
computer
communicatii

ELSEVIER Computer Communications 19 (1996) 528-538

Supporting fault-tolerant and open distributed processing using RPC

Wanlei Zhou*

School of Computing and Mathematics. Deakin University, Geelong, VIC 3217, Australia

Received 28 October 1994; revised 2 April 1995

Abstract

This paper is concerned mainly with the software aspects of achieving reliable operations in an open distributed processing
environment. A system for supporting fault-tolerant and cross-transport protocol distributed software development is described.
The fault-tolerant technique used is a variation of the recovery blocks and the distributed computing model used is the remote
procedure call (RPC) model. The system incorporates fault tolerance features and cross-transport protocol communication features
into the RPC system and makes them transparent to users. A buddy is set up for a fault-tolerant server to be its alternative. When an
RPC to a server fails, the system will automatically switch to the buddy to seek for an alternate service. The client, the fault-tolerant
server and the buddy of the server can all use a different transport protocol. To obtain this fault tolerance and cross-protocol service,
users only need to specify their requirements in a descriptive interface definition language. All the maintenance of fault tolerance anti
the cross-protocol communication is managed by the system in a user transparent manner. By using our system, users will have
confidence in their distributed programs without bothering the fault tolerance and cross-protocol communication details. Our system
is small, simple, easy to use and also has the advantage of producing server and client driver programs, and finally, executable
programs directly from the server definition files.

Keywords: Open distributed processing; Fault-tolerant computing; Distributed systems; Remote procedure calls; Client/server model

1. Introduction

The advances in computer technology have made it
cost-effective to build distributed systems in various
applications. Many experts agree that the future of
distributed computing, especially the future of open
distributed processing, is the future of computing. ‘The
network is the computer’ has become a popular
phrase [l].

Remote Procedure Call (RPC) is perhaps the most
popular model used in today’s distributed software
development, and has become a de facto standard for
distributed computing. To use it in an open distributed
environment effectively, however, one has to consider
cross-protocol communications, because user programs
built on top of different RPC systems cannot be
interconnected directly. Typical solutions to this
problem are:

* Email: wanlei@deakin.edu.au

0140-3664/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved
PI1 SO140-3664(96)01079-l

(1) Black protocol boxes: protocols used by RPC
programs are left as black boxes in compiling time,
and are dynamically determined in binding time [2].

(2) Special interfaces [3] or RPC agent synthesis systems
[4] for cross-RPC communications.

However, one issue is still outstanding in building RPC
systems for open distributed systems; fault-tolerance
features.

An open distributed system consists of many
hardware/software components that are likely to fail
eventually. In many cases, such failures may have
disastrous results. With the ever increasing dependency
being placed on open distributed systems, the number of
users requiring fault tolerance is likely to increase.

The design and understanding of fault-tolerant open
distributed systems is a very difficult task. We have to
deal with not only all the complex problems of open
distributed systems when all the components are well,
but also the more complex problems when some of the
components fail.

W. ZhoulComputer Communications I9 (1996) 528-538 529

This paper is concerned mainly with the software
aspects of achieving reliable operations in an open
distributed processing environment. A system for
supporting fault-tolerant and cross-transport protocol
distributed software development is described. The
system design is aimed towards application areas that
may involve a heterogeneous environment, and in
which requirements for fault-tolerance are less severe
than in, for example, the aerospace field, but in which
continuous availability is required in the case of some
components failures [5]. The application areas could
be, for example, kernel/service pool-based distributed
operating systems, supervisory and telecontrol systems,
switching systems, process control and data processing.
Such systems usually have redundant hardware
resources, and one of the main purpose of our system
is to manage the software redundant resources in order
to exploit the hardware redundancy. The fault-tolerant
technique used is a variation of the recovery blocks
technique, and the distributed computing model used is
the RPC model.

Software fault tolerance refers to the set of techniques
for continuing service despite the presence, and even the
manifestation, of faults in a program [6]. There are many
techniques available for software fault-tolerance, such as
N-version programming [7] and recovery blocks [8]. In
N-version programming, N(N 2 2) independent and
functionally equivalent versions of a program are used
to process a critical computation. The results of these
independent versions are compared (usually with
a majority voting if N is odd) at the end of each
computation, and a decision will be made accordingly.

Recovery blocks employ temporal redundancy and
software standby sparing 191. Software is partitioned
into several self-contained modules called recovery
blocks. Each recovery block consists of a primary
routine, which executes critical software function; one
or more alternate routines, which performs the same
function as the primary routine, and is invoked upon a
failure is detected; and an acceptance test, which tests the
output of the primary (and alternate, if the primary fails)
routine after each execution. A variation of this model is
used in this paper.

The remote procedure call is a powerful and widely
known primitive for distributed programming [lo]. The
RPC based model allows a programmer to call a pro-
cedure located at a remote computer in the same manner
in which a local procedure is called. This model has a lot
of advantages. The procedure call is a widely accepted,
used and understood abstraction. This abstraction is the
sole mechanism for accessing remote services in this
model. So the interface of a remote service is easily
understood by any programmer with a good knowledge
of ordinary programming languages.

The remainder of this paper is organised as follows. In
Section 2, we summarize some notable related work and

provide the rationale of our work. In Section 3, we
describe the architecture of the SRPC system. Then
Section 4 describes the syntax and semantics of the server
definition files and the stub and driver generator. In
Section 5 we present an example to show how this system
can be used in supporting fault-tolerant, open distributed
software development. Section 6 contains remarks.

2. Related work and the rationale

There have been many successful RPC systems since
Nelson’s work [ll], such as Cedar RPC [12], NCA/RPC
[13], Sun/RPC [14], HRPC [2], and so on. But few of
them consider fault tolerance an cross-protocol
communication in their design, or they rely on users to
build in these features.

Notable work on incorporating fault tolerance
features into RPC systems is Argus [15], ISIS [16,17]
and an atomic RPC system on ZMOB [18]. The Argus
allows computations (including remote procedure calls)
to run as atomic transactions to solve the problems of
concurrency and failures in a distributed computing
environment. Atomic transactions are serializable and
indivisible. A user can also define some atomic objects,
such as atomic arrays and an atomic record, to provide
the additional support needed for atomicity. All the user
fault tolerance requirements must be specified in the
Argus language.

The ISIS toolkit is a distributed programming
environment, including a synchronous RPC system,
based on virtually synchronous process groups and
group communication. A special process group called
a fault tolerant group, is established when a group of
processes (servers and clients) are cooperating to
perform a distributed computation. Processes in this
group can monitor one another, and can then take
actions based on failures, recoveries or changes in the
status of group members. A collection of reliable
multicast protocols is used in ISIS to provide failure
atom&city and message ordering.

The atomic RPC system implemented on ZMOB uses
sequence numbers and calling paths to control the
concurrency and atomicity, and used checkpointing to
maintain the ability of recovering from failures. Users
do not have to provide synchronization and recovery
themselves; they only need to specify if atomicity is
desired. This frees them from managing much
complexity.

But when a server (or a guardian in the Argus) fails to
function well, an atomic transaction or an atomic RPC
has to be aborted in these systems. This is a violation
of our continuous computation requirement. The fault-
tolerant process groups of the ISIS can cope with process
failures and can maintain continuous computation, but
the ISIS toolkit is big and relatively complex to use.

530 W. Zhou/Computer Communications I9 (1996) 528-538

Typical solutions to the cross-protocol communica-
tion in RPC systems are the black protocol boxes of
the HRPC [2], the special protocol conversion interface
[3] and the RPC agent synthesis system [4] for cross-RPC
communications.

The HRPC system defines five RPC components: the
stub, the binding protocol, the data representation,
the transport protocol and the control protocol. An
HRPC client or server and its associated stub can view
each of the remaining components as a ‘black box’.
These black boxes can be ‘mixed and matched’. The set
of protocols to be used is determined at bind time-long
after the client and server has been written, the stub has
been generated, and the two have been linked.

The special protocol conversion interface that we pro-
posed earlier [3] uses an ‘interface server’ to receive a call
from the source RPC component (client or server) and to
convert it into the call format understood by the
destination RPC component (server or client).

The cross-RI-Y communication agent synthesis system
[4] associates a ‘client agent’ with the client program and
a ‘server agent’ with the server program. A ‘link
protocol’ is then defined between the two agents and
allows them to communicate. The server and the client
programs can use different RPC protocols, and the
associated agents will be responsible of converting
these dialect protocols into the link protocol.

But none of the above cross-protocol RPC systems
consider fault-tolerance issues. If the server fails, the
client simply fails as well.

Incorporating both fault tolerance and cross-protocol
communication into RPC systems is clearly an important
issue to use RPCs efficiently and reliably in open
distributed environments. In this paper we describe
a system, called the SRPC (Simple RPC) system, for
supporting the development of fault-tolerant, open
distributed software. The SRPC incorporates fault
tolerance features and protocol converters into the
RPC system and makes them transparent to users.
A buddy is set up for a fault-tolerant server to be its
alternative. When an RPC to a server fails, the system
will automatically switch to the buddy to seek for an
alternate service. The RPC aborts only when both the
server and its buddy fail. The clients and servers can use
different communication protocols. To obtain these fault
tolerance and automatic protocol converting services,
users only need to specify their requirements in a descrip-
tive interface definition language. All the maintenance of
fault tolerance and protocol conversion are managed by
the system in a user transparent manner. By using our
system, users will have confidence on their open distrib-
uted computing without bothering the fault tolerance
details and protocol conversion. Our system is small,
simple, easy to use and also has the advantage of produc-
ing server and client driver programs and finally execut-
able programs directly from the server definition files.

3. System architecture

The SRPC is a simple, fault-tolerant and cross-protocol
remote procedure call system [193. The system is small,
simple, expandable, and it has facilities supporting fault-
tolerant computing and cross-protocol communication.
It is easy to understand and easy to use. The SRPC only
contains the essential features of an RPC system, such as
a location server and a stub generator, among other
things. The SRPC system has been used as a distributed
programming tool in both teaching and research projects
for three years.

The SRPC system has another interesting feature.
That is, the stub compiler (we call it the stub and driver
generator, or SDG in short) not only produces the server
and client stubs, but also creates remote procedures’
framework, makefile, and driver programs for both
server and client. After using the make utility, a user
can test the program’s executability by simply executing
the two driver programs. This feature will be more
attractive when a programmer is doing prototyping.

3.1. Server types

The client/server model [20] is used in the SRPC
system. An SRPC program has two parts: a server part
and a client part. Usually the server provides a special
service or manages an object. The client requests the
service or accesses the object by using the remote
procedures exported by the server.

There are three types of servers in the SRPC system:
simply servers, service providing servers and object
managing servers. Fig. 1 depicts these three types of
servers.

A simple server (Fig. l(a)) is an ordinary server
possessing of no fault-tolerant features. When a simple
server fails, all RPCs to it have to be aborted.

A service providing server (Fig. l(b)) has a buddy
server running somewhere in the network (usually on
a host different with the server’s), but no communication
between the server and its buddy. When a service
providing server fails, an RPC to this server will be
automatically redirected to its buddy server by the
system. As object changes in the server will not be
available in its buddy, a service providing server usually
is used in applications such as pure computation,
information retrieval (no update), motor-driven (no
action memory), and so on. It is not suitable to be used
to manage any critical object that might be updated and
then shared by clients.

An object managing server (Fig. l(c)) also has a buddy
running in the network. It manages a critical object that
might be updated and shared among clients. An RPC to
such a server, if it will change the object state, is actually
a nested RPC. That is, when the server receives such a call
from a client, it first checks to see whether the call can be

W. ZhoulComputer Communications 19 (1996) 528-538

/ . Service Roviding

531

C

Fig. 1 Server types.

executed successfully (e.g. if the necessary write-locks
have been obtained or not). If the answer is no, the call
is aborted. If the answer is yes, then the server will call its
buddy server to perform the operation as well. When the
buddy returns successfully, the call commits (the server
and its buddy actually perform the call) and the result
returns to the client. To ensure the consistency of the
objects managed by the server and its buddy, a two-
phase commit protocol [21] is used when executing the
nested RPC.

Like a service providing server, when an object
managing server fails, an RPC to this server will be
automatically redirected to its buddy server by the system.

All buddy servers are simple servers. That means,
when a server (service providing or object managing)
fails, its buddy server provides alternative service in
a simple server manner. Also, when a buddy server
fails, a service providing server or an object managing
server will be reduced into a simple server.

3.2. Architecture

The SRPC has the following three components:
a Location Server (LS) and its buddy (LS buddy),
a system library, and a Stub and Driver Generator
(SDG). This section describes the system architecture
from a user’s point of view. As server buddies are
generally transparent to users, we will omit their
descriptions here.

From a programmer’s viewpoint, after the SDG
compilation (see Section 5) the server part of an SRPC
program is consisted of a server driver, a server stub and
a file which implements all the remote procedures (called
a procedure file). The server buddies are transparent to
users. The server part (or a server program as it is
sometimes called) is a ‘forever’ running program which
resides on a host and awaits calls from client. The client
part (or a client program) consists of a client driver and
a client stub after the SDG compilation. It runs on a host

(usually a different host from the server’s host), and
makes calls to the server by using the remote procedures
exported by the server.

When the client driver makes a call, it goes to the client
stub. The client stub then, through the system library,
makes use of the client protocol for sending the calling
message to the server host. Because the client and
the server may use different communication protocols, a
client-server protocol converter is used to convert the
client’s protocol into server’s protocol. The calling
message is then sent to the server. At the server’s host
side, the server’s protocol entity will pass the calling
message to the server stub through the system library.
The server stub then reports the call to the server driver
and an appropriate procedure defined in the procedures
file is executed. The result of the call follows the calling
route reversely, through the server stub, the server
protocol, the system library of the server host, the client-
server protocol converter, the system library of the client
host, the client stub, back to the client driver. This is called
a direct call, as the pre-condition of such a call is that the
client knows the address of the server before the call.

With the help of the Location Server, the run-time
address of a server can be easily accessed. One typical
scenario of SRPC programs using LS can be described
below:

Registering: when the server is started, it first registers
its location to the LS. The route is: server
driver -+ server stub --+ server protocol, server-LS
protocol converter and the system library of the server
host + .LS protocol and system library of the LS
host + LS stub + LS driver.
Waiting: the server waits for client calls.
Locating: when a client is invoked, it consults the LS
for the server’s location. The route is: client
driver -t client stub + client protocol, client-LS
protocol converter and system library of the client
host + LS protocol and system library of the LS
host + LS stub + LS driver.

532 W. ZhoulComputer Communications 19 (1996) 528-J38

Location Server Host
,_____________,
8 I I I
: LS Driver I
I
I ’ ,‘,,, ’ Ljcation Server
I , I I I 1 I I I I I

Actual1 Calling
< >

Virtual Calling
<_______,

Client-LS Protocol

Client Host

Server Host

Fig. 2. System architecture and a typical RPC. +-x Actual calling; + - - +: virtual calling.

4. RPC: after the location is found, the client then can
make any number of RPCs to that server by using the
obtained location (as in a direct call). We name this a
typical calling, since most of the time a client does not
know server addresses.

5. Shutdown: if a ‘shutdown’ call is issued by a client
program, it causes the server to un-register itself
from the LS and exits from the system.

Fig. 2 depicts the system architecture using a typical
RPC. The dashed line represents the RPCs from the
user’s viewpoint.

3.3. Location server

One way of hiding out the implementation details is
the use of the Location Server (LS). The LS is used to
hide the server locations from users. It maintains a data-
base of server locations and is executed before any other
SRPC program is started. After that, it resides on the
host and awaits calls from servers and clients.

The Location Server is an object managing server and
has a buddy of its own. It has a well-known location, and
this location can be easily changed when necessary. The
LS itself is implemented by the SRPC system, using the
direct calling method.

Usually there should be one LS (called local LS)
running on each host for managing locations of that

host, and these local LSs report to the ‘global LS’ (like
the NCA/RPC’s local and global location brokers)
[13,22]. In that case, the locations of all LSs can also
be hidden from users. We have planned to implement
this facility.

The following call is used by a server to register itself
to the LS:

intregisterServer(sn,buddy,imp)
char *sn; /* server name */
char *buddy; /*buddy’sname*/
structiinfo /* implementation
*imp; info. */

where imp is a type strut t iinf o structure and
contains many implementation details, such as the
server’s host name, protocol, and so on. Because
the call updates the LS database, it is also directed to
the LS buddy. If the call returns OK, the location has
been registered and a client can use the following call
to find out the location of a server from the LS:

intlocateServer(sn,buddy, imp)
char *sn; /* server name */
char *buddy; /* server’sbuddy

name */
structiinfo /*implementation
imp ; info. */

W. ZhoulComputer Communications 19 (1996) 528-538 533

If the call returns OK, the location of the server sn is
stored in imp and the name of the server’s buddy
is stored in buddy for later use. This call does not affect
the LS database state, so there is no hidden LS server and
LS buddy communication here. Before a server is shut
down, the following call must be used to un-register the
server from the LS:

intunregisterServer(sn)
char *sn; /* server name */

If the call returns OK, the server and its buddy (if any) are
deleted from the LS database. The system also provides
other LS calls for maintaining the LS database.

All the usages of these functions in a server or a client
program are automatically generated by the stub and
server generator. A user does not need to look into the
details of these calls if he or she is satisfied with
the generated program sections.

3.4. System library

The system library is another way of achieving
transparency. The library contains all the low-level and
system- and protocol-oriented calls. Its main function is
to make the low-level facilities transparent to the upper-
level programs. So the stub and driver programs of both
server and client will not deal with their communication
entities directly.

The server and client programs must be linked with the
system library separately. Ref. [19] contains detailed
descriptions of the library calls. All the library calls can
be divided into the following call levels, and Fig. 3
depicts their relationships:

1. SRPC Level: this is the highest level. It contains calls
that deal with RPC-related operations.

2. Remote Operation Level: contains calls that deal with
remote operations. These remote operations follow
the definitions of the OS1 Application level primitives

1231.
3. Protocol Level: contains calls that deal with protocol-

specific operations.
4. Utility calls: contains all the utility calls used in

different levels.

Fig. 3 Relationships of system library levels.

The inner most level is the protocol-specific level, It
interfaces with the specific protocol entity and the under-
lying operating system kernel. It is also responsible for
providing protocol converting procedures. The remote
operation level provides a uniform interface (similar to
the OS1 Application level primitives) to the upper RPC
system. The uniform interface provides two obvious
advantages:

l It provides a clear interface for different communi-
cation protocols.

l It makes the SRPC system as portable as possible: only
the lower levels need to be re-programmed when port
the SRPC system to other platforms.

The SRPC level implements all the RPC related calls and
provides a user-friendly remote procedure calling
interface to application programs. The utility calls pro-
vide service calls for different levels.

3.5. Performance evaluation

Obviously, our service providing server and object
managing server can tolerant single-point failures. This
is clearly an advantage compared with the normal single
server model. However, every fault-tolerant method
employs redundancy, and redundancy may imply
increasing costs and/or decreasing performance. Simi-
larly, protocol conversion also involves system overhead.
This section tries to evaluate the performance of our
server types in various circumstances.

The performance of an RPC in the SRPC system
varies, according to which server type is used. Table 1
lists the null RPC performance on a network of HP and
Sun workstations, where the server program runs on an
HP715/33 workstation and the server buddy and the
client run on two separate Sun4/75 ELC (33 MHz)
workstations. The network is virtually isolated and
very lightly loaded (no other user programs were run
except the testing programs during data collection).
The server (and the buddy, of course) uses the
Internet_datagram (UDP) protocol and the client uses
the Internet -stream (TCP) protocol.

The table also includes null RPC times in the SRPC
system for simple servers without protocol conversion.
That is, when both the client and server use the same
protocol (UDP or TCP), and therefore, no protocol
conversion is required.

We can draw the following observations and
explanations from Table 1:

. The overhead of protocol conversion is light. From the
table we know the average simple RPC time using
UDP and TCP protocol only is about 2.59ms. The
simple RPC protocol conversion uses about 3.22ms,
which is only 0.63ms more than the time used by
simple RPCs without protocol conversion. When

534 W. ZhoujComputer Communications 19 (1996) 528-538

Table 1
Null RPC performance

Server type

Simple (UDP)
Simple (TCP)
Simple
Service-providing
Object-managing

Time (ms)

2.11 f 0.02
3.07 f 0.02
3.22 f 0.02
3.37 i 0.02
5.12io.04

a network is normally loaded, a null RPC time
typically needs 5-10ms. In that case, the extra
time for protocol conversion could be less than 10%
of the RPC time.

The overhead of using service providing server is
minimum. From the table we can see that the time
difference between a simple RPC and a service
providing RPC is only 0.15 ms. Most of the extra
time is spent on the preparation of using the buddy
server in case of server failure.

The overhead of using object managing server is quite
high. This is because of the nested RPC used in keeping
the consistency between the two objects managed by
the server and the buddy. However, the time used is
less than the time of two simple RPCs. This is because
that there is no protocol conversions between the
server and its buddy, and some of the operations are
carried out in parallel.

We are still investigating the system performance
under other circumstances, such as RPCs with various
sizes of parameters and with various network load
conditions.

4. Stub and driver generator

4.1. Syntax

The purpose of the stub and driver program generator
is to generate stubs and driver programs for server and
client programs according to the Server Definition Files
(SDF). The syntax of a server definition file is shown in
Listing 1.

We use a modified BNF to denote the syntax of
definition files. The ‘variable’, ‘integer’, ‘string’,
‘constant’, and ‘declarator’ have the same meanings as
in the C programming language. Comments are allowed
in the definition file. They are defined the same as in the
C programming language using /* and */).

4.2. Semantics

Most of the descriptions of Listing 1 are self-
explanatory. We only highlight the following points:

1. The server’s name is defined as a variable in the
C language. This name will be used in many places.

<SDF>::= BEGIN
<HEADER>
[<CONST> 1
<FUNCS>
END

<HEADER>::= ServerName:
variable ;
Comment:string;
ServerProtocol:
variable ;
ClientProtocol:
variable ;
[<BUDDY>]

<BUDDY>::= Buddy<BDYTYPE>:
variable ;
Using: <LANGUAGE> ;

<BDYTYPE> em--Auto)Forced . .-
<LANGUAGE> ::=CIPascal
<CONST> ::=constant
<FUNCS> ::=RPCFunctions:

<RPCS>
<RPCS> ::=<RPC> { <RPC> }
<RPC> ::=Name: string

[Update] ;<PARAMS>
<PARAMS> ::= { <PARAM> }
<PARAM> ::=Param: <CLASS>:

declarator;
<CLASS> -.-inlout . .-

Listing 1. Server definition file syntax.

For example, it is the key in the LS database to store
and access server entities. When the client asks the LS
to locate a server, it provides the server’s name defined
here. The name is also used as a prefix in naming all
the files generated by the SDG. So two different
servers cannot be assigned to the same server name.
Otherwise, the server who registers to the LS first will
be accepted while the server who registers to the LS
later will be rejected by the LS.

Different protocols can be defined for the server and
the client, respectively. The buddy, if it is defined, uses
the same protocol as the server does. Currently, only
three protocols are allowed: Internet_datagram (The
UDP protocol), Internet-stream (the TCP protocol),
and XNS_datagram (the XNS packet exchange
protocol).

The <BUDDY> part is optional. If it is not specified,
the generated server will be a simple server, otherwise
it will be a service providing server or an object
managing server, according to some definitions in the
<RPCS> part (described below). The <BUDDY> part
has a buddy definition and alanguage definition. The
buddy definition defines that whether the buddy’s
name and execution is to be determined by the system

W. ZhoulComputer Communications 19 (1996) 528-538 535

(Auto) or to be determined by the programmer
(Forced). If Auto is defined, the system will
generate the buddy server’s name (Server -
NameBdy, used for registering and locating it), the
buddy’s driver and stub files as well as the makefile,
and will treat the following var iab le as the name
of the buddy’s procedure file. Then, the buddy
program will be compiled and executed together
with the server program. The host of the buddy
program will be determined by the system at run time.

If For c ed is defined, the generator will not
generate any buddy’s program file and will treat the
following variable as the name of the buddy ser-
ver used for registering and locating. The program-
ming and execution of the buddy server will also be
the programmer’s responsibility.

The language definition Using defines which
language does the buddy program use. The key issue
of software fault-tolerant is the design diversify or ver-
sion independent, and one way of achieving design
diversity is through the use of multiple programming
languages [24]. If a different language is chosen for
each version implementation, then the versions are
likely to be more independent, not only due to the
diversity of languages, but also because individual lan-
guage features force programmers toward different
implementation decisions. Currently only the C pro-
gramming language is supported in the SRPC system.
We have planned to support the Pascal language
implementation soon.

4. The <FUNCS> part defines the remote procedures of
the server. At least one remote procedure must be
defined. Each remote procedure is defined as a name
part and a parameter (<PARAMS >) part. The name of
a remote procedure is simply a variable, with an
optional Update definition. The latter definition dis-
tinguishes an object managing server with a service
providing server. That is, if the <BUDDY> part is
defined and the Updat e is defined in any one RPC
definition, the server is an object managing server. If
only the <BUDDY> part is defined but no Update
part is defined in any RPC definition, the server is a
service providing server. The meaning of the Update
definition is: if an Update is defined following
an RPC procedure name, that procedure must be
maintained as a nested RPC affecting both the server
and the buddy by the server program (see Section 3.1).

There can be zero or several parameters in a proce-
dure, each consisting of a class and a declaration. The
class can be in or out, which tells the SRPC system
that the parameter is used for input or output,
respectively. The declaration part is the same as in
the C language. In this version, only simple character
string is allowed in parameter definitions. Further
extensions are under way.

Fig. 4 Processing structure of the stub and driver generator.

4.3. Implementation issues

After a programmer sends a server definition file to the
generator, the generator first does syntax checking. If no
errors are found, several program source files and a
makef ile are generated. The subsequent processing
is specified by the makefile. That is, when using the
make utility, the executable files of both the server and
client will be generated. Fig. 4 indicates the structure of
the processing. The dashed lines represent optional
actions.

At least one server definition file must be input to the
SDG. If there are more than one server, their SDFs can
be input to the SDG simultaneously. If there is only one
SDF file, then the generated client driver can execute the
server’s procedures one by one. If the buddy part is also
specified, the generated client can also call the buddy
procedures directly (this is useful in testing the client-
buddy communication).

If there are more than one SDF file, then for each
server, the SDG will generate one set of server files,
one set of client files, and one set of buddy files (if the
buddy is defined), respectively. These files are the same as
the servers being processed in single file input described
above. One additional set of client files, the multi-server
client program, will also be generated in this case. The
client driver is called a multi-server client driver. It can
call all the procedures of all the servers one by one.
A further improvement is under way to let the client
call these procedures in parallel.

5. Application example

We use a simple example to show the application of
the SRPC system. Suppose we have a server definition
file called sf . def It defines a ‘send-and-forward’
system in that the server acts as a message storage and
the client acts as both message sender and receiver. The
server definition file is shown in Listing 2.

From the header part of this SDF file we know the
following: the server is named as sf and the server
protocol used is the Internet_datagram. The server can

536 W. ZhoulComputer Communications 19 (1996) 528-538

/*Storeandforward:server two RPC function definitions have no Update marks,
definitionfile*/ and then they will be treated as ordinary RPCs.

BEGIN
ServerName:sf;
Comment:Storeandforward
system;

When the file is input to the generator, the following
files will be generated:

sf.hHeaderfile,mustbeincludedbyserver,

ServerProtocol:
Internet_datagram;
ClientProtocol:
Internet-stream;
BuddyAuto: sfBdy0ps.c;
Using:C;

itsbuddyandclientdriversandstubs.
sfSer.c Server driver file.
sf StubSer . c Serverstubfile.
sf0ps.c Frameworksof

serverprocedures.

#defineMXNAML64
#defineMXMSGL500
#defineMXSTRL80

sfC1i.c
sfStubC1i.c
sfBdy.c

Clientdriverfile.
Clientstubfile.
Server buddy driver
file.

sfStubBdy.c Serverbuddystub
file.

RPCFunctions:
Name:storeMsgUpdate;
Param: inreceiver: char
receiver[MXNAMLl;
Param: inmsg: char
msg[MXMSGLl;
Param: out stat: char
stat[MXSTRLl;

Name: forwardMsgUpdate;
Param:inreceiver:char
receiver[MXNAMLl;

makef ile Make file.

After using the make utility (simply use ‘make’
command), three executable files are created:

sfSer
sfCli
sfBdy

Server program.
Client program.
Server buddy
program.

Param:outmsg: char
msg[MXMSGL];

Name: r eadMsg;
Param: inreceiver:char
receiver[MXNAML];
Param: outmsg: char
msg[MXMSGLl;

Name: 1istMsg;

Note that the sf Ops . c file only defines the
frameworks of the remote procedures (dummy
procedures). Their details are to be programmed by the
programmer. The s f B dyOp s . c file should be the same
as the sf Ops . c file (the only possible difference hap-
pens when the server buddy uses another programming
language such as the Pascal; then the affix of the file
would be .pas).

END

Listing 2. Server definition file example.

bethenexecuted onany host usinganyportassigned by
the system. The client protocol is Internet-stream and can
also be executed on any host. Obviously, a protocol con-
verter is needed. A server buddy is defined and is expected
to be established automatically by the system, using the
Internet_datagram protocol (the same as the server). The
procedure file for the buddy is s f B dyOp s . c and the
programming language used for the buddy is the C
language. There are also three constants defined.

The server driver is simple. It does the initialization
first, then it registers with the LS and invokes the
buddy program on a neighbouring host because
the buddy is defined as Auto in the SDF file. After
that it loops ‘forever’ to process incoming calls until
the client issues a ‘shutdown’ call. In that case, the server
un-registers from the LS and exits. The ‘un-register’ call
will automatically un-register the buddy from the LS as
well. The incoming calls are handled by the server stub
and underlying library functions. A listing of the server
driver is shown in Listing 3.

The server buddy driver works in the same way as the
server program, except that it does not invoke a buddy
program. Also, the buddy is a simple server and all calls
to the buddy will not be nested.

From the RPC functions part we know that four
remote procedures are defined in this SDF file. The
first two RPC functions are marked as Updat e. So
the server is an object managing server. When the client
calls these two procedures, these two procedures will be
treated as nested calls for maintaining the object
consistency in both the server and its buddy. The next

The generated client driver can execute the server’s
remote procedures one by one. If the server driver is
running and the client driver is invoked, the client
driver first lists all the remote procedures provided
by the server, and asks the user to choose from the
list. The following is the menu displayed for this
example:

W. ZhoulComputer Communications 19 (1996) 528-538 531

Init ialisation (including invoke the

buddy) ;
/*ReqistertheservertotheLS*/
reqisterServer("sf", ~~smaf, imp);
while (1) {

waitforclientcalls;
/*comeshereonlyifaclient
called*/
forkachildprocesstohandle
theRPC;
if the callis"shutdown"

break;

1
unregisterServer("sf");

Listing 3. Server driver pseudocode.

Available calls:

0 sf$Shutdown
1 sf$storeMsg(receiver,msg,stat)
2 sf$forwardMsg(receiver,msg)
3 sf$readMsg(receiver,msg)
4 sf$listMsqO

Your choice:

After the selection, the input parameters of the named
remote procedure are then input from the keyboard.
After that, the driver program does some initialization
and the remote procedure is executed and returned
results displayed. The actual calling and displaying are
handled by the client stub and underlying library
functions. The format of all the four RPCs in the client
program are the same as the format listed in the above
menu. That is, if the client wants to send a message to a
receiver, it does the following call after the receiver’s
name and the message are input into r e c e ive r and
ms g variables, respectively:

sf$storeMsg(receiver,msg,stat);

Note that the remote procedure’s name is named as a
composition of the server’s name s f, a $ sign, and the
remote procedure’s name st oreMsg in the SDF file.
Similarly, if the client wants to receive messages, it does
the following call after the receiver’s name r e c e ive r
is obtained:

sf$forwardMsg(receiver, msg) ;

Before each RPC, a locateserver (“sn”,
buddy, imp) call is issued to the LS to return the
location of the server and the name of its buddy. The
server location is stored in imp and the buddy name is
stored in buddy.

The fault-tolerant feature of the system is completely
hidden from the user. For this example, all the remote
procedure calls from the client program will be first
handled by the server. A nested RPC is issued if the
incomingcalliseither sf$storeMsg(receiver,

mm stat) or sf$forwardMsg(receiver,
msg 1. This is because the two RPC functions are
marked as Update in the SDF file. The nested RPC
will ensure that actions of the incoming call will be
made permanent on both the server and its buddy if
the call is successful, and no actions of the incoming
call will be performed if the call fails. Two other incom-
ing calls, sf$readMsg(receiver, msg) and
s f $1 is t M s g () , will be handled by the server only.

If the server fails (that is, the RPC to the server returns
an error), the client program will send the RPC to the
server’s buddy. The location of the buddy will be
determined by another call to the LS:

locateserver (buddy, "", imp)

where buddy is the server buddy’s name obtained
during the first call to the LS, and imp stores the
location of the buddy.

The cross-protocol communication is also hidden
from the user. All the interfaces to the protocol
converters (client-L& client-server, and server-LS) are
generated by the SDG (in the stub files) and used
automatically by the stubs. If a user only deals with the
RPC level, he or she will never notice the underlying
protocols used by the server and the client programs.

The termination of the server program also needs to be
mentioned. After the server program is started, it will run
forever unless the programmer kills its process, or there
exists a facility to terminate the server. Here we provide
a facility to do that job. We add a ‘remote shutdown’
procedure into the server, and allow the remote
shutdown of the server in the server program. Hence,
when the client driver calls the remote shutdown
procedure of the server, the server will shut down itself
and will exit from the system.

6. Remarks

A system for supporting fault-tolerant, open
distributed software development is described in this
paper. The system is simple, easy to understand and
use, and has the ability of accommodating multiple
communication protocols and tolerating server failures.
It also has the advantage of producing server and client
driver programs, and finally executable programs
directly from the server definition files. The system has
been used as a tool of distributed computing in both
third year and graduate level teaching, and has been
used by some students in their projects.

In tolerating server failures, similar efforts can be
found in the RPC systems that provide replicated server
facilities, such as NCA/RPC [13]. But in these systems,
the user, instead of the system, takes the responsibility of
maintaining and programming the functions for object
consistency. This is a difficult job for many programmers.

538 W. Zhou/Computer Communications 19 (1996) 528-538

The Argus system and other systems that maintain trans-
action atomicity also provide some sort of fault tolerance
for servers (guardians in the Argus), but their purpose is
to maintain the transaction atomicity, that is, if a server
fails the transaction may abort and it has no effect on the
accessed objects, and other transactions will not be
affected. Our approach in achieving fault tolerance is
similar to the approach used in the ISIS toolkit (of
course, ours is more simplified and less powerful). But
our system is simple, easy to understand and easy to use.
In our system, we provide a server buddy to tolerant the
server’s failure. When the server fails, the client, instead
of aborting, can access the server buddy to obtain the
alternative service. Also in our system, it is the system,
instead of the user, that is responsible of maintaining the
consistency of the managed objects.

Providing server and driver programs directly from the
server definition file (similar to the interface definition
files of other RPC systems) is also an interesting
characteristic of our system. It is related to the rapid
prototyping of RPC programs [25]. The driver programs
are simple, but have the advantages of testing the
executability of the RPC program immediately after
the designing of the SDF file. It is especially useful if
the user makes some changes in the SDF file or the
procedure file. In that case, these changes will be
automatically incorporated into other related program
files if the program is re-generated by the stub and driver
generator. This will avoid a lot of trouble in the
maintenance of consistency of program files.

References

111

121

[31

[41

151

[61

D. Cerutti, The network is computer, in D. Cerutti and D. Pierson
(eds.) Distributed Computing Environments, McGraw-Hill, New
York, 1993, pp. 17-26.
B.N. Bershad, D.T. Ching, E.D. Lazowska, J. Sanislo and
M. Schwartz, A remote procedure call facility for interconnecting
heterogeneous computer systems, IEEE Trans. Software
Engineering, 13(2) (August 1987) 880-894.
W. Zhou, A remote procedure call interface for heterogeneous
computer systems, Proc. Open Distributed Processing Workshop,
Sydney, Australia, January 1990.
Y.-M. Huang and C.V. Ravishankar, Designing an agent
synthesis system for cross-rpc communication, IEEE Trans.
Software Engineering, 20(3) (March 1994) 1888198.
M. Boari, M. Ciccotti, A. Corradi and C. Salati, An integrated
environment to support construction of reliable distributed
applications (CONCORDIA), in Parallel Processing and
Applications, Elsevier, Amsterdam, 1988, pp. 467-473.
A. Mili, An Introduction of Program Fault Tolerance, Prentice-
Hall, Englewoods Cliffs, NJ, 1990.

171 A. Avizienis, N-version approach to fault-tolerant software, IEEE
Trans. Software Engineering, ll(12) (December 1985) 1491-1401.

[8] B. Randell, System structure for software fault tolerance, IEEE
Trans. Software Engineering, l(2) (June 1975) 220-232.

[9] H. Hecht and M. Hecht, Fault-tolerant software, in Fault-Tolerant

Computing: Theory and Techniques, Vol. 2, Prentice-Hall, Engle-
woods Cliffs, NJ, 1986, pp. 658-696.

[lo] G.K. Gifford, Communication models for distributed
computation, in Distributed Operating Systems, Theory and
Practice, NATO AS1 Series Vol. F28, Springer-Verlag, Berlin,
Germany, 1986, pp. 147-174.

[l l] B.J. Nelson, Remote procedure call, Technical Report CSL-81-9,
Xerox Palo Alto Research Centre, May 1981.

[12] A.D. Birrell and B.J. Nelson, Implementation remote procedure
calls, ACM Trans. Computer Systems, 2(l) (February 1984)
39-59.

[13] L. Zahn, T.H. Dineen, P.J. Leach, E.A. Martin, N.W. Mishkin,
J.N. Pato and G.L. Wyant, Network Computing Architecture,
Prentice-Hall, Englewoods Cliffs, NJ, 1990.

[14] Sun Microsystems, RPC: Remote procedure call protocol
specification version 2 (RFC 1057) in Internet Network Working
Group Request for Comments, No. 1057, Network Information
Center, SRI International, June 1988.

[15] B. Liskov, Distributed programming in ARGUS, Comm. ACM,
31(3) (March 1988) 300-312.

[16] K.P. Birman and T.A. Joseph, Reliable communication in the
presence of failures, ACM Trans. Computer Systems, 5(l)
(February 1987) 47-76.

[17] K.P. Birman, A. Schiper and P. Stephenson, Lightweight causal
and atomic group multicast, ACM Trans. Computer Systems, 9(3)
(August 1991) 272-314.

[18] K. Lin and J.D. Gannon, Atomic remote procedure call, IEEE
Trans. Software Engineering, 1 l(10) (October 1985) 1126-l 135.

[19] W. Zhou, The SRPC (Simple Remote Procedure Call System)
Reference Manual, Department of Information Systems and
Computer Science, National University of Singapore, 1992.

[20] A. Sinha, Client-server computing, Comm. ACM, 35(7)
(July 1992) 77-98.

[21] J. Gray and A. Reuter, Transaction Processing, Morgan
Kaufmann, San Mateo, CA, 1993.

[22] M. Kong, T.H. Dineen, P.J. Leach, E.A. Martin, N.W. Mishkin,
J.N. Pato and G.L. Wyant, Network Computing System
Reference Manua,, Prentice-Hall, Englewoods Cliffs, NJ, 1990.

[23] B.N. Jain and A.K. Agrawala, Open Systems Interconnection:
Its Architecture and Protocols, Elsevier, Amsterdam, 1990.

[24] J.M. Purtilo and P. Jalote, A system for supporting multi-
language versions for software fault tolerance, Proc. 19th Int.
Symposium on Fault Tolerant Computing, Chicago, IL, 1989,
pp. 268-274.

[25] W. Zhou, A rapid prototyping system for distributed information
system applications, J. Systems and Software, 24(l) (1994) 3-29.

Wanlei Zhou received the BEng and MEng
degrees from Harbin Institute of Technology,
Harbin, China in 1982 and 1984, respectively,
and the PhD degree from the Australian
National University, Canberra, Australia in
1991. He is currently a Lecturer in the School
of Computing and Mathematics, Deakin
University, Geelong, Australia. Before

joining Deakin University, Dr Zhou was a pro-
grammer in Apollo/HP at Massachusetts,
USA, a lecturer at the National University of
Singapore, Singapore, anda lecturer at Monash

University, Melbourne, Australia. His research interests include dis-
tributed computing, computer networks, performance evaluation and

fault-tolerant computing.

