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The  prediction  of  multivariate  time  series  is one  of the  targeted  applications  of  evolutionary  fuzzy  cogni-
tive maps  (FCM).  The  objective  of  the  research  presented  in this  paper  was  to  construct  the  FCM  model  of
prostate  cancer  using  real clinical  data  and then  to  apply  this  model  to  the  prediction  of  patient’s  health
state. Due  to  the  requirements  of  the  problem  state,  an  improved  evolutionary  approach  for  learning  of
FCM model  was  proposed.  The  focus  point  of the  new  method  was  to  improve  the effectiveness  of long-
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uzzy cognitive maps

term prediction.  The  evolutionary  approach  was  verified  experimentally  using  real  clinical  data  acquired
during  a period  of  two years.  A preliminary  pilot-evaluation  study  with  40  men  patient  cases  suffering
with  prostate  cancer  was  accomplished.  The  in-sample  and  out-of-sample  prediction  errors  were  cal-
culated  and  their  decreased  values  showed  the justification  of the  proposed  approach  for  the  cases  of
long-term  prediction.  The  obtained  results  were  approved  by physicians  emerging  the  functionality  of
the proposed  methodology  in  medical  decision  making.

©  2012  Elsevier  B.V.  All rights  reserved.
. Introduction

There are many knowledge representation methods known as
onnectionist methods [1].  From the point of view of their relation-
hips to source data at least two approaches to their construction
an be distinguished.

The first type of networks possesses input and output nodes
hat represent data acquisition places and control points within
roblem environment respectively. As an example of such type
f networks, we would like to mention artificial neural networks
ANN). They consist of input, output and hidden nodes (neurons).
he main task of ANN is the approximation of function between
nput and output nodes. The ANNs represent a black-box function
etween input and output nodes, the relationships between nodes
o not follow any interpretation issue.
Please cite this article in press as: W.  Froelich, et al., Application of e
prostate cancer, Appl. Soft Comput. J. (2012), doi:10.1016/j.asoc.2012

The second type of networks could be called as conceptual struc-
ures [2].  The intention of constructing conceptual structures is the
epresentation of relationships between concepts. The nodes that
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represent concepts and the arcs that represent relationships are
able to follow semantical interpretetion. The construction of con-
ceptual networks could be accomplished on diverse levels of data
abstraction. For example, the ontologies are built on symbolic level
and are easily interpreted by humans.

One of the directions of research on conceptual structures is the
modeling of cause-and-effect relationship. In spite of years of intu-
itive and formal analysis, modeling of causality is still raising the
interest of researchers. The main motivation is the expectation that
the causal relationship, hidden in data reflect some stable mecha-
nisms that can be discovered and applied for making predictions.
Recently, the representation of causal relationships in the form of
FCM is among the most active directions of research [3–6]. Due
to their simplicity, supporting of inconsistent knowledge, and cir-
cle causalities for knowledge modeling and inferring, FCMs have
found large applicability to many diverse scientific areas [7,6,8,5].
The works of Stach et al. [12] and Song et al. [21] addressed the
problem of multivariate time series prediction.

In this paper, our interest is focused on a conceptual structure
and soft computing methodology which is FCM as proposed by [9].
FCM is represented by a graph with nodes representing concepts
and directed arcs representing causal relationships between nodes.
volutionary fuzzy cognitive maps to the long-term prediction of
.02.005

The FCM model exposes some similarities to ANNs. However, the
main difference is the semantics. The FCM model is transparent in
such meaning, that every node and edge within the FCM graph can
be interpreted by a human. The FCM represents common-sense
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Fig. 1. The semantics of FCM.

nowledge about the causal dependencies within the domain of
nterest, moreover every node and edge can be interpreted within
he raw data.

The problem of prediction of patient state suffering from
rostate cancer, according to a therapy plan, was the main motiva-
ion of our investigations. A requirement of long-term prediction
mposed by our application led to the effort that we undertook. The
oal was to improve the long-term predictive capabilities of FCM
y using evolutionary-based learning method.

This paper is organized as follows. In Section 2, the theoretical
ackground of FCMs is presented. Section 3 gives an inside to the
edical problem considered in our study. The prediction problem is

ormalized in Section 4, whereas the theoretical contribution of the
aper is described in Section 5. Section 6 includes the description of
omputational experiments discussing the results that justify our
heoretical approach.

. Fuzzy cognitive maps – the theoretical background

Fuzzy cognitive maps constitute an extension of cognitive maps,
nheriting the main aspects of fuzzy logic and neural networks.
hey were introduced by Kosko [9] as signed directed graphs for
epresenting causal reasoning and computational inference pro-
essing, exploiting a symbolic representation for the description
nd modeling of a system. They describe particular domains using
odes/concepts (variables, states) and signed fuzzy relationships
etween them. The exemplary graph of FCM with 3 concepts and

 arcs is shown in Fig. 1. The concepts can be mapped to cer-
ain observables measured at time steps t1, t2, t3. For instance, the
oncept c1 can be identified by the detection of bacterial cells in
lood, c2 can be mapped to the body temperature, the concept c3
xpresses patient’s complaints, e.g. ‘headache’, it assumes symbolic
alues. At the same time, apart from the type of values (numerical
r symbolic) every concept within FCM can be interpretable within
emporal data as it was sketched in Fig. 1.

Formally, the concepts within the FCM are defined [9] as fuzzy
ets. Let C denotes the vector of concepts ci. Each concept ci is under-
tood as a fuzzy union: ci = qi ∪ ¬ qi, where qi is a fuzzy set and ¬qi
s its complement. The causal relationship is defined [9] for a pair
f fuzzy concepts ci and cj. The positive causal relationship ci→ cj
Please cite this article in press as: W.  Froelich, et al., Application of e
prostate cancer, Appl. Soft Comput. J. (2012), doi:10.1016/j.asoc.2012

+
olds if qi ⊂ qj and ¬qi ⊂ ¬ qj, where ⊂ denotes a fuzzy implication.
he negative causality ci→− cj is defined as ci→+ ¬cj .
 PRESS
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In practical applications [5] the FCM can be defined as an order
pair 〈C, W〉, where C is the set of concepts and W is the connec-
tion matrix that stores the weights wij assigned to the arcs of the
FCM. The concepts are mapped to the real-valued activation level
ai ∈ [0, 1]. The fuzzy interpretation of activation function a(ci, t) is
the degree in which the observation belongs to the concept (i.e. the
value of fuzzy membership function). In simplified case, the fuzzy
membership function can be assumed as linear within the domain
of the concept and it is exploited only in order to normalize the
originally observed values into the interval [0,1]. In other case, the
activation function maps the symbols that the concept assumes to
the corresponding numerical value. The values of concepts’ activa-
tions constitute the state vector A(t) of FCM. The concepts could be
activated in two ways:

1. by external to FCM stimuli that is simple a measurement or
observation of the problem environment,

2. by the influence of other neighborhood concepts within FCM (by
this way the forward reasoning is performed).

The causal relationship is represented as an arc within the graph
of FCM. The arcs between concepts are labeled with real-value
weights wij , where the value 1 denotes full positive and the value
−1 full negative causal impact between concepts. The intermediate
values reflect the approximate causal relationship. In general, the
FCM can work in two modes: reasoning mode or learning mode.

2.1. Reasoning with FCM

During the reasoning, the concepts interact with each other and
change their activation values. The reasoning is performed as a
numerical computation with the use of Eq. (1) [10]:

a(cj, t + 1) = f

⎛
⎝

n∑
i=1,i /=  j

wij · a(ci, t)

⎞
⎠ , (1)

where f(x) is the transformation function. Diverse types [11] of this
function can be used:

• bivalent: f(x) = 0, for x ≤ 0 ; f(x) = 1, for x > 0;
• trivalent: f(x) = − 1, for x ≤ − 0.5 ; f(x) = 0, for − 0.5 < x < 0.5 ; f(x) = 1,

for x ≥ 0.5;
• logistic: f(x) = 1/(1 + e−c(x−T)), where c and T are constant parame-

ters, usually set ad-hoc on the basis of repeating the experiments,
e.g. [12]: c = 5 and T = 1. The parameter c determines how quickly
the f(x) approaches the limiting values of 0 and 1. The parameter
T is used to move the transformation along the x axis.

The process of reasoning within FCM is equivalent to the one-
step prediction of state vector A(t). The iterative application of
Eq. (1) can lead to three types of behavior of the state vector: (a)
fixed-point attractor (the state vector becomes fixed after some
simulation steps); (b) limit cycle (the state vector keeps cycling);
or (c) chaotic attractor (the state vector changes in a chaotic way).

There are several proposals to modify Eq. (1).  The self-impact
of concepts can be achieved by resigning from the constraint i /= j
allowing to use the non-zero values on the diagonal of the matrix
W. The spurious influence of inactive concepts (with ai = 0) on other
concepts can be eliminated by using the following Eq. (2) [13]:

a(c , t + 1) = f

⎛
⎝

n∑
w · (2 · a(c , t) − 1)

⎞
⎠ . (2)
volutionary fuzzy cognitive maps to the long-term prediction of
.02.005

i=1,i /=  j

Previous FCM-based approaches for decision making and predic-
tion have assumed that the nodes with unknown activation values

dx.doi.org/10.1016/j.asoc.2012.02.005
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Table 1
FCM concepts describing prostate cancer.

Concept Observable Critical values

c1 HCT – hematocrit (o1) >28%
c2 WBC  – white blood cells (o2) >4000/dl
c3 PSA free – free prostate specific antigen (o3) 0.03 ng/dl
ARTICLESOC-1455; No. of Pages 8
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ould be assigned to zero activation. In these cases, the absolute
ifference between the actual value that is missing and the zero
alue is within [0, 1], and on average it could exceed 0.5. In this
aper, we attempt to reduce the effect of missing input values by
sing 0.5 instead of 0 in their place. This rescaled algorithm could be

mplemented especially for cases where there is no any information
bout the concept state.

Note that the existing reasoning equations perform only one
tep prediction of state vector A(t). The long-term (many steps in
ime) prediction can be accomplished by the iterative call of single-
tep reasoning made by Eq. (1) or Eq. (2).

.2. Learning FCMs

In most of the application domains, FCMs are constructed man-
ally, and therefore cannot be applied when dealing with real data
nd with a large number of variables. In such cases, their devel-
pment could be significantly affected by the limited knowledge
nd skills of the knowledge engineer. Thus, it could be useful to use
ata driven algorithms to learn FCMs. In most known approaches
o learning FCMs, the set of concepts C is provided a priori by
n expert, and only the matrix W is learned. The goal of learn-
ng is the adjustment of weights stored in matrix W in order to
chieve certain dynamic or predictive property. There are three
nown approaches to learning FCMs, i.e. adaptive (mainly based
n Hebb-rule), population-based and hybrid that combine adaptive
nd population-based approaches [4].

The adaptive approaches can be employed by the most known
lgorithms: DHL [14], BDA [15], AHL [16], NHL [17]. As an exam-
le we recall the idea, how the adaptive DHL algorithm works. For
very concept, the difference of activation values in consecutive
ime steps is computed, �a(ci, t) = a(ci, t) − a(ci, t − 1). During learn-
ng, the activation values are acquired from learning data (that are
he exemplary sequences of state vector), as an external stimuli
or the concepts. If �a(ci, t) /= 0 then the concept is assumed as a
otential cause of change of state of other concepts.

For every pair of concepts 〈ci, cj〉 within FCM the correspond-
ng weight is changed: wij(t + 1) = wij(t) + �(t)[�a(ci, t)�a(cj, t) −

ij(t)], where �(t) = 0.1[1 − (t/1.1q)], q∈ ℵ. In order to assure that
he weights do not fall beyond the interval [− 1, 1], the value of q is
ssigned to the number of learning steps.

The existing population-based approaches to learn FCMs are:

. RCGA (real coded genetic algorithm) [12],

. PSO based algorithm (applies particle swarm optimization
method) [18],

. Simulated annealing optimization based algorithm [19],

. Deferential evolution based algorithm [20].

or the purposes of this paper and for comparison reasons with
he improved method, we apply the evolutionary RCGA approach.
herefore we present here the main aspects of it. The RCGA cre-
tes the population of chromosomes (genotypes); each of them is a
ector of weights of a candidate FCM. The goal of the evolutionary
lgorithm is to optimize the matrix W with respect to the predictive
apability of FCM. The populations of candidate FCMs are iteratively
valuated with the use of fitness function given in Eq. (3) [8]:

tness (FCM) = ˛
, (3)
Please cite this article in press as: W.  Froelich, et al., Application of e
prostate cancer, Appl. Soft Comput. J. (2012), doi:10.1016/j.asoc.2012

ˇe + 1

here ˛,  ̌ are the parameters and e is the prediction error. The fit-
ess function assess the quality of every candidate FCM within the
c4 PSA total – total prostate specific antigen (o4) 0.05 ng/dl
c5 PSAf/PSAt – ratio PSA (o5) > 0.2
c6 PAP – prostatic acidic phosfatase (o6) <3.5 ng/ml

population. It evaluates the FCM using the cumulative prediction
error [12] stated by Eq. (4):

e  = 1
(K − 1) · n

·
K−1∑
t=1

n∑
i=1

|a(ci, t) − a′(ci, t)|q, (4)

where t ∈ 〈0, 1, 2, . . .,  K − 1〉, K is the length of the learning sequence,
n = card(C)-is the number of concepts, q is the parameter equal to
1 [22] or 2 [8],  a(ci, t) is the value of ith concept at the time t, a′(ci,
t) is value of ith concept at the time t generated by the candidate
FCM, using the reasoning Eq. (2).  As can be noticed, the cumulative
prediction error is averaged over the set of concepts and the number
of steps within the learning sequence. In fact, the prediction errors
are calculated between the learning data given as the examples of
state vector A(t) and the state vector A′(t) predicted by the candidate
FCM.

3. Medical background

Prostate cancer is the most common noncutaneous cancer and
the second-leading cause of death from cancer in men  in the
country-region place United States [23]. In 2006, it was  estimated
that more than 234,000 men  were diagnosed with prostate cancer;
in more than 27,000 cases, it was the cause of death [23]. Because
prostate cancer is prevalent in many countries and exhibits a wide
spectrum of aggressiveness, different methods of treatment have
been developed, and the preferred methods for detection and treat-
ment are controversial. The prevalence of prostate cancer increases
strikingly with age. Autopsy studies have documented microscopic
foci of prostate cancer in about one-fourth to one-third of men  in
the fourth and fifth decades of life and in more than three fourths in
the ninth decade. Yet, a disproportionately lower but still substan-
tial number of men  (about one in six) are diagnosed with prostate
cancer during their lifetime [24]. Because of the effective treat-
ment of some prostate cancers and the biologic indolence relative
to life expectancy of others, only about 16% of men diagnosed with
prostate cancer ultimately die of it [23].

Since the 1980s, the methods of diagnosis of clinically local-
ized prostate cancer have changed. Widespread screening with
serum prostate-specific antigen (PSA) and digital rectal examina-
tion (DRE) has allowed earlier detection [25–28].  Specifically, we
analyze and evaluate the prediction of patient state according to the
therapy plan change that a physician suggests. Among the various
parameters obtained, the selection of six of them, for each quar-
ter was  decided by our physicians-urologists to be adequate. The
parameters chosen for the purposes of this study were: Hemat-
ocrit (HCT), White Blood Cells (WBC), free Prostate Specific Antigen
(PSA free), total Prostate Specific Antigen (PSA total), ratio PSA (i.e.
PSAfree/PSAtotal) and Prostate Acid Phosphatase (PAP).

A physician evaluates these values comparing them both to
critical values (see Table 1) and values obtained during previous
measurements, to assign an important decision for therapy plan
volutionary fuzzy cognitive maps to the long-term prediction of
.02.005

change. Thus, in this study, data of HCT, WBC, PAP and serum PSA
data, including the total PSA level, the rate of change of PSA (PSA
velocity and doubling time), the PSA density (serum PSA divided
by prostate volume), and the percentage of PSA in the free or

dx.doi.org/10.1016/j.asoc.2012.02.005
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Table 2
Exemplary medical data.

Time Hct WBC  PSA free PSA total PSAf/PSAt PAP

1 quarter 41.7 6000 0.21 5.64 0.037234 1.7
2  quarter 42 6500 0.15 3.1 0.0483871 1
3  quarter 41.1 6700 0.1 1.5 0.0666667 0.6
4  quarter 40.6 6210 0.03 0.11 0.2727273 0.6
5  quarter 40 6100 0.03 0.05 0.6 0.5
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6  quarter 42.6 7550 0.03 0.05 0.6 0.5
7  quarter 44 6000 0.03 0.05 0.6 0.5
8  quarter 42.1 6200 0.03 0.05 0.6 0.5

omplexed isoforms, were used to predict the patient state after
 period of time (approximately from one to three years). A
etectable or rising serum PSA after treatment is an important
actor to change or not the therapy plan of the patient. Thus,
ccording to this information, the physicians proceed to a new
reatment plan, or keep the previous one, till the next patient exam-
nation. After this period the examined patient data confirm the
ndividual patient state. Data for 40 men  patients suffered pre-
iously with prostate cancer were collected and examined in a
ilot evaluation study. The mean age of the examined patients was
5.3 ± 11.06 (average ± std dev). The 22 of them underwent radi-
al prostatectomy, meanwhile the rest 18 didn’t. The parameter of
ge and the concurrent diseases, concerning lungs or heart prob-
ems, guide to a decision of avoiding surgery. None of the patients
as undergone radiation therapy. The treatment protocol that the
hysicians followed, was the proposed one by the European Asso-
iation of Urologists [29], based on the combing antiandrogens and
HRH agonists for complete androgen deprivation and aminog-
utethimide on those who were suffering from hormone refractory
rostate cancer. Table 2 illustrates the measured data at each quar-
er for the two years period of a randomly selected patient from the
vailable dataset.

Our main consideration was to concentrate on the variations of
SA free and total, so as to predict the patient status according to
he real measurements following an appropriate therapy for the
eriod of all 8 quarters (two years) [24].

. Problem formulation and assumptions

For the prediction problem addressed in this paper the follow-
ng notation is introduced. Let C be a finite set of concepts, and

 = card(C) be its cardinality. Every concept is uniquely identified
y its subscript, i.e. ci ∈ C. Let T = {t1, t2, . . .,  tm} be an ordered set of
ime labels. As defined in Section 2, at every time step the concepts
re mapped to their activation values a(ci, tk), where i ∈ [1, n], k ∈ [1,
]. Let F(t1, m)  = A(t1), A(t2), . . .,  A(tm) be the temporal sequence

f FCM state vectors within which the prediction problem is con-
idered. In medical domain, the parameter m is interpreted as the
enght of the patient’s therapy.

Suppose A(ts) is the currently observed state vector and the fol-
owing sequence F(ts+1, h) = A(ts+1), A(ts+2), . . .,  A(ts+h) is considered
o be predicted by the FCM. Let A′(ts+1) be the first state vector pre-
icted by the FCM, the predicted sequence is denoted as F′(ts+1, h).
he prediction horizon h∈ ℵ is a parameter. It is expected that the
CM will enable the prediction formulated by Eq. (5):

s ≤ k < s + h.A′(tk+1) ≈ FCM(A(tk)). (5)

he sign ≈ denotes approximated equality. For the purposes of this
tudy we assume that:
Please cite this article in press as: W.  Froelich, et al., Application of e
prostate cancer, Appl. Soft Comput. J. (2012), doi:10.1016/j.asoc.2012

in case of h = 1, Eq. (5) defines the problem of short-term predic-
tion,
otherwise, for h > 1, Eq. (5) is considered as the long-term predic-
tion problem.
 PRESS
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Independent of the value of h and the lenght of F(ts+1, h), due
to the prediction errors, it is obvious that: A′(ts+1) /= A(ts+1) and
F′(ts+1, h) /= F(ts+1, h), for every ts+1. As the prediction is usually
used in broader horizon, it is assumed that F(ts+1, h) ⊂ F(t1, m),  s ≥ 1,
s + h ≤ m.  In consequence of prediction errors, the entire sequence
that should be predicted differs from this that occurs in reality, i.e.
F′(t1, m)  /= F(t1, m).

Let us also notice that especially in medical domain the consid-
ered logical time scale T plays a special role. Every current state of
patient’s health depends always on the previous state. The assign-
ment of time labels ti to a particular real-time moments t depends
on diverse medical factors, e.g. the type and state of the disease,
the age of a patient. Therefore, for the purposes of this research we
assume that this mapping is done by physicians/urologists on the
basis of their long year clinical experience.

As it was stated in Section 3, the progress of prostate cancer is
quite slow and therefore the long-term prediction is a challenge
in medical science. The goal is to minimize the prediction errors
obtained within F′(ts+1, h), in the case of (h > 1). The value of predic-
tion horizon h is assigned by physicians according to the examined
problem. They actually determine whether they want to predict
a short-term reaction of human body or maybe some long-term
phenomena that occur and exhibit in longer period of time (means
after some days or after a number of measurements performed in
subsequent time steps as this happens in prostate cancer patients
after prostatectomy). In our case study the prediction horizon was
assigned by urologists who  wanted to predict the patient state after
a long period of time through the suggested therapy plan.

Summarizing, the problem that we address in this paper is the
construction of FCM model that enables the long-term prediction
of prostate cancer.

5. Learning FCM with long-term prediction capability

Firstly, let us notice, that the reasoning equations Eqs. (1) and (2)
(the latter is used in our study) accomplish always only short-term
prediction by assuming h = 1. To perform the long-term prediction
of F(ts+1, h) for h > 1, the reasoning equation has to be called itera-
tively. For example, at first time step, it is assumed that t = t1 and
A(ts) = A(t1), then Eq. (2) predicts A′(t2). To predict the next state of
the FCM, namely A′(t3), it can be assumed that A′(t2) = A(t2) and Eq.
(2) is called again. However, in fact A′(t2) /= A(t2). The predicted
value of A′(t2) should be used instead of the known A(t2) in order
to predict A′(t3). It is clear that by assigning A′(t2) = A(t2) the pre-
diction errors generated by the previous iteration are lost and do
not propagate over time. For long-term prediction the process is
repeated until A′(ts+h) is predicted.

Let us analyze now how the prediction errors are calculated by
Eq. (4).  At every time step t = tk, and for every concept ci, the value
of prediction error e is calculated as the averaged sum of differ-
ences between the known source data a(ci, tk) and the predicted
a′(ci, tk). In fact, Eq. (4) assumes that the value of state vector A(tk)
is known after performing one-step reasoning. This is equivalent
to the assumption that A′(tk) = A(tk) that leads to the previously
explained loss of prediction errors. By this way the predicted A′(tk)
is never used to predict the next states of concepts. Due to the
assumption of Eq. (4),  the propagation of errors is neglected during
the learning of FCM by all known adaptive and evolutionary algo-
rithms. This means that the existing FCMs are not optimized for
long-term prediction.

In our study, in order to overcome this problem, a new formula
volutionary fuzzy cognitive maps to the long-term prediction of
.02.005

for the calculation of prediction errors is proposed. As it is stated
in the problem formulation, the sequence F(ts, h) refers to the time
window that moves within the sequence F(t1, m),  beginning from
the first time step ts = t1 and finishing at the last possible step at

dx.doi.org/10.1016/j.asoc.2012.02.005
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interval.
• Eq. (11) was assumed as the reasoning equation for the FCM.
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ime ts = tm−h. The averaged cumulative prediction error, is now
alculated using Eq. (6):

 = 1
m − h

m−h∑
s=1

|F(ts+1, h) − F ′(ts+1, h)|, (6)

here the parameter m is the length of the entire learning or testing
equence. Given the known F(ts+1, h) and the predicted sequence
′(ts+1, h), both have the same length h, the prediction errors are
alculated straightforward using Eq. (7):

F(ts+1, h) − F ′(ts+1, h)| = 1
h

s+h∑
k=s+1

|A(tk) − A′(tk)|. (7)

q. (7) calculates the prediction errors averaged over the time inter-
al [ts+1, ts+h] throughout the sum of absolute differences of the
nown A(tk) and the predicted state vector A′(tk). Finally, the calcu-
ation of the difference between the state vectors is accomplished

ith the use of Eq. (8):

A(tk) − A′(tk)| = 1
n

n∑
j=1

|a(cj, tk) − a′(cj, tk)|, (8)

here n = card(C). Eq. (8) averages the prediction errors over the
umber of the considered concepts.

Concluding from the above analysis, the prediction errors should
e calculated for any given horizon h by Eq. (9):

 = 1
(m − h) · h · n

·
m−h∑
s=1

s+h∑
k=s+1

n∑
j=1

|a(cj, tk) − a′(cj, tk)|. (9)

n case of h = 1, Eq. (9) assumes the form of Eq. (4) that is well suited
or the estimation of single-step prediction errors (short-term pre-
iction).

However, in case of long-term prediction (such as in prediction
f prostate cancer), it is required that h = hmax and hmax > 1. In such
ase Eq. (9) assumes the form of Eq. (10):

 = 1
(m − hmax) · hmax · n

·
m−hmax∑

s=1

s+hmax∑
k=s+1

n∑
j=1

|a(cj, tk) − a′(cj, tk)|. (10)

In fact, Eq. (10) cumulates and averages the prediction errors
ade by FCM during the time period t1, t2, . . .,  tm and the predic-

ion is accomplished using hmax steps of iterative call of reasoning
quation. The value of hmax is determined by experts according to
he experimental/input data and problem state.

Summarizing, we propose the use of Eq. (10), for the calculation
f prediction errors. Eq. (10) is suggested to be used within the
tness function in Eq. (3),  for the purpose of evolutionary learning
f FCM. By this way it is possible to obtain the FCM that is universal
ith respect to h, for h ∈ [1, hmax].

Due to the fact that the measurements related to prostate can-
er were accomplished after a period of time, at different time
oments for every patient, there is a need for a logical time-

cale while learning and reasoning in FCMs. In most cases, the
ime of measurement was arranged by the physician/urologist, and
epended on the current state of the patient’s health. In fact, the
ynamics of cause and effect process depends on individual char-
cteristics of the patient. On the other hand, the intention of our
esearch is to generalize the causal dependencies over time, inde-
endently on the individual characteristics of the patient.

Therefore a logical time scale was introduced. The real time
Please cite this article in press as: W.  Froelich, et al., Application of e
prostate cancer, Appl. Soft Comput. J. (2012), doi:10.1016/j.asoc.2012

oments of measurements were mapped to the time labels defined
n the set T. By similar way as the physicians grouped the measured
ata, we mapped the time labels tk to the following quarters of year.
he mapping is shown in Table 2. The introduction of logical time
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scale led to the slight modification of Eq. (2) that assumed the form
of Eq. (11):

a(cj, tk+1) = f

⎛
⎝

n∑
i=1,i /= j

wij · (2 · a(ci, tk) − 1)

⎞
⎠ . (11)

The evolutionary learning algorithm was  applied for the con-
struction of FCM model. The genotype is the one dimensional
representation of matrix W of the candidate FCM, where the fol-
lowing rows of W are linearly ordered within the genotype. Using
Eq. (11) we assumed in fact that the diagonal of matrix W is not used,
therefore the length of the genotype is n2 − n, where n = card(C). A
general scheme of the applied evolutionary algorithm is presented
below.

1. Initialize randomly the first population of genotypes Px, x = 1.
2. Check the stopping criterion. If it is satisfied, the algorithm stops.
3. Select the individuals for reproduction, and move them to the

new population Px+1.
4. Use of the mutation and crossover operators to generate off-

springs.
5. Complete the population Px+1 with the offsprings.
6. Evaluate every individual using the fitness function in Eq. (3)

with Eq. (11).
7. Assign x = x + 1 and go to step 2.

The stopping condition of the algorithm is determined by the iden-
tification of the convergence of the evolution. The algorithm stops
when the value of fitness of the best individual during the previous
xprev iterations does not increase more than the value of the parame-
ter ı. Due to the considered rounding of the prediction errors (10−4)
the change of fitness below ı = 10−4 could not influence the errors
obtained during the experimental testing of the obtained FCM. If the
process does not converge, a second stopping criterion of algorithm
is checked related to the number of iterations. The algorithm stops
after reaching the maximum number of iterations xmax = 10,000.

6. Computational experiments

A pilot evaluation study with 40 patient cases was  accomplished
to show the functionality of the proposed approach for the long-
term prediction of prostate cancer. The experiments were prepared
based on the three following considerations:

1. The set of medical observables denoted as O was  defined,
card(O) = 6. The description of the observables and their map-
ping to the concepts of the FCM were presented in Section 3 and
apposed in Table 1. The domain of every oi ∈ R was the interval
[min (oi), max  (oi)], where min  (oi) and max  (oi) denote minimal
and maximal values of the observable, respectively. The values
of min  (oi) and max  (oi) were given by physicians on the basis of
medical documentation.

2. Two  constituents of the FCM model were defined.
• During the learning of FCM, for every given value of

observable oi ∈ R, the activation of the associated con-
cept was calculated. For this purpose the function: a(ci,
t) = (oi(t) − min  (oi))/(max (oi) − min  (oi)) was applied. The acti-
vation function is in fact a normalization of oi(t) to the [0,1]
volutionary fuzzy cognitive maps to the long-term prediction of
.02.005

The logistic transformation function was  applied with the
parameters c = 5 and T = 1 that were assigned similarly as in
[12].

3. The parameters of the learning algorithm were defined.

dx.doi.org/10.1016/j.asoc.2012.02.005
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Table 3
The parameters of evolutionary learning algorithm.

Description Value

Cardinality of the initial population card(P1) 1000
Probability of mutation 0.6
Probability of crossover 0.5
xprev – parameter of the stopping condition 100
ı  – parameter of the stopping condition 10−4

x – maximal number of iterations 10,000
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Table 4
The in-sample prediction errors.

h FCM-I FCM-II

Mean Std Dev Mean Std Dev

1 0.0495 0.0215 0.0531 0.0306
2  0.0649 0.0289 0.0625 0.0353
3  0.0815 0.0440 0.0701 0.0421
4 0.0997 0.0575 0.0723 0.0463
5 0.1155 0.0710 0.0673 0.0432
6  0.1320 0.0809 0.0637 0.0351
7  0.1515 0.0916 0.0654 0.0333

ij

were filtered out. As can be noticed, the FCM-I and FCM-II mod-
els differ substantially taking into account the structure and values
of weights assigned to the particular edges. The FCM-II that was
max

Rounding used for the calculations 10−8

Rounding used for the final results 10−4

• For the assessment of the candidate FCMs, generated by the
evolutionary algorithm Eq. (3) was assumed as the fitness func-
tion, with  ̨ = 1,  ̌ = 100 as used in [12]. Within the fitness
function, for the calculation of prediction errors, the Eq. (4) or
Eq. (10) were selected, according to the type of the performed
experiment. The details are described further in this section.

• The parameters used for the evolutionary learning algorithm
are apposed in Table 3.

For the purposes of the experimentation, 40 available data
equences F(t1, tk) which correspond to real clinical measurements
ere analyzed. The length of every sequence was k = 8, therefore

he upper bound of the prediction horizon was assumed as hmax = 7.
or every experimental trial, the data were divided into the set X of
earning sequences and the set Y of testing sequences.

.1. Estimation of in-sample errors

The calculation of in-sample errors was used to assess the ability
f the model to reconstruct the learning data. This type of errors is
sually calculated as a preliminary test of learning algorithm [12].
he in-sample errors cannot reflect the generalization property of
he model. The model with low in-sample errors can be over fitted,
.e. it can fit well to every learning data but not necessarily gener-
lizes all of the unknown cases. To calculate the in-sample errors
t was assumed that the learning set X includes solely one of the
vailable data sequences, i.e. card(X) = 1. The testing set was equal
o the learning set, i.e. X = Y. By this way it was possible to perform
0 learn-and-test trials.

In order to compare our approach with the already known one-
tep prediction of evolutionary-based FCMs, two FCMs (namely
CM-I and FCM-II for short-term and long-term prediction respec-
ively) were learned using the current content of the learning set.
he FCM-I was learned using the fitness function given in Eq. (3)
ith the calculation of prediction errors defined by Eq. (4), whereas,

he FCM-II was learned using the fitness function based on the
mproved calculation of errors proposed in Eq. (10).

The FCM-I and FCM-II were tested to reconstruct the data
equences, i.e. every testing set Y was equivalent to the learning set
. In fact, the FCM-I was optimized solely for h = 1. In contrast, the
CM-II was more universal and was optimized for 1 ≤ h ≤ 7, where
max = 7. For every value of 1 ≤ h ≤ 7, Eq. (9) was used to calculate the
n-sample prediction errors. The mean and standard deviation of
rrors calculated for 40 learn-and-test trials are depicted in Table 4.
s you can notice, for h = 1 the FCM-I generated slightly lower pre-
iction errors than FCM-II, and for h = 2 the obtained errors were
imilar. The FCM-II outperformed significantly the FCM-I for all
ases of h > 2.

.2. Estimation of out-of-sample errors
Please cite this article in press as: W.  Froelich, et al., Application of e
prostate cancer, Appl. Soft Comput. J. (2012), doi:10.1016/j.asoc.2012

The calculation of out-of-sample errors was used to assess the
eneralization capabilities of the model. The low out-of-sample
rrors indicate usually the possible effective application of the
Fig. 2. FCM-I for the prediction horizon h = 1, |wij | ≥ 0.3.

generalized model for predicting new, never observed cases.
For the purposes of this study we  decided to apply two diverse
methods for the division of data between learning and testing sets:

• method 1: the data were divided prior into learning and testing
sets of the same equal cardinality,

• method 2: the leave-one-out cross validation (LOOCV) method
[31] was applied.

In the first experimental scheme, the data were divided such
way that the learning set X contained records of the group of
patients 1 − 20, the rest of patients’ records 21 − 40 constituted
the testing set. The FCM-I and FCM-II were learned with the use
of Eqs. (4) and (10) respectively. The obtained FCM-I and FCM-II
are presented in Figs. 2 and 3 respectively. In order to decrease
the complexity of graphs, the edges with small weights |w | < 0.3
volutionary fuzzy cognitive maps to the long-term prediction of
.02.005

Fig. 3. FCM-II for the prediction horizon 1 ≤ h ≤ 7, |wij | ≥ 0.3.

dx.doi.org/10.1016/j.asoc.2012.02.005
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Table  5
The out-of-sample prediction errors for patients 21–40.

h FCM-I FCM-II

Mean Std Dev Mean Std Dev

1 0.1023 0.0615 0.1084 0.0772
2  0.1087 0.0632 0.1052 0.0701
3  0.1227 0.0647 0.1006 0.0724
4 0.1346 0.0701 0.1015 0.0712
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5 0.1472 0.0854 0.1012 0.0811
6  0.1627 0.0983 0.1018 0.0824
7  0.1805 0.1012 0.1013 0.0947

edicated to long-term prediction is in fact completely different
han FCM-I.

To calculate the prediction errors, Eq. (9) was  used. The mean
nd standard deviation of errors were calculated with respect to
atients and are shown in Table 5. As you can notice, the FCM-II
btained by our method outperforms the FCM-I for all cases of h > 2.
n the cases of h = 1 and h = 2 the differences between the obtained
rrors were quite small. This happened due to the following reason.
he FCM-I was optimized solely for h = 1 therefore it generated very
mall prediction errors for h = 1 and almost very small for h = 2. On
he other hand the FCM-I was learnt neglecting the propagation of
rrors between concepts over time. This led to quite high errors
or h > 2. The FCM-II was optimized for the minimization of errros
enerated for any 1 ≤ h ≤ 7, and thus it was better optimized by
aking into account the propagation of errors that occured for h > 1.
owever, due to this generalization property, the FCM-II produced

lightly worse results than FCM-I for the particular value of h = 1.
The n-fold cross validation [30] is one of the most widely used

ethod for the calculation of out-of-sample errors. However, in our
ase, due to the small number of 40 available sample sequences, the
pplication of full n-fold cross validation could lead to high bias of
he learned FCM and to the spurious results during testing. There-
ore, in the second experimental scheme used for the calculation
f out-of-sample errors, the LOOCV method was applied. For every
earn-and-test trial, the learning set X was set to contain almost all
vailable sequences except one testing sequence that placed in the
et Y. By this way, 40 trials with card(X) = 39 and card(Y) = 1 were
erformed. Similar way as before, the mean and standard deviation
f errors were calculated with respect to patient’s state.

The obtained out-of-sample errors are shown in Table 6. As it
s noticed, the results are remarkably similar to those that were
resented in Table 5. The differences of mean values of errors placed

n Tables 5 and 6 respectively are presented to be below 0.01. The
lightly lower standard deviation for both FCMs obtained in Table 6
ould be explained by the better generalisation capabilities of the
CMs learned on basis of the data for 39 patients (instead of 20 in
rst learning scheme), as it was assumed for LOOCV method. The
ther interpretation of the results is the same as for Table 5.
Please cite this article in press as: W.  Froelich, et al., Application of e
prostate cancer, Appl. Soft Comput. J. (2012), doi:10.1016/j.asoc.2012

Considering the generated prediction errors, the FCM-II that
earned with the use of the proposed methodology outperformes
he FCM-I and is well suited for problems related to the long-
erm prediction as in the case of prostate cancer. The experimental

able 6
he out-of-sample prediction errors for LOOCV.

h FCM-I FCM-II
Mean Std Dev Mean Std Dev

1 0.0985 0.0505 0.1012 0.0728
2  0.1091 0.0511 0.1026 0.0690
3  0.1245 0.0613 0.1020 0.0678
4  0.1380 0.0688 0.1022 0.0703
5 0.1518 0.0829 0.1006 0.0722
6  0.1670 0.0937 0.1003 0.0732
7 0.1855 0.1079 0.1011 0.0727
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results show the applicability of the proposed prediction method
and the advantage of using the proposed enhancements in the case
of the evolutionary algorithm.

7. Conclusions

An enhanced version of the evolutionary learning approach of
FCMs, considering a parameter that defines a long prediction hori-
zon, was investigated in this study and applied to the prediction of
prostate cancer. The produced evolutionary-based FCM, for the par-
ticular case problem of prostate cancer, predicts the patient state
after a period of time following a suggested therapy plan for the
individual patient. Both of the proposed solutions were validated
in a pilot study using real medical data. The fitness function of the
enhanced learning algorithm enabled a better optimization of FCM
for the task of long term prediction of multivariate time series. The
calculated prediction errors were really small for the FCM-II due to
the improved optimization of FCM that was  accomplished using the
explored approach. The lower prediction errors highlight the func-
tionality of the investigated methodology in real medical problems.
The first experimental analysis justifies the advantage of using the
proposed approach for the long-term prediction of prostate can-
cer. In upcoming work, our efforts will be focused on the further
enhancement of the proposed scheme with the optimization of the
parameters used as well as the evaluation of the proposed scheme
using more clinical cases.
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