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A multi-layer feedforward neural network model based predictive control scheme is developed for a mul-
tivariable nonlinear steel pickling process in this paper. In the acid baths three variables under controlled
are the hydrochloric acid concentrations. The baths exhibit the normal features of an industrial system
such as nonlinear dynamics and multi-effects among variables. In the modeling, multiple input, single-
output recurrent neural network subsystem models are developed using input–output data sets obtain-
ing from mathematical model simulation. The Levenberg–Marquardt algorithm is used to train the pro-
cess models. In the control (MPC) algorithm, the feedforward neural network models are used to predict
the state variables over a prediction horizon within the model predictive control algorithm for searching
the optimal control actions via sequential quadratic programming. The proposed algorithm is tested for
control of a steel pickling process in several cases in simulation such as for set point tracking, disturbance,
model mismatch and presence of noise. The results for the neural network model predictive control
(NNMPC) overall show better performance in the control of the system over the conventional PI control-
ler in all cases.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

It has been known that many chemical industrial plants cause
environmental problems due to the usage of chemicals in their
production lines. One such industry is the steel pickling plant
which is a fundamental industry in Thailand and has long existed
and served the country’s steel demand. The steel pickling process
utilizes concentrated chemicals in the production lines and the
wastewater released from the process contains hazardous materi-
als and usually causes major environmental problems. Therefore,
production scheduling and control of this pickling process are inev-
itably needed to minimize the amount of hazardous material con-
tained in the released wastewater and also to maintain the
concentration of acid solution in the tanks in order to obtain the
maximum reaction rate at the same time.

The steel pickling process presents many challenging control
problems, including: nonlinear dynamic behavior; multivariable
interactions between manipulated and controlled variables and
constraints on manipulated and state variables. A number of con-
trol approaches and algorithms that are able to handle some of
the above process characteristics have been presented in the aca-
demic literature in recent years. Bequette [1] gives a review of
these various approaches such as the internal model approaches,
ll rights reserved.
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differential geometric approaches, reference system synthesis
techniques, including internal decoupling and generic model con-
trol (GMC), model predictive control (MPC) and also various special
and ad hoc approaches. Many of these approaches are not able to
handle the various process characteristics and requirements met
in industrial applications and some of the approaches can only
be applied for special classes of models.

MPC appears to be one of the general approaches which can
handle most of the common process characteristics and industrial
requirements in a satisfactory way. It also seems to be the ap-
proach which is most suitable for the development of a general
and application independent software, which is essential for the
development of cost-effective applications. However, the key in
the successful use of MPC in solving these process problems is
the existence of an accurate model. Chemical processes such as this
steel pickling process have been traditionally controlled using lin-
ear system analysis even though they are inherent nonlinear pro-
cess. However to obtain accurate model for the steel pickling
process and predicting its interacting and nonlinear behavior is
actually highly difficult.

Recently, neural networks have been successfully applied in the
identification and control of nonlinear processes. Neural networks
offer alternative nonlinear models for implementing MPC in indus-
trial systems [2–5]. Different ways of neural models being
embedded in MPC systems were reviewed by two recent surveys
[6,7]. It is noted that while neural network modeling and control
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Nomenclature

A area of operating tank
C concentration of HCl (mol/l)
C20 20% by weight concentration of HCl
F volumetric rate (l/min)
h height of operating tank (m)
k reaction rate constant
q amount of acid solution that stuck with samples
t time (min)

V volume of operating tank (m3)

Subscripts
w water
sp setpoint
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techniques are investigated for nonlinear systems, the current
methods proposed and tested by simulations and some implemen-
tations to laboratory rigs are mainly for single-input single-output
(SISO) systems [8,9]. Others applications of neural networks for
chemical process modeling and MPC have also been investigated
for SISO systems [10–13] but very few investigations into iterative
multistep neural network predictions in MPC based control for
MIMO chemical processes have been reported.

A multivariable neural network modeling and neural network
model predictive control (NNMPC) technique are investigated in
this paper for application to a steel pickling process which is com-
monly found in the steel industries of Thailand. The process in-
volves removal of surface oxides (scales) and other contaminants
out of metals by an immersion of the metals into an aqueous acid
solution, which consists of three acid baths in series. The highly
nonlinear dynamic behavior, multivariable in nature and interac-
tion between baths cause this process to be difficult to control by
conventional controllers. It is, therefore, the aim and contribution
of this work to apply an iterative multistep neural network predic-
tion model in a predictive control strategy for controlling such a
nonlinear system. To demonstrate the robustness of the proposed
control strategy, tests involving set point tracking with introduc-
tion of various disturbances including model mismatch and noise
are performed in these studies.

2. Process description

The steel pickling process consists of two major steps: pickling
and rinsing steps [14,15]. The purpose of the pickling step is to re-
move surface oxides (scales) and other contaminants on the metals
by an immersion of the metals into an aqueous acid solution. Met-
als are immersed in pickling baths, containing 5%, 10% and 15% by
weight of hydrochloric acid (HCl), respectively, in order to remove
the scales from the metals. The metals move counter current to the
Fig. 1. Flow diagram of pickli
acid stream. The reaction occurring in the pickling baths is as
follows:

FeOþ 2HCl! FeCl2 þH2O ð1Þ

Drag in–out pickling solution is removed from the metal surface
using rinsing water during the rinsing step, which consists of three
pure water baths. Here, the amount of drag out solution of each
bath is assumed to be equal to the amount of drag in solution.
The following assumptions are made for the purpose of this study.

� The system is supposed to be perfectly mixed and isothermal.
� All state variables are measurable directly.
� Density of liquid is assumed to be constant.
� The deterioration of pickling efficiency resulting from iron con-

centration is considered negligible.

Based on the above assumptions, the mathematical model of
the continuous steel pickling process (see Fig. 1) for the change
in volume and concentration can be derived for the pickling step
as follows:

Pickling step (occurring in the 5%, 10% and 15% HCl baths)

A
dh1

dt
¼ F2 � F1 � q ð2Þ

A
dh2

dt
¼ F3 � F2 � F11 ð3Þ

A
dh3

dt
¼ F5 � F3 � F10 ð4Þ

dðV1C1Þ
dt

¼ F2C2 � C1ðF1 þ qÞ � V1r1 ð5Þ

dðV2C2Þ
dt

¼ qC1 þ F3C3 � C2ðF2 þ F11 þ qÞ � V2r2 ð6Þ

dðV3C3Þ
dt

¼ qC2 þ F5C20 � C3ðF3 þ F10 þ qÞ � V3r3 ð7Þ
ng baths control system.



Table 1
Nominal operating conditions of the steel pickling process

A = 0.0729 (m2)
k = 3.267 � 10�4 (mol/(l min))
C20 = 6.034 (mol/l)
q = 5 � 10�3 (l/min)
F2 = 4.65 � 10�2 (l/min)
F3 = 9.16 � 10�2 (l/min)
F5 = 1.328 � 10�1 (l/min)
h1 i; h2 i; h3 i ¼ 0:205 (m)
C1 i ¼ 1:35 (mol/l)
C2 i ¼ 2:8 (mol/l)
C3 i ¼ 4:35 (mol/l)
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The meanings of all these variables are specified in the
nomenclature.

To complete the mathematical modeling of this continuous pro-
cess, the expression of the reaction rate (Eq. (1)) in the pickling
baths needs to be imposed. The reaction is assumed to be first or-
der neglecting the deterioration of pickling efficiency. Therefore,
the rate of reaction studied here solely depends upon acid concen-
tration as shown below:

ri ¼ kCi; i ¼ 1; . . . ;3 ð8Þ

where k is the reaction rate constant.
The normal operating conditions of the process used in our case

study can be seen in Table 1.
The objective of this work is to control the concentration of HCl

in all the pickling baths (C1, C2 and C3) to a desired set point by
manipulating inlet flows F2, F3 and F5 as illustrated in Fig. 1. Since
a neural network based model is used for the control, we will first
Prepare input/desired data for
training and cross validation

Design the structure of network
(the number of hidden layers and nodes
in hidden Layer, Activation function)

Set the initial weight

Train the network with training data sets
until MSE is less than specified value

Test the Network with validation dataset

Examine the desired MSE

Obtain the neural
network model

yes

Fig. 2. Procedure for obtaining feedf
describe the procedure for neural network modeling and its use for
control in the next section.

3. Neural network modeling

Neural networks have the advantages of distributed informa-
tion processing and the inherent potential for parallel computa-
tion. In many cases, when sufficiently rich data are available,
they can provide fairly accurate models for nonlinear controls
when model equations are not known or only partial state infor-
mation is available [16,17]. Due to their parallel processing capa-
bility, nonlinearity in nature and their ability to model without a
priori knowledge, neural networks can be used successfully to cap-
ture the dynamics of nonlinear and complex, multivariable sys-
tems. They, therefore, offer potential benefits in MPC strategies.

Although various types of neural network exist such as multi-
layer perceptron (MLP), radial basis function (RBF) network and
recurrent neural network (RNN), they consist of the same basic fea-
tures: nodes, layers and connection. In this work, multi-layered
feedforward network is used for the neural network since it is
one of the most popular and successful neural network architec-
tures suited to a wide range of applications in prediction, process
modeling and control. Since multiple output predictions are re-
quired, we have used the neural network in an iterative method
to predict the multiple future values to be used in the MPC
strategy.

3.1. Procedure for obtaining feedforward neural network models

The detailed procedures to find the feedforward neural network
models for the various baths are summarized in Fig. 2. In the data
Set the new network structure
by changing the number of hidden
layer sand nodes in hidden Layer

Reinitialize weight
yes

no

no

orward neural network models.
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Fig. 4. Multivariable NNMPC strategy.
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preparation, training and validation data sets are obtained by
selecting appropriate excitation signals from the simulation of
the steel pickling process models by solving Eqs. (2)–(7). These
equations are solved to obtain the process states according to var-
ious step changes in the manipulated variables, i.e., flow rates (F2,
F3 and F5). The excitation signals used to generate the testing data
sets for the neural network modeling are the manipulated vari-
ables that are changed with multilevel pseudorandom steps of
varying frequencies within the range of the operating conditions
of the process, with a sampling time of 0.5 min. These step pertur-
bations have to be of sufficient excitation to predict the nonlinear
dynamics of the system. Details of the training procedure to model
nonlinear systems are explained in [18,19]. Various data sets are
then selected as the training data set (to design the neural network
model) and as the validation data set (data sets use to validate
these networks after training). Mathematically, these RNN models
can be expressed as the function of inputs as shown below:

NN model for the pickling baths:

5% HCl bath:

C1ðkþ 1Þ ¼ f F2ðk� 1Þ; F2ðkÞ;C2ðk� 1Þ;C2ðkÞ;C1ðkÞð Þ ð9Þ

10% HCl bath:

C2ðkþ 1Þ ¼ f F2ðk� 1Þ; F2ðkÞ; F3ðk� 1Þ; F3ðkÞ;C1ðk� 1Þ;ð
�C1ðkÞ;C3ðk� 1Þ;C3ðkÞ; C2ðkÞÞ ð10Þ

15% HCl bath:

C3ðkþ 1Þ ¼ f F3ðk� 1Þ; F3ðkÞ; F5ðk� 1Þ; F5ðkÞ;C2ðk� 1Þ;ð
�C2ðkÞ;C3ðkÞÞ ð11Þ

The inputs to the neural network selected are the previous and
current value of the input variables which effect the output state
variable in each bath. The data sets need to be scaled in order to
overcome the significant minimum and maximum values used in
the training process. Raw process data generated earlier are scaled
down linearly to between 0.05 and 0.95 to avoid obtaining zero
outputs and an infinite gain network.

In the neural network design, suitable neural network structure
or configuration needs to be selected. The important aspects to
consider are the number of hidden nodes, layers and transfer func-
tion used in the neural network. In this work, we use the sigmoidal
function as the activation function of the nodes in the hidden layer
and linear function neurons in its output layer. The defined neural
Fig. 3. Validation of the 15% HCL bath using th
networks are trained with the Levenberg–Marquardt algorithm in
the MATLAB neural network toolbox where the common objective
is to reduce the error between the neural network predicted value
and the actual targeted value. The training is switched between the
train and test data and the training stops when the desired mean
squared error (MSE) reaches the specified value of 10�6 for both
cases. The MSE is expressed mathematically as

MSE ¼ 1
n

Xn

k¼1

FtgðkÞ � FNðKÞ
� �2 ð12Þ

where n is the number of data, Ftg is the target/desired flow value
and FN is the neural network output.

After training, the trained neural networks are validated by use
of the validation data sets. If the validation routine is not satisfac-
tory, the neural network is not properly trained and requires more
training. This can be done first by re-initializing the weights and
biases and to re-train the neural network for the next loop. Recon-
figuring the neural network architecture can also help to increase
the quality of the neural network simply by increasing or decreas-
ing the number of hidden nodes.

In this work, the optimum structures are selected by the mini-
mum MSE method. The hidden nodes are varied in various quanti-
ties. The MSE error is then monitored and the one that corresponds
to the minimum MSE value is selected for determining the final
number of hidden nodes. The number of hidden nodes selected
for each model are 4, 4 and 8, respectively, and therefore, the struc-
ture of the neural network models for the 5% HCl bath, 10% HCl
bath and 15% HCl bath are 5:4:1 (inputs:hidden layer nodes:out-
put), 9:4:1 and 7:8:1, respectively. The validation of the neural net-
work model (7-8-1 configuration) for the 15% HCL bath can be seen
in Fig. 3 which shows excellent accuracy. Only one bath is shown
since the others are of similar accuracy.
e neural network model (7-8-1 network).
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4. Neural network model based predictive control

The neural network MPC strategy developed in this work is
shown in Fig. 4. In this approach the neural network model is used
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F2(k)

C2(k-1)
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C1(k)
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Fig. 5. (a) Iterative method using neural network to obtain C1, (b) iterative method using n
to predict future outputs several steps in future over the prediction
horizon (p). The output from the first prediction, C(k + 1) will be
used as inputs for the next prediction in predicting C(k + 2). With
this iterative procedure, we can predict the multiple output P steps
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eural network to obtain C2 and (c) iterative method using neural network to obtain C3.
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in the future as shown in Fig. 5a–c. Other inputs are obtained as
from the previous values. This iterative method for predicting the
future values is considered more stable than utilizing multiple
neural networks to perform these predictions [7,18]. After that
the predicted outputs are passed to an optimization routine which
produce the present and future control signals

Fjðkþ 1Þ; . . . ; FjðkþmÞ
� �

ð13Þ

They are selected by ensuring that the sum of squares of the er-
rors between the predicted outputs and the setpoint values evalu-
ated over the prediction horizon (objective function, Eq. (14)) will
be minimized. The objective function of the predictive control
strategy has the form as follows:

minFjðkþ1Þ;...;FjðkþmÞ
X3

Ci¼1

Xp

l¼1

Wikð½Cspiðkþ 1Þ � Ciðkþ lÞjk�Þk2 ð14Þ

Subject to

ðFjÞmin � Fjðkþ lÞ � ðFjÞmax; l ¼ 1; . . . ;m j ¼ 2;3 and 5

where p is a parameter specifying the prediction horizon; Cspi is the
required set point of each bath, Ci is the concentration in each bath,
with the ith element specifying the parameter for the corresponding
bath and Wi is weighting parameter used to give different weights
to different squared tracking errors. If all variables in Eq. (14) are
in a similar range, then the choice of identity parameters may
suffice.

Various trials have been done through simulations to find the
set of suitable control parameters, i.e., values for the parameters,
p; m (control horizon) and Wi for this strategy. The choice of p in-
cludes an equal number of future predictions of each output in the
objective function where p is set at eight in this case. Wi is chosen
as the identity vector because the outputs of process are scaled be-
fore they are use in the network process model. The control hori-
zon (m) is set as two. Sequential quadratic programming is used
to solve the multivariable optimization problem by minimizing
the objective function in Eq. (14) with respect to Fj and to produce
a solution constrained within the process input operating ranges.
Similar objective function and approach has been used in other
nonlinear multivariable systems [20].

At each sample interval, although the solution of Eq. (14) yields
a vector of future control moves (Fj(k + m)), only the first one
(Fj(k + 1)) is implemented. The other elements of the solution vec-
tor are disregarded as in a receding horizon method. A summary of
the operation of the NNMPC algorithm, which was implemented in
MATLAB and used to control the steel pickling process simulation,
is given below. At each sample interval (Fig. 4)

(1) Sample the process outputs, CiðkÞ; i ¼ 1; . . . ;3.
(2) Use the NN process models which are developed in Section 3

to predict the next P values of the process outputs,
Ciðkþ 1Þ; . . . ;Ciðkþ 1þ pÞ (iterative prediction).

(3) Use the process outputs, Ciðkþ 1Þ; . . . ;Ciðkþ 1þ pÞ which
are predicted in step 2 to calculate the set of manipulated
variables ½Fjðkþ 1Þ; . . . ; FjðkþmÞ�, using the sequential qua-
dratic programming procedure (SQP). In SQP procedure,
the steps 2 and 3 are iterative at each sample time.

(4) Implement Fj(k + 1), j = 2, 3 and 5 to adjust the concentration
of HCl in the baths to the desired set points.
5. Simulation results

The multivariable NNMPC strategy is initially applied to control
the concentration of HCl in the 5% HCl, 10% HCl and 15% HCl bath
to the normal values of 1.40 (5% by weight HCl), 2.87 (10% by
weight HCl) and 4.41 (15% by weight HCl) mol/l by adjusting the
manipulated variables F2, F3 and F5, respectively. The simulations
are divided into four cases of control studies, which are the set
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point tracking case, disturbance case, model mismatch case and
noise case, respectively.

For the set point tracking case, the controllers are designed to
bring the concentration of HCl in each bath to the desired value
from initial values of pH 1.2, pH 2.7 and pH 4.2 for the 5%, 10%,
and 15% baths, respectively. The desired set points are set at
1.40, 2.87 and 4.41 mol/l and changed to 1.35 and back to
1.4 mol/l for the 5% HCl bath, 2.77 and back to 2.87 mol/l for the
10% HCl bath and 4.35 and back to 4.41 mol/l for 15% HCl bath at
the 10th and 25th minutes, respectively. The control results as in
Fig. 6 show that, although there exists effects among input and
output variables of the acid baths, suitable control has been found
to drive the process response to follow the set points without over-
shoot and oscillations. The satisfactory performance obtained is
Fig. 6. Set point tracking with NNMPC control for HCl acid concentration, under norma
due to the accurate representation of the nonlinear dynamics of
the process by these neural network models. For comparison, three
PI controllers have been designed for the three loops within the
process. The controllers are designed using the Ziegler–Nichols
closed loop method around one operating point and with subse-
quent fine tuning. The maximum and manipulated flow rate is lim-
ited to a value of 2 l/min, which is based on the pump flow rate
limit. The control of HCl concentration in the three baths using PI
show poor performances as displayed in Fig. 7 because of the non-
linear dynamics exhibited by these baths. They show overshoot of
the controlled variables and sluggish adjustment of the manipu-
lated variables. The control of the 15% bath using the conventional
MPC method (m = 2, p = 8) can be seen in Fig. 8 for a single set
point. It can be seen that the MPC provided slow response and
l conditions (m = 2, p = 8); (a) 5% HCl bath, (b) 10% HCl bath and (c) 15% HCl bath.



Fig. 7. Set point tracking with PI control for HCl acid concentration: (a) 5% HCl bath, (b) 10% HCl bath and (c) 15% HCl bath.
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overshoot due to its heavy dependence on the accuracy of the con-
ventional model used.

For the disturbance case, a change in the concentration of the
stream F5, C20 is introduced by randomly increasing and reducing
its nominal operation values by 15%. Fig. 9 shows the results of
the NNMPC and PI control for the 15% HCl bath with the introduc-
tion of these disturbances. It can be seen from Fig. 9 that the
NNMPC strategy brought the concentration to the required value
by gradually increasing the flow rate of F5, while the PI control
bring the concentration to the set point by sudden adjustment of
the F5 flow rate which in turn cause overshoot in the process re-
sponse. Relatively, similar results are obtained in the 5% and 10%
HCl bath. Table 2 summarizes the IAE values using the NNMPC
and PI control for the three baths. They indicate that the NNMPC
give smoother and better control performance than the PI control-
lers with smaller IAE error values, when disturbances are intro-
duced into the system.

For the model mismatch case, the rate of reaction in the acid
bath is considered as the model mismatch in parameter. The model
mismatch is introduced by randomly increasing and reducing the
kinetic rate constant from its nominal value by 15%. Fig. 10 shows
the results of the NNMPC and PI control in this case. The figures
illustrate that the NNMPC strategy brought the concentrations to
the set points by gradual increase of the flow rate of F5 which give
smooth control response. The PI control in turn brought the con-
centration to the set point by rigorous adjustment of the F5 flow
rate causing overshoot in the process response with a long re-
sponse time. Relatively, similar results are obtained for the 5%
and 10% HCl bath and are not shown here. Table 3 shows the IAE
values of NNMPC and PI control for the three baths. They indicate
that NNMPC gives less error and gives better control performances
than the PI controllers, similar to the disturbance case study.

For the case in the presence of noise, noises accounting to 2%
random values from the output measurement are introduced into
the system to further test its robustness and performance of the
NNMPC approach under real situations. The results in Fig. 11 show
that the NNMPC strategy can control the system and bring the con-
centration to the desired value, while the PI control can only bring



Fig. 9. Concentration control in 15% HCl bath under the disturbance case: (a) NNMPC control and (b) PI control.

Table 2
Performance comparison between NNMPC and PI control under the disturbance case

Bath IAE values

NNMPC PI

5% HCl bath 0.223 0.355
10% HCl bath 0.266 0.332
15% HCl bath 0.220 0.421
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the concentration to the set point by rigorously adjusting the F5

flow rate causing overshoot in the process response and large devi-
ations and oscillations in the controlled variable. Table 4 shows the
IAE values of NNMPC and PI control for the three baths under noise
effects. These results show that the NNMPC model method has less
perturbations and oscillations when dealing with noise as com-
pared to the PI controllers. These results also show the robustness
of the neural network models in dealing with disturbances and
noises not encountered by it during training of the models.

Comparison is also made for the NNMPC using different control
and prediction horizons for set point tracking under nominal con-
ditions. It can be seen in Fig. 12 that increasing the control horizon
increases the overshot with more drastic control actions. However
as seen in Fig. 13 decreasing the prediction horizon will smoothen
the response with more sluggish control actions.



Fig. 10. Concentration control in 15% HCl bath under the model mismatch case: (a) NNMPC control and (b) PI control.

Table 3
Performance comparison between NNMPC and PI control under the model mismatch
case

Bath IAE values

NNMPC PI

5% HCl bath 0.218 0.356
10% HCl bath 0.266 0.331
15% HCl bath 0.130 0.420

Fig. 11. Concentration control in 15% HCl bath under presence of noise: (a) NNMPC control and (b) PI control.

Table 4
Performance comparison between NNMPC and PI control under presence of noises

Bath IAE values

NNMPC PI

5% HCl bath 0.350 0.410
10% HCl bath 0.304 0.471
15% HCl bath 0.278 0.375
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Fig. 12. Concentration control in 15% HCL bath for NNMPC control with m = 4 and p = 8.
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Fig. 13. Concentration control in 15% HCL bath for NNMPC control with m = 2 and p = 4.
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6. Conclusions

The application of a neural network model based predictive
controller to a nonlinear multivariable chemical process is investi-
gated. Since the real chemical processes are nonlinear and multi-
variable interacting systems, which make them difficult to
control by using conventional controllers, model based advance
control techniques are then required to obtain tighter control.
However, in many cases it is even impossible to obtain a suitable
process model due to the complexity of the underlying processes
or the lack of knowledge of critical parameters of the models. So
in this work, the multi-layer feedforward neural network is used
to model the steel pickling process which is highly nonlinear and
involves multivariable interactions in nature. The neural network
models are used to predict the future process response in the
MPC algorithm for controlling the concentrations of pickling in a
steel pickling process. It was observed that NNMPC can bring the
control variables to their set points without oscillations in all cases
studies, i.e., set point tracking case, disturbance case, model mis-
match case and noise case. Comparison of performance with the
conventional PI controller indicated that NNMPC was more robust
than the PI controller and gave better results in cases involving dis-
turbances, model mismatches and noise. These results validate the
robustness of the NNMPC controllers which make them highly
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promising to be implemented in nonlinear multivariable interact-
ing systems such as this steel pickling process.
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