. Data preparation and experimental setup

The datasets used in this paper are collected by two well-
known HSI spectrometers. The first is from the Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS), with spectral wave-
lengths ranging from 400 nm to 2500 nm in 224 contiguous
bands. The second is the Reflective Optics System Imaging Spectro-
meter (ROSIS), which has 114 bands with a spectral range between
430 nm to 860 nm. Using the two sensors, four real HSI datasets,
Salinas, Pavia, Indian Pines [25] and Moffett Field [26], are used in
our experiments.

The 50th band images for these datasets are shown in Fig. 2.
The Salinas dataset is an AVIRIS dataset collected over Salinas
Valley, California (AVIRIS sensor) with a spatial size of
150�150 pixel, including 9 classes of different materials. The
spatial resolution is 3.7 m. After discarding the water absorption
bands, the remaining 204 bands of data are used. The Pavia dataset
is collected from Pavia University, in Northern Italy (ROSIS sensor).
It contains 103 bands with a spatial size of 150�150 pixel,
including 9 classes of different materials. The spatial resolution
of this HSI dataset is 1.3 m. The Indian Pines dataset is the public
vegetation reflectance data from Indian Pines, northwest Indiana
(AVIRIS sensor). Its spatial size is 145�145 pixel, with a spatial
resolution of 20 m and 200 spectral bands (after removing bands
covering the region of water absorption 104–108, 150–163 and
220). From 16 different land-cover classes available in the original
ground truth data, 9 classes were selected to testify the effective-
ness of methods in this paper. The Moffett Field dataset collected
from California at the southern end of San Francisco Bay, USA, this
dataset is widely used in hyperspectral community. Its spatial size
is 512�512, with a spatial resolution of 20 m. This image com-
prises 224 bands recorded at different wavelengths in the range
380 nm to 2500 nm, with a nominal spectral separation of 10 nm
between two adjacent bands.

In our experiments, each of the first three datasets is com-
pressed using both CVQ and the proposed MVQ approach. Various
results under two VQ models as defined in Eqs. (8) and (9) and
various codeword selection schemes are also compared. In total
there are up to 4 combinations of different conditions when the
MVQ is applied, which are summarized in Table 1 for clarity. In
addition, the CVQ approach is also extended as CVQ_E to allow a
similar bitrate that MVQ achieved. The performance of these
approaches is evaluated in detail as follows.

For performance assessment, three criteria are used for the first
three datasets, which include compression bitrate (CBR), mean
squared error (MSE) and the overall distortion (OD). As a com-
monly used metrics, CBR is used to measure the degree of data
reduction. Let the original hypercube contain P bands sized of
M � N, where each pixel per band is represented in L bits, the
uncompressed image size is MNPL in bits. Denote Nbit as the total
bits of the compressed hypercube, the compressed bit rate is
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defined as

CBR¼ Nbit

LMNP
ð12Þ

where a lower CBR indicates that less bits are needed for
compression hence the data is better compressed. However, the
image may contain large distortion and resulting in low quality.

To measure the distortion of image quality, OD and MSE are
used for visual and quantitative assessment, respectively. Let X and
X0 denote the original hypercube and the reconstructed hypercube,
respectively. For OD, it measures pixel-based distortion over all the
bands, which in practice provides a distortion image for visual
inspection. For a given spatial location at ði; jÞ, its OD measurement

is defined as

ODij ¼ ∑
P

k ¼ 1
jX ijk�X 0

ijkj ð13Þ

For MSE, it measures the average distortion over the whole
hypercube and can be derived from OD below:

MSE¼ 1
MNP

∑
M

i ¼ 1
∑
N

j ¼ 1
∑
P

k ¼ 1
ðX ijk�X 0

ijkÞ2 ð14Þ

When using the Cuprite dataset to compare the performance
with other approaches, the signal-to-noise ratio (SNR) is also used
to measure the quality of compression as defined below.

SNR¼ 10log 10
Signal power

MSE
ð15Þ

where the Signal power for the hypercube X is defined as

Signal power¼ 1
M � N � P

∑
M

i ¼ 1
∑
N

j ¼ 1
∑
P

k ¼ 1
X2

ijk ð16Þ

4.2. Results from the first three datasets

For MVQ approaches using CBC based codebook design, results
from various conditions are summarized in Table 2 for performance
evaluation. These include MVQ1a, MVQ1b, MVQ2a and MVQ2b as

Table 1
Summary of different approaches used for benchmarking and comparisons.

Name Compression approach Multivariate VQ model Codeword selection schemes

MVQ1a Multivariate VQ (MVQ) Eq. (8) with two parameters A (two full searches)
MVQ1b B (localþ full search)
MVQ2a Eq. (9) with one parameter A (two full searches)
MVQ2b B (localþ full search)
CVQ Conventional VQ
CVQ_E Extended CVQ to have similar bitrate as MVQ

Table 2
CBR and MSE of different approaches.

Dataset Salinas Pavia Indian Pines

CBR MSE CBR MSE CBR MSE

CVQ 0.108 4.43 0.049 47.95 0.213 12.57
MVQ1a 0.194 0.64 0.138 7.28 0.306 7.68
MVQ1b 0.193 0.79 0.129 9.95 0.303 8.18
MVQ2a 0.169 1.51 0.112 16.3 0.274 8.74
MVQ2b 0.161 1.85 0.104 22.81 0.267 9.54
CVQ_E 0.17 3.29 0.131 28.59 0.293 12.36

Fig. 2. The 50th band of the three HSI datasets: Salinas (top left), Pavia (top right) Indian Pines (bottom left) and Moffett Field (bottom right).
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well as CVQ and CVQ_E. The corresponding CBR and MSE values
achieved are tabled for comparisons.

First, CVQ yields the least CBR for these three test datasets, i.e.
the best data compression rate, at the cost of the maximum image
distortion measured by MSE. In other words, CVQ fails to preserve
the image quality for compression.

Second, all the four MVQ approaches produce much lower MSE,
though the CBR measures are slightly higher. In addition, codeword
selection Scheme A tends to generate a lower MSE than Scheme B, as
the two codewords are globally selected to minimize the image
distortion. However, the CBR from the two schemes are comparable,
where Scheme B outperforms Scheme A in this context.

In addition, the VQ model with two parameters, i.e. MVQ1a and
MVQ1b, generates smaller MSE but greater CBR in comparison to
the results from MVQ2a and MVQ2b where the single parameter
VQ model is used. Again, this is because the two-parameter model
is able to achieve the best solution in reducing the MSE, yet the

additional parameter needed has inevitably decreased the CBR.
For the CVQ_E approach, it is adjusted from CVQ to have similar

CBR as MVQ approaches. As can be seen, although the CBR
measures are comparable or worse than those from MVQ, the
corresponding MSE are much higher. This indicates that CVQ has
fundamental limitations in maintaining a good image quality for
compression, and this no doubt reflects the importance of the
proposed MVQ approaches in this field.

In the following part, the image distortion is compared via
visual inspection using the OD measurement. For better visualiza-
tion, the outliers in the generated OD images are suppressed using
a logarithmic mapping below.

OD0
ij ¼ log 2ð1þODijÞ ð17Þ

For the Salinas dataset, the generated OD images are shown in
Fig. 3 for comparisons. As can be seen, large distortion can be
found again from CVQ and CVQ_E, whilst MVQ approaches yield

80 100 120 140 160 180 200 220

Fig. 3. Overall distortion of every pixel for the Salinas dataset: (a) CVQ, (b) CVQ_E, (c) MVQ1a, (d) MVQ2a, (e) MVQ1b, and (f) MVQ2b.
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much less distortion. In most cases, distorted pixels are located
near the edges of classes, i.e. high frequency components. Also we
can see that distorted pixels from MVQ are usually contained in
the results from CVQ/CVQ_E approaches. This has clearly shown

how the proposed MVQ approaches reduce the distortion for
improved image quality.

For the four MVQ approaches, although the results from
MVQ1a and MVQ1b have lower MSE than those from MVQ2a
and MVQ2b as illustrated in Table 2, the visual effects are some-
what different. In fact, MVQ2a seems to yield less distortion for
pixels within small homogeneous region, especially the right part
of the image, though the distortion for the large block to the left
and the un-homogeneous region is slightly higher. As those pixels
tend to have large variations, this indicates that MVQ2a with the
one parameter VQ model is more suitable in dealing with homo-
geneous images.

Since the OD images for the other two datasets are similar to
those in Fig. 3, they are omitted in the paper. Instead, their
histograms are used for comparisons. As shown in Fig. 4, results
from CVQ approaches tend to have larger distortion and higher
standard derivation (wide spread for inconsistency). On the other
hand, MVQ approaches yield much reduced distortion and lower
standard derivation. Although CVQ_E generates slightly improved
results than CVQ, in principle they are quite comparable, especially
for the Indiana Pines dataset. Results from the four MVQ
approaches are also comparable to each other, though MVQ1a/
MVQ1b seems to have fewer pixels with higher distortion in the
right-side of the plotted curves.

From these histograms, we further derive the mean value of
each histogram as the mid-value distortion (MVD) and the
percentage of pixels over a fixed distortion threshold (PPD) for
quantitative evaluations. The MVD and PPD measurements for the
three datasets are compared in Table 3, where the fixed distortion
thresholds are set as 100, 300 and 300, respectively.

Although it is difficult to compare the performance in Fig. 4,
Table 3 has clearly shown the difference among these approaches.
Disregarding the high MVD and PPD values from CVQ and CVQ_E,
the four MVQ approaches can now be compared in detail.
Although they are quite comparable, MVQ1a seems to produce
slightly better results than other MVQ approaches.

Finally, running times of CVQ and the proposed MVQ on the
three datasets are compared in Table 4 as an indicator of
computational complexity. Although the absolute time consumed
in these approaches also depends on the spatial dimension and
the number of bands of the hypercube, for a given dataset the
running time still provides a consistent measurement of complex-
ity in this context. All the simulations are performed using Matlab
R2012a on a Core™ 2 processor at 2.4 GHz with a Windows
8 system.

As can be seen, in general, MVQ, compared with CVQ, requires
slightly more time for all the three datasets, whilst the reason
behind is that MVQ needs to compress more data maps and their
coefficients. In fact, the most time-consumption part in MVQ is to
choose the best combination of codewords which is achieved by
using multiple regression. Also, among these results of MVQ,
Scheme B use less time than Scheme A as Scheme B only has one
coefficient. For the same scheme, the two models require similar
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Fig. 4. Comparing histograms of the OD images for the three datasets Salinas (top),
Pavia (middle), and Indian Pines (bottom).

Table 3
MVD and PPD of different approaches.

Dataset Salinas Pavia Indian Pines

MVD PPD/% MVD PPD/% MVD PPD/%

CVQ 142.84 71.39 346.71 59.19 313.26 55.10
MVQ1a 60.71 15.86 131.15 6.07 241.76 32.77
MVQ1b 64.53 19.60 146.11 10.76 250.88 35.49
MVQ2a 64.53 26.02 154.22 16.19 250.88 35.83
MVQ2b 77.53 35.79 191.40 24.73 260.34 39.76
CVQ_E 111.86 57.18 250.74 38.21 313.26 53.14
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running time. However, the additional time introduced seems a
reasonable cost for the preserved image quality as illustrated in
Tables 2 and 3.

4.3. Benchmarking with other approaches

In this section, our proposed MVQ methods are compared with
non-MVQ approaches, where the widely used HSI dataset, Moffett
Field, is employed for comparisons.

Three non-VQ and two VQ-based approaches are used for
benchmarking, including 3D-SPIHT, 3D-SPECK algorithms [27],
Multi Component feature of JPEG2000 [13], the original 2D-
SPECK codec and CVQ. Table VI presents a comparison of the
SNR results when processed by those approaches. Although the
experimental conditions can be different when the results were
generated as reported in [28], they can provide relatively consis-
tent comparisons.

The results from these approaches and CVQ/MVQ2b approaches
are given in Table 5 for comparisons of SNR with a fixed CBR, where
the best MVQ approach, MVQ1a, is not used for fairer assessment.
With a fixed CBR rate set at 0.1 bpppb, all approaches used for
benchmarking have lower SNR yielded. In contrary, VQ based
approaches generates significant less CBR for better data compression
whilst the SNR has been maintained to an even high level, especially
for the proposed MVQ approach. Based on Table VI, we see that the
performance achieved by the MVQ algorithm is quite competitive,
where it outperforms other non-MVQ approaches, when applied to
scenes of the Moffet Field image.

5. Conclusions

In this paper, after applying a strategy for codebook design
based on fuzzy C-mean (FCM) algorithm, a multivariate vector
quantization (MVQ) approach is proposed for the compression of
HSI, where the pixel spectra is considered as a linear combination
of two codewords from the codebook, and the indexed maps and
their corresponding coefficients are compressed and coded sepa-
rately. With the strategy for codebook design under two codeword
selection schemes, the performance of the proposed MVQ
approach has been fully validated and assessed using three
publically available hyperspectral datasets. MVQ approaches gen-
erate significantly reduced image distortion with a cost of slightly

increased CBR. Due to the fundamental limitation of CVQ, even its
extended version fails to reach the performance as MVQ does.

Since MVQ approaches need to determine parametric models
in optimize the VQ problem, it naturally has a high computation
cost. However, the high computational cost is only for the offline
coding stage, where the decoding stage has similar complexity to
CVQ. For the two schemes used for codeword selection, Scheme A
is more expensive than Scheme B. Accordingly, in general, Scheme A
produces less MSE.

Although there is no single rule to choose the best MVQ
approaches here, the two parameter VQ model, especially MVQ1a,
outperforms the one parameter model in terms of less MSE hence
better image quality. However, it usually has a larger CBR gener-
ated. For a given dataset, a good compromise between CBR and
MSE in consideration of the variations in the images is always
useful in determining the best MVQ approach in this context. In
addition, how to derive a universal codebook for generic MVQ-
based compression of hyperspectral images will be further inves-
tigated in the near future. Moreover, in combination of principal
component analysis, singular spectral analysis, sparse representa-
tion and other relevant approaches [29–33], the proposed
approach will be further improved.
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