
Proceedings of the 2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design

A Selective Undo/Redo Method in 3D Collaborative
Modeling Environment

Yuan Cheng
School of Computer Science

Wuhan University
Wuhan 430072 P.R.China

graphics@whu.edu.cn

Xiantao Cai
School of Computer Science

Wuhan University
graphics@whu.edu.cn

Abstract-In 3D collaborative modeling systems, users need a
convenient mechanism to repeatedly modify the models they are

operating on. In this paper, we contribute a selective undo/redo

solution for users to select arbitrary operation to undo. With the

consistency maintainence mechanism we proposed, operations
need to be re-arranged on each site for after their arriving. Both

history butTer and model state stream are adopted to present the
arriving sequence of operations and their actual execution

sequence. In case of concurrent undo/redo, undo state vector is

proposed to make sure that an operation can only be undone once

and redone by the designer who undoes it. Based on all the

precautions we have made, an undo/redo algorithm is proposed.
The algorithm has been verified in the prototype we implemented.

Keywords-3D collaborative modeling; Model State Stream;
Concurrent undo/redo;

I. INTRODUCTION

Human plays an instructive role in interactive systems. From
the perspective of collaborative CAD systems, the ultimate
designing result is the embodiment of mutual intention of clients
and group designers. Objectively speaking, it is inevitable that
designers may make mistakes during the designing process.
Simple slips and lapses at this level account for roughly 60% of
human errors. The highest cognitive level is knowledge-based,
where tasks are approached by reasoning from fIrst principles,
without the aid of previously-formed rules or skills; mistakes at
this level account for the 10% of human errors[l]. All in all,
during the process of searching for optimal solution, designers
need to undo some of the executed operations to roll back the
document state and then execute a series of new operations to try
for different solutions.

Being a widely used error recovery mechanism, UndolRedo
can fully meet the requirements of error recovery and optimal
solution exploration in interactive systems. It is more
indispensable in collaborative editing systems. In such systems,
data are replicated on each site so designers from different site

978-1-4673-1212-7112/$31.00 ©2012 IEEE 102

Fazhi He
School of Computer Science

Wuhan University
graphics@whu.edu.cn

DejunZhang
School of Computer Science

Wuhan University
graphics@whu.edu.cn

are given the chance to edit each replica both on-line and off-line.
During the on-line collaboration, to share the designing result,
operations from local and remote sites are interleaved arbitrarily
due to concurrency and it brings more challenges to UndolRedo
function.

Based on the basic multi-user undo/redo requirements Dewan
and Choundary[2] proposed, undo/redo mechanism in 3D
collaborative modeling systems should have the following
criteria:

• Dual UndolRedo mechanism. Undo/redo mechanism in
multi-user systems should have the same characteristic
that single user interactive systems have. When editing
the replica on a local site, a designer should be freely to
undo/redo any operation been issued by himself. That is
local undo/redo mechanism. Meanwhile, a user should
also be entitled to undo the last operation ever executed
which is probably not the last operation he himself
issued. That is in accordance with the global undo/redo
mechanism.

• Atomicity. The execution of an advanced modeling
operation is actually composed of several sub-operations.
Set CUBIC]ROTRUSION_ATTACHMENT as an
example. First, a cubic block is created according to
dimension parameters. Second, the block is translated
and rotated to properly locate on the specifIc face of the
base model. Third, the Boolean Union operation is called
and the boundary model is re-evaluated. However, when
a user undoes 0, all these sub-operations should be
treated as integrity. Effects of all these operations should
be eliminated.

• Fast Response. When a user issues an operation, no
matter it is a normal do or undo, the result is expected to
be displayed as fast as possible. 3D model construction
is the key issue that effects. More modeling operations
means slower response.

• Selective UndolRedo. In local undo/redo mechanism, the
last operation local user issued is not the last operation
executed on other remote sites. In global undo/redo
mode, the last operation executed on a local site is
probably not the last operation executed on other sites as
well. Therefore, selective undo/redo is the very critical
requirement an undo/redo solution should satisfy. It is
also a mainstream of the existing undo/redo model [3, 4,
5, 6, 7, 9 ,10,11].

In this paper, we introduce a selective undo/redo mechanism
that fulfills the above requirements:

1) Two history views are presented for users to choose.

Local Operation View is for designers to view and select

arbitrary operation issued by himself and undo. The other is Full

Operation View to present all the operations executed. Any

operation can be selected as user wish. Actually, in history view

operation arrangement is consistent with the operation arriving

sequence on the site.

2) Each site keeps a Model State stream. The states of a

model can be traversed along the stream.

3) Dependency among operations are analyzed, so the undo

semantic can be satisfied.
The rest of this paper is organized as follows. In Section 2,

the lated work is reviewed. Section 3 gives a brief description of
the consistency model we adopted. Section 4 analysis the history
buffer and model state stream kept on collaborative sites. Section
5 gives a detailed description of the undo/redo algorithm we
proposed. Section 6 is the conclusion of our work.

II. RELATED WORK

The initial researches of UndolRedo model are in single-user
environment. In multiuser collaboration systems, editing objects
involve data records, texts, 2D graphics and bitmaps while no
articles or prototypes concerning collaborative CAD systems are
contributed. Abowd [9], Prakash [10], Berlage [3] classified
undo models into 3 categories: 1) Single-step undo. 2) Linear
undo. 3) History undo.4) Selective undo.

OT -based algorithms play an important role in solving undo
problems where the creation,execution and integration ofinverse
operation are critical. The typical algorithms
include[4][5][7][8][10][11][13].

Prakash[1O] proposed the transformation -based undo
algorithm for the first time. The undo target 0 is transposed with
the later executed operations to become O'.Then an inverse
operation of 0' is created and executed to cancel the O's effect.
The undo process can be somehow simplified by taking some
transpose reducing actions.

In Ressel's work [11] the undo mechanism is somehow
different. First, a rough inverse version of the undo target in
calculated and transformed against the later executed operations

103

by the same user. All operations between the operation to be
undone and its inverse should be undone first.

Sun's Anyundo [4][5] has the similar idea with[11]. Its basic
idea of undo in is to treat Undo(O) as an inverse operation 0'
generated immediately after 0 but concurrently with all other
operations. Redo can be easily implemented due to a do-undo
pair and undo mark.

Both algorithms from Rellsel[ll] and Sun[4] [5] have
deficiencies even they are seemingly to avoid conflicts
effectively since they have confined user operations into a very
limited area. In reality, group users are presented with multiple
editing alterations other than merely INSERTION and
DELETION such as changing the color or size of characters. For
example, set the initial document state S as "abc". User X issues
an operation 01 = Ins(2, "X"). The operation is executed on
local site and then propagated to other remote sites. Thus,
document states on both sites are turning into "aXbc". Then, user
Y issues 02 to change the color of X. Both adOPTed and
ANYUNDO didn't take situation like this into consideration.

Bin Shao and Du Li[7][8] integrates do and undo in one
ABTU algorithm which can drastically improve the time
complexity of undo.

However, the OT idea is not suitable for 3D environment
since the modeling operations involved are far beyond two types
like DELETION and INSERTION in textual environment. Their
inversions are hard to obtain. Operations such as filleting,
blending etc., may not have inverse operations.

III. CONSISTENCY PRESERVATION IN 3D COLLABORATIVE

MODELING SYSTEM

A. General Undo Principles

The undo/redo algorithm proposed in our paper is based on
the following principles:

1) An undo operation is a meta-command that differs from

the normal do operation. When an undo is executed, it is not put

into the history buffer assembly with other do operations. To

eliminate the effects of an undo, users can issue a corresponding

REDO command which has the inverse effects with undo.

2) An operation can only be undone once. Even multiple

users may aim at the same operation as their undo object, only

one undo can be honored. Also an operation can only be redone

by designer who undoes it.

3) Given any operation 0, if there are operations depend on

its effect, these operations should be undone as well when 0 is

undone. In 3D collaborative modeling environment, creation and

execution of an operation should refer to topological entities

from the current document state. For example, 01 creates a Base

Block and O2 adds a cubic protrusion on it. First, a boundary

face F of the block should be designated. Second, distances to

two orthogonal edges of face F should be given to fix this

protrusion on F. From this point of view, we can say that O2

depends on 01. If 01 is undone, O2 is meaningless and should be

undone as well. However, when an operation is redone,

operations depending on it can not be redone simultaneously.

B. Consistency Model

In collaborative editing systems, there are three properties
that should not be violated: convergence, casual preservation and
user intention preservation[12]. In a word, the convergence
property guarantees the consistency of the final results, the
causality-preservation guarantees the consistency of the
execution order of the dependent operations, and the intention -
preservation guarantees the consistency of the execution effects
of independent operations [13]. Whenever a user sends an undo
operation, document states on all sites should be the same after
executing the undo.

Operation concurrency takes the responsibility for nearly all
inconsistency problems. The fundamental pre-condition of a
modeling operation execution is topological entity
correspondence. Topological entities referenced in a local
operation can be changed by concurrent operations when it is to
be executed on any remote site. Either the operation cannot be
executed or the execution of the operation may lead to model
inconsistency. Many topological entity correspondence methods
have been proposed while some of them can only be used in
single-user environment. Here, we introduce a tree-like structure
called TEST (Topological Entity Structure Tree) to record the
changing history of each original topological entity from the
initial boundary model on each site. Using TEST, whether a
topological entity is obliterated, split or merged into other
topological entities can be clearly recorded. With the
consideration that each set of topological entities are created by a
specific operation, when the relationship among topological
entities are clarified, an operation's effecting operations can
therefore be obtained.

Operations need to be re-arranged for its proper execution
and model consistency on all sites to achieve causality
preservation and intention preservation. Apparently, an
operation's arriving sequence is not the same with its actual
execution sequence of all operations due to operation re­
arrangement in model state construction.

104

00

SiteD Site!

00

01

r;--<7i
L ____ �

00

o�------�
,
,

,

,

Q3

Site2

--------�

Figure 1. Operation Re-arrangement in Collaborative Modeling

In Figure. I , 00 is issued on siteo to create a cubic block
BLOCKI. 00 is then sent to Site1 and Site2. 01 is created on siteO
to create a cubic protrusion and its concurrent operations O2 and
03 are created on site 1 and site2 perspectively to also create
cubic protrusions but with different locations. Then, 04 is created
on siteo choosing e1 to fillet. 01 is then sent to the other two sites.

On site], the arriving sequence of all operations are:
00,02,0],04,03. When 04 arrives, the operation target el has
merged with edge from the cubic protrusion created by O2. To
guarantee the correct execution of 04, the operations need to be
re-arranged to make sure e1 can be precisely located. Thus, the
execution sequence of operations on site1 is : 00,0],04,02,03.

On site2, the arriving sequence of all operations are:
00,03,02,0],04, When 04 arrives, the operation target e1 has
merged with edges from the cubic protrusions created by O2 and
03. To guarantee the correct execution of 04, the operations need
to be re-arranged to make sure e1 can be precisely located. Thus,
the execution sequence of operations on site2 is : 00,0],04,02,03.

C. Undo State Vector

In UNDOIREDO mode, there can be the following situations:
I)An operation is undone;2) An operation is redone;3) An
operation is undone more than once; 4) An operation is redone
more than once; 5)An operation is the undo target of more than
one site, we call this concurrent undo. In a collaborative
modeling system with N sites, each site has a SiteID ranges from

1 to N. An Undo State Vector is an N tuple. Each element is
initialized to O. If an operation 0 is undone by the ith site, the ith
element USV[i] is increased by 1. If 0 is redone by the ith site,
the corresponding element USV[i] is decreased by l.To any
specific operation 0, the following conclusions can be easily
driven:

1) Undo state vector can be used to illustrate how many

sites have aimed 0 as their undo target concurrently. In case of

concurrent undo scenario, the first arrived undo will be

processed and undo coming afterwards will not be processed

but the corresponding element in USV is increased by 1.
2) If all elements of O's undo vector are 0, it means 0 is still

in effects. It is either redone or never been undone.

3) The possible values for each element are 0 and

1. Whether an operation is undone or redone can be clearly

described in the undo vector.

IV. HISTORY BUFFER AND MODEL STATE STREAM

In 3D collaborative modeling systems, operations are
encapsulated, transmitted and stored in the form of advanced
modeling commands which can clearly describe its origination:

O(SiteID, Creation_SEQ, OpID, ReCEntity_List, ParaList)

• SiteID is the id of the site that creates 0,

• Creation SEQ is O's sequence number in all operations
issued by the site with the same SiteID.

• OpID specifies the type of O. It is in variety since the
primitive operations in 3D modeling systems diverse.

• Ref Entity List lists all the topological entities
referenced by o.

• ParaList is all the parameters supporting the O's
execution, ego dimension parameters, location
parameters.

An operation is put into history buffer as soon as it is
executed. A history buffer is used to keep all the executed
operations on a collaborative site. It can be browsed with Full
Operation View. However, if we enter the Local Operation View,
only part of the history buffer can be presented. This can be
implemented by comparing the SiteID contained in an operation
command and the local site id. Only operations owning the same
SiteID with the site that requires Local Operation View can be
displayed in Local Operation View. In example from Figure 1
above, the history buffers on siteo to site2 are described in

e.2.

1-----+0-0
(a) History Buffer on siteo

105

(b) History Buffer on site,

Figure 2. History Buffer on siteO and site 1 in collaborative modeling process

The execution of a modeling operation on a specific site i can
change its model state into the next stage. This process can be
described by the equation:

ModeIState(i) + Op = ModeIState(i+ 1)

With the continuous execution of modeling operations, the
model state evolution can be described by Model State Stream.
A model State Stream indicates the actual execution sequence of
operations on a specific site due to operation re-arrangement.
Each node in the stream is given an ID which is an integer
between 1 and N. If there are N operations executed on a site,
there must be at least N nodes in its model stream. Each
operation in the history buffer should have a corresponding node
delegating its execution state. Node(i) is the model state a�er
executing the ith operation. Within a state stream, we can easIly
jump to any previous state by calling node(i), i = 1 ... N. However,
the ith operation in history buffer isn't necessary the ith node in
state stream due to the operation re-arrangement used in our
consistency maintainence model. Take the example used in Fig.l,
on site2, the 2nd operation in its history buffer is 03 while 03 is
the last node in model state stream. Figure.3 is the comparison of
history buffer and model state stream on site2.

Figure 3. Linkage of history buffer and state stream on sitl:2

Therefore, there must be a linkage between an operation and
the corresponding node in the model state stream. Whenever an
operation arrives at a site, the arriving sequence ARR _SEQ is
recorded. After consistency preservation and operation re­
arrangement, the actual position of the operation during the
model reconstruction process is recorded, this actual position is
exactly the position of the corresponding state node in the model
state stream, noted as NODE_SEQ.

A. Dependency Analysis

Operation dependency, also called conflicts in some
literatures, is a must-be-considered factor during undo process,
especially in 3D collaborative system. Details of our dependency
detection algorithm has been illustrated in our CSCWD'09[6]

paper. So, it can be demonstrated that operations depend on the
undo target 0 are executed after it, and the corresponding state
node is behind O's state node. We add a DepFlag in O's
corresponding command to represent which operation 0 depends
on. When an operation is undone, any operation depending on it
should be undone as well for the topological entities it refers do
not exist anymore and their existence is meaningless. To
represent if these operations are still in effect, a status symbol
OpStat is also included, ON indicates the operation is not undone,
OFF indicates the operation is undone because because of some
dependency relationship. Whether an operation can be presented
in the history view is determined by its status.

Eventually, an operation is encapsulated and stored in the
history buffer in the following form:

O(SiteID, Creation_SEQ, OpID, ReCEntity_List, ParaList,
ARR _ SEQ, NODE_SEQ, DepFlag, OpStat)

V. OUR UNDOIREDO ALGORITHM

A. Implementation of Undo on Local Site

When a local site selects an operation 0 to undo, it is
executed on the local site immediately. During this course, slbe
must be using one of the two history views and makes the choice.
Undoubtedly, it is only when the undo target is available and
selectable can it be chosen by the user. We use an UndoList to
keep all the undone operations one by one. The process is
described in Algorithm 1.

If an undo is submitted on local site, the original operation is
firstly checked to see whether it has already been undone. If so,
this undo request will be aborted. Otherwise, we will roll back
the model state back to the state where the operation before 0 is
executed, get its dependency set, advance USV and re-execute
effective operations right after O.

After an undo is processed on the local site, it is send to other
sites in the form of
UNDO(Undo _ SiteID,Create _ SiteID,Create _SEQ),
Create _ SiteID indicates the site that creates the undo target 0
and Create_SEQ is O's sequence number of total operations
created by Create_SiteID.

Input: local site ID i, RBj, local site model state
stream MSVj

Output: Re-evaluated geometry model
1: Get the undo target 0;
2: if(O.OpStat = OFF) then exit; Ilundo request
invalid
3: else
4: NodePos = O.NODE_SEQ;
5: O.OpStat = OFF;
6: CurrentState = MSVj[Nodepos-l] ;
7: DependencySet(O) = DependencyDetection(O);
8: for(each operation in DependencySet(O)) do
9: DependencySet[i].DepFlag = 0;

106

10: DependencySet[i].OpStat = OFF;
11: Endfor
12: for(each operation in RBj) do
13: if(HBj[i].ARR _ SEQ<O.ARR _SEQ
14: and HBj[i].NODE_SEQ > O.NODE_SEQ)
15: do RBj[i];
16: endif
17: if(HBj[i].ARR_SEQ> O.ARR_SEQ and
18: HBj[i].NODE_SEQ > O.NODE_SEQ and
19: is not in DependencySet(O))
20: do HBj[i];
21: endif
22: Endfor
23: Reset MSVj;
24: Adjust NODE_SEQ of each operation in RBj;
25: for(each operation in DependencySet(O)) do
26: DependencySet[i].USV[i] = 1;
27: Endfor
28: 0 is put in the UndoList:;;
29: endif
30: O.USV[i] = 1;

Algorithm 1. Undo on Local Site

B. Implementation of Undo on Remote Site

When some site j receives a remote undo command,
it is executed following Algorithm 2.

Inputundo command, RBj on site j, model state
stream MSVj
Output: Re-evaluated geometry model
1: while(not the end of HBj)
2: if(undo.Create_SiteID = RBj[i].SiteID
3: && undo. Create_SEQ = HBj[i].CreateSEQ)
4: then 0 = RBj[i];
5: break;
6: endif
7: endwhile
8: for(each element in O.USV)
9: if(O.USV[m] = 1) Ilit means 0 is undone by
10: a concurrent undo
11: O.USV[SiteID of the issuing undo site]== 1;
12: the undo command is discarded and
13: undo process on sitej is over;
14: endif
15: endfor
16: NodePos = O.NODE_SEQ;
17: O.OpStat = OFF;
18: CurrentState = state [nodepos-l] ;
19: DependencySet(O) = DependencyDetection(O);
20: for(each operation in DependencySet(O)) do
21: DependencySet[i].DepFlag = 0;
22: DependencySet[i].OpStat = OFF;

23: Endfor
24: for(each operation in HBj) do
25: if(HBj[i].ARR_SEQ > O.NODE_SEQ and
26: HBj[i].ARR_SEQ<=O.ARR_SEQ) then
27: do HBj[i];
28: endif
29: if(HBj[i].ARR_SEQ is larger than O.ARR_SEQ
30: and is not in DependencySet(O))
31 :
32: do HBj[i];
33: endif
34: endfor
35: Reset MSVj;
36:Adjust NODE_SEQ of each on operation in HBj ;
37: 0 is put in the UndoLis�;
38: for(each operation in DependencySet(O)) do
39: DependencySet[i].USV[Undo_SiteID] = 1;
40: Endfor
41: O.USV[Undo SiteID] = 1;

Algorithm 2. Undo on Remote Site

After a site receives an undo from a remote site, we fIrst scan
HBj to fmd the original operation HBj[i] this undo aims at. Then,
we identify whether HBj[i] has been undone by concurrent
operation or due to operation dependency by checking if there
exists an element in HBj[i].SUV equals to l.1f the undo target
has already been undone, the undo process will be terminated.

Nevertherless, it's dependency set is obtained. Document
state is rolled back to the state where the last operation right
before HBj[i] leads to. Eventually, re-execute effective operations
right after O.

C. Implementation of Redo

A user can redo when he intends to put the undone
commands in effects again. To redo is to redo the latest operation
ever been canceled. This can be realized by executing the redo
target operation on current model state. However, only the site
issues undo command is allowed to issue redo. Algorithm 3
gives the detailed description of the redo on local site.

Input: local site ID i, local site history buffer HBi, local site
model state stream MSVi, UndoLis!j kept on site i

Output: Re-evaluated geometry model

1: if (Local_ Operation_View) then
2: 0 = the last operation in UndoLis!j with its SiteID equals to
3: i;
4: Execute 0 on current state;
5: A copy of 0 is added to the end of HBj;
6: O.OpStat = ON;
7: O.ARR_SEQ = current number of ON nodes in HBj;
8: O.NODE_SEQ = current number of state nodes in MSVj;
9: All elements in O.USV are set to 0;
10: else / / if it is in the Full Operation View

107

11: 0 = the last operation in UndoLis!j;
12: Execute 0 on current state;
13: A copy of 0 is added to the end of HBj;
14: O.OpStat = ON;
15: O.ARR_SEQ = current number of ON nodes in HBj;
16: O.NODE_SEQ = current number of state nodes in 17:
17: MSVj;
16: All elements in O.USV are set to 0;
17: endif
18: 0 is removed from UndoLis!j;

Algorithm 2. Redo on Local Site

A redo command is then sent in the form of
Redo(Create_Site, Create_SEQ). When a redo is sent to some
remote site j, there can be the situation that different sites has
aimed this same operation as the undo target concurrently. So,
this redo requirement cannot be processed on all sites since its
original undo requirement was not be processed. Just suppose a
collaborative environment with 4 sites and N operations are
issued. Both site 1 and site3 aim at OJ as the undo target
simultaneously. Afterwards, the undo from sitel is sent to site2
before site3 and undo from site3 is sent to site4 ahead of sitel.
When sitel redoes Oi, the requirement cannot be accepted by
site3 and site4. This problem can be resolved by group
negotiation.

If a user sends a redo command, the command should not be
processed by the local site immediately. The redo requirement is
sent to rest of the remote sites for them to choose whether to redo
the target operation or not. Only when all group users agree to
redo, the redo requirement can be processed both locally and
remotely.

VI. CORRECTNESS PROOF

• Our undo/redo algorithm satisfIes execution relationship
preservation. This is easy to understand. During the
undo/redo process, operation sequence is not sabotaged.
Therefore, this process doesn't violate the execution
relationship preserved order established by operation re­
arrangement based on TEST.

• With our undo algorithm, convergence property is
followed.The undo purpose is to eliminate the effect of
the chosen operation. If there is only one undo at one
moment, all sites will take the same action to undo the
chosen operation and operations depend on it. If there is
concurrent undo at one time, one on

• With our undo algorithm, user intention is preserved.
The assembly line of undo target location, operation
analysis, dependency set obtaining and document state
reversal and new document state creation can exactly
fulfIll any user's undo requirement.

VII. IMPLEMENT A nON AND TEST RESULTS

To demonstrate the feasibility and effectiveness of the
undo/redo method we proposed, we have make several
experiments. The experiments involve local UndolRedo
preserving users' intention and correlativity processing among
operations The process is shown in Fig. 2. The whole process
involved three collaborative sites in our prototype system of
collaborative solid modeling.

SiteO Sitel Site2

stepl

stepl

step3

step4

step5

Figure 4. Multiuser UndolRedo Process

Step 1: A base block is created by modeling operation
Block(O) from siteO. It's then sent to site1 and site2. Site1 sends
operation Roundslot(l) to create a round slot on the left of the
model then propagates it. Site2 creates operation roundslot(2) to
create another round slot then propagates it to other sites. Finally
siteO creates and sends command Edgeblending(O). The fmal
boundary model is created after 3 sites' collaboration.

Step 2: SiteO sends an Undo command revoking the
edgeblending operation it made. The command is carried out on
local site and sent to site1 and site2 immediately. By properly
locating the undo object on these two remote sites and model
reconstruction, the model states on 3 sites are consistent.

Step 3: Site2 sends an Undo command revoking the round
slot operation it made. The command is carried out on the local
site and sent to the other 2 sites immediately.

Step 4: SiteO sends another Undo command to undo the
base block creation operation it sent. It's quite obvious that
round slot created by Site1 depends on this base block . Due to
the elimination of this block, round slot is also eliminated.

Step 5: SiteO sends a redo command to redo the most
recently command it has undone. Therefore, the base block is
rebuilt by re-executing operation Block(O). Then the redo

108

command is sent to site1 and site2. By properly locating the redo
object on these two remote sites and model reconstruction,
document states on these 3 sites are still in consistency.

VIII. CONCLUSIONS

This paper proposes a selective undo/redo mechanism in 3D
collaborative modeling systems. To satisfy the fast response
requirement, each site keeps a model state stream to keep the
state at every step rather than the full ru-run mechanism. The
mapping method of operations in history buffer and nodes in
model state stream is proposed correspondingly. Finally, a set of
undo/redo algorithms is proposed.

ACKNOWLEDGMENT

This paper is supported by the National Science Foundation
of China (Grant No. 61070078) and the Fundamental Research
Funds for the Central Universities

REFERENCES

[I] Aaron Brown, "A recovery-oriented approach to dependable services
repairing past errors with system wide Undo," PhD Thesis, University of
California, Berkeriy., 2003.

[2] Choudhary R, Dewan P, "A general multi-user undo/redo model,"
Proceedings of the 4th Conf. on E-CSCW, Kiuwer:Acadernic, 1995,
pp.23 1-246.

[3] Beriage T, "A selective undo mechanism for graphical user interfaces
based on command objects,"in TOCHI, 3rd ed., voU, New York: ACM
Press, 1994, pp.269-294.

[4] Sun CZ, "Undo any operation at any time in group editors," Proceedings
of 2000 ACM Conf. on CSCW, New York: ACM Press, 2000, pp.191-200.

[5] Chengzheng Sun, "Undo as concurrent inverse in group editors," in
TOCH!, 4th ed., vol.9, New York:ACM Press,2002, pp.309-36I.

[6] Cheng Y. , He F.Z., Jing S.x., Huang Z.Y, "An Multiuser UndolRedo
Method for Replicated Collaborative Modeling Systems," Proceedings of
the 13th Conf. on CSCWD, Washtington D.C: IEEE Computer Society,
2009, pp.185-190.

[7] Bin Shao, Du Li, Ning GU, "An Algorithm for Selective Undo of Any
Operation in Collaborative Application,"Proceedings of GROUP'IO, New
York: ACM Press, 2010, pp.l31-140.

[8] Bin Shao, Du Li, and Ning Gu, "A sequence transformation algorithm for
supporting cooperative work on mobile devices," Proceedings of ACM
CSCW 2010, New York: ACM Press, 2010, pp.l59-168.

[9] Abowd GD, Dix AI, "Giving Undo Attention," in Interacting with
Computers, 3rd ed., vol.4, New York: Elsvier Science, 1992, pp.317-342.

[10] Prakash A, Knister MJ, "A framework for undoing actions in collaborative
systems,"in TOCH!, 4th ed., voU, New York: ACM Press,1999, pp.13I-
139.

[II] Matthias Ressel and Rul Gunzenhiiuser, " Reducing the problems of group
undo,"Proceedings of GROUP'99 , New York: ACM Press, 1999, pp.13I-
139.

[12] Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D., " Achieving
convergence, causality preservation, and Intention- preservation in real­
time cooperative editing systems," in TOCHI, 1st ed., vol.5, New York:
ACM Press, 1998, pp.63-108.

[13] Xueyi Wang, Jiajun BU,Chun Chen, "Achieving undo in bitmap-based
collaborative graphics editing systems," Proceedings of ACM CSCW
2002, New York: ACM Press, 2002, pp. 68-76.

