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1. Abstract

NoSQL databases have gained popularity in the recent years and have been successful in 
many production systems. The goal of this document is to understand the current needs 
that have led to the evolution of NoSQL data stores, why relational database systems 
were not able to meet these requirements and a brief discussion of some of the successful 
NoSQL data stores. We will study the common concepts underlying these data stores and 
how they compromise on ACID properties to achieve high scalability and availability. 
We also look at how the database community looks at this evolution: will it supersede the 
RDBMS (or) just a passing cloud?

2. Introduction

Data management systems began by automating traditional tasks like recording 
transactions in business, science, and commerce. These systems have evolved over the 
time from the manual methods through the several stages of automated data management. 
The idea of relational model emerged with E.F.Codd’s 1970 paper [1] which made data 
modeling and application programming much easier than in the past. Beyond the 
intended benefits, the relational model was well-suited to client-server programming and 
have proved to be the predominant technology for storing structured data in web and 
business applications.

Applications also evolve with time and pose challenging demands for the data 
management. As stated by Jim Gray [6], the most challenging part is to understand the 
data and find patterns, trends, anomalies and extract the relevant information. With the 
advent of Web 2.0 applications, the data stores needed to scale to OLTP/OLAP-style 
application loads where millions of users read and update, in contrast to the traditional 
data stores.  These data stores need to provide good horizontal scalability for the simple 
read/write operations distributed over many servers. The relational database systems have 
little capability to horizontally scale to these levels. So, this paved the way to seek 
alternative solutions for scenarios where relational database systems proved to be not the 
right choice.

3. Background

The term ”NoSQL” was first coined in 1998 by Carlo Strozzi [2] for his RDBMS, Strozzi 
NoSQL. However, Strozzi coined the term simply to distinguish his solution from other 
RDMBS solutions which utilize SQL (Strozzi’s NoSQL still adheres to the relational 
model). He used the term NoSQL just for the reason that his database did not expose a 
SQL interface. Recently, the term NoSQL (meaning ’not only SQL’) has come to 
describe a large class of databases which do not have properties of traditional relational 
databases and which are generally not queried with SQL (structured query language). The 
term revived in the recent times with big companies like Google/Amazon using their own 



data stores to store and process huge amounts of data as they appear in their applications 
and inspiring other vendors as well on these terms.

There are various reasons why people searched for alternate solutions from relational 
RDBMS. The rich feature set and the ACID properties implemented by RDBMSs might 
be more than necessary for particular applications and use cases. Currently, the volume of 
data is increasing at an enormous rate and the cost associated with scaling of the 
relational RDBMs is also very expensive. In contrast, NoSQL data stores are designed to 
scale well horizontally and run on commodity hardware. Also, the ‘one size fit’s it all’ 
notion does not work for the current application scenarios and it is a better to build 
systems based on the nature of the application and its work/data load. This can be seen in 
this document while discussing the various data stores.

So, it points to the fact that the needs for data storage has changed over the years. The 
RDBMs were designed in 1980s for large high-end machines and centralized 
deployments. But, today’s companies use commodity hardware in a distributed 
environment. Also, today’s data is not rigidly structured and does not require dynamic 
queries. Michael Stonebraker has emphasized these ideas in the 2007 paper: “The end of 
an architectural era” [3]:

• RDBMSs have been architected more than 25 years ago when the hardware 
characteristics, user requirements and database markets where different from 
those today. Even though there have been extensions, no system had a redesign 
since its inception.

• New markets and use cases have evolved since the 1970s when there was only 
business data processing. The user interfaces and usage model also changed over 
the past decades from terminals where “operators [were] inputting queries” to rich 
client and web applications today where interactive transactions and direct SQL 
interfaces are rare.

NoSQL has emerged as a solution with a “share nothing” horizontal scaling – 
replicating and partitioning data over many servers. This allows to support a large 
number of simple read/write operations in a unit time and meet the current application 
needs. NoSQL data stores come up with following key features [8]:

• Scale horizontally “simple operations”
 key lookups, reads and writes of one record or a small number 

of records, simple selections
• Replicate/distribute data over many servers
• Simple call level interface (contrast with SQL)
• Weaker concurrency model than ACID
• Efficient use of distributed indexes and RAM
• Flexible schema (different records have different schema)

NoSQL data stores give up ACID constraints in order to achieve scalability and higher 
performance. In fact, updates are eventually propagated and there are limited guarantees 
on the consistency of reads. BASE acronym, in contrast to the ACID acronym, refers to 
this idea: an application works basically all the time (basically available), does not have 



to be consistent all the time (soft-state) but will be in some known-state state eventually 
(eventual consistency). The BASE approach according to Brewer forfeits the ACID 
properties of consistency and isolation in favor of “availability, graceful degradation, and 
performance”. For instance, in case of Twitter, it is fine that the tweets of a person are 
distributed to the followers eventually in order to provide high availability and 
scalability.

In a keynote titled “Towards Robust Distributed Systems” at ACM’s PODC1 symposium 
in 2000 Eric Brewer [5] came up with the so called CAP-theorem. Proponents of NoSQL 
often cite Eric Brewer’s CAP theorem, which states that a system can have only two out 
of three of the following properties: consistency, availability, and partition-tolerance. The 
NoSQL systems generally give up consistency. The CAP theorem can be summarized as 
follows:

• Consistency: how a system is in a consistent state after the execution of an 
operation. A Distributed system is typically considered to be consistent if after an 
update operation of some writer; all readers see his updates in some shared data 
source.

• Availability and especially high availability meaning that a system is designed 
and implemented in a way that allows it to continue operation (i. e. allowing read 
and write operations) if nodes in a cluster crash or some hardware or software 
parts are down due to upgrades.

• Partition Tolerance is understood as the ability of the system to continue 
operation in the presence of network partitions. These occur if two or more 
“islands” of network nodes arise which (temporarily or permanently) cannot 
connect to each other. Some people also understand partition tolerance as the 
ability of a system to cope with the dynamic addition and removal of nodes (e. g. 
for maintenance purposes; removed and again added nodes are considered an own 
network partition in this notion).

So, NoSQL has emerged as a solution for today’s data store needs and has been a topic of 
discussion and research in the recent times.

4. Critical Reception

NoSQL has been received with mixed reactions. Some people consider it as a hype 
lacking to fulfill its promises. In fact, there is a notion that companies do not miss 
anything if they do not switch to NoSQL databases and if a relational DBMS does its job, 
there is no reason to replace it. Similar to such arguments, some critics look at NoSQL 
databases as nothing new as compared to other attempts like object databases which have 
been around for decades.

Michael Stonebraker reacts to this NoSQL buzz in his blog post “The “NoSQL” 
Discussion has Nothing to Do With SQL”. Stonebraker sees two reasons for moving 
towards non-relational datastores—flexibility and performance. The net-net is that the 



single-node performance of a NoSQL, disk-based, non-ACID, multithreaded system is 
limited to be a modest factor faster than a well-designed stored-procedure SQL OLTP 
engine. In essence, ACID transactions are jettisoned for a modest performance boost, and 
this performance boost has nothing to do with SQL. Blinding performance depends on 
removing overheads in database systems (logging/locking/lathcing/buffer management). 
Such overhead has nothing to do with SQL, but instead revolves around traditional 
implementations of ACID transactions, multi-threading, and disk management. To go 
wildly faster, one must remove all the four sources of overhead. This is possible in either 
a SQL context or some other context.

So, incase of huge distributed systems, NoSQL data stores are expected to perform well 
to achieve scalability and availability in comparison to relational data stores.

5. Common concepts

Following is a brief description of few common concepts in NoSQL databases. These 
concepts will be referred in this document.

Sharding 

It is a partitioning mechanism in which records are stored on different servers
according to some key. The data is partitioned in such a way that records, that are typically 
accesses/updated together, reside on the same node. The load is almost evenly distributed 
among the servers. Some systems also use vertical partitioning in which parts of a single 
record are stored on different servers.

Consistent hashing 

The idea behind consistent hashing is to use the same hash function for both the object 
hashing and the node hashing. Following figure illustrates this:

A,B,C are nodes and 1,2,3,4 are objects. Both of them are mapped to a hash range and 
imagined to be placed on a ring. Moving clockwise, the node following a object is 



mapped to that object. When a node leaves the system, cache objects will get mapped to 
their adjacent node (in clockwise direction) and when a node enters the system it will get 
hashed onto the ring and will overtake objects.

Map-reduce

MapReduce is a programming model for processing large data sets, and the name of an 
implementation of the model by Google. MapReduce is typically used to do distributed 
computing on clusters of computers. It uses a map function and a reduce function. The 
map function processes a key/value pair and generates a set of intermediate key/value 
pairs. The reduce function merges all intermediate values associated with the same 
intermediate key. When applied to databases, MapReduce means to process a set of keys 
by submitting the process logic (map- and reduce-function code) to the storage nodes 
which locally apply the map function to keys that should be processed and that they own. 
The intermediate results can be consistently hashed just as regular data and processed by 
the following nodes in clockwise direction, which apply the reduce function to the 
intermediate results and produce the final results. It should be noted that due to the 
consistent hashing of the intermediate results there is no coordinator needed to direct the 
processing nodes to find the intermediate results. This idea is illustrated in the following 
figure:

Vector clocks

If datasets are distributed among nodes, they can be read and altered on each node and no 
strict consistency is ensured by distributed transaction protocols, questions arise on how 
“concurrent” modifications and versions are processed and to which values a dataset will 



eventually converge to. There are several options to do this and vector clocks is one of 
them. A vector clock is defined as a tuple V [0], V [1], ..., V [n] of clock values from 
each node. In a distributed scenario node i maintains such a tuple of clock values, which 
represent the state of itself and the other (replica) nodes’ state as it is aware about at a 
given time (Vi[0] for the clock value of the first node, Vi[1] for the clock value of the 
second node, . . . Vi[i] for itself, . . . Vi[n] for the clock value of the last node). Clock 
values may be real timestamps derived from a node’s local clock, version/revision 
numbers or some other ordinal values. More details can be found at [42].

MVCC

Multiversion concurrency control (MVCC), is a concurrency control method commonly 
used by database management systems to provide concurrent access to the database. For 
instance, a database will implement updates not by deleting an old piece of data and 
overwriting it with a new one, but instead by marking the old data as obsolete and adding 
the newer version. Thus there are multiple versions stored, but only one is the latest. This 
allows the database to avoid overhead of filling in holes in memory or disk structures but 
requires (generally) the system to periodically sweep through and delete the old, obsolete 
data objects. 

6. Classification

In recent years, a variety of NoSQL databases has been developed mainly by practitioners 
and web companies to fit their specific requirements regarding scalability performance, 
maintenance and feature-set. NoSQL is defined broadly as any database system that is not 
relational like Graph database systems, Object-oriented database systems etc. and there 
have been various approaches to classify and subsume NoSQL databases, each with 
different categories and subcategories.(unlike the NoSQL systems, these systems 
generally provide ACID transactions). This paper considers the NoSQL classification as 
stated by Rick Cattell in his paper on “Scalable SQL and NoSQL data stores” [8]:

• Key-value Stores: These systems store values and an index to find them, based on 
a programmer defined key.

• Document Stores: These systems store documents, as just defined. The documents 
are indexed and a simple query mechanism is provided.

• Extensible Record Stores: These systems store extensible records that can be 
partitioned vertically and horizontally across nodes. Some papers call these “wide 
column stores”.

We will look at the general features of these data stores; requirements that motivated the 
various, recently developed NoSQL databases; their architecture and key features.

7. Key-value stores

Key-/value-stores have a simple data model in common: a map/dictionary, allowing 
clients to put and request values per key. Besides the data-model and the API, modern 



key-value stores favor high scalability over consistency and therefore most of them omit 
rich ad-hoc querying and analytics features. Even though key-value stores (like Berkeley 
DB) came into existence long time ago, they are heavily influenced by Amazon’s 
Dynamo and many key-value stores derive significantly from Dynamo’s principles. We 
will look at some of the key-value stores below.

Amazon’s Dynamo

Amazon runs a world-wide e-commerce platform that serves tens of millions customers 
at peak times using tens of thousands of servers located in many data centers around the 
world. There are strict operational requirements on Amazon’s platform in terms of 
performance, reliability and efficiency, and to support continuous growth the platform 
needs to be highly scalable. Following are the key factors that Amazon has cited in their 
paper for the motivation behind Dyanmo:

• Amazon uses a highly decentralized, loosely coupled, service oriented 
architecture consisting of hundreds of services. These services requiree that it can 
always write to and read from its data store, and that its data needs to be available 
across multiple data centers.

• Due to the use of commodity hardware, software systems need to be constructed 
in a manner that treats failure handling as the normal case without impacting 
availability or performance.

• Amazon’s platform has a very diverse set of applications with different storage 
requirements.

• Most of the services only store and retrieve data by primary key and do not 
require the complex querying and management functionality offered by an 
RDBMS.

• The available replication technologies are limited and typically choose 
consistency over availability. Although many advances have been made in the 
recent years, it is still not easy to scale-out databases or use smart partitioning 
schemes for load balancing.

Dynamo, a highly available key-value store addresses the above requirements to provide 
an “always-on” experience. Dynamo uses a synthesis of well known techniques to 
achieve scalability and availability: Data is partitioned and replicated using consistent 
hashing, and consistency is facilitated by object versioning. The consistency among 
replicas during updates is maintained by a quorum-like technique and a decentralized 
replica synchronization protocol. Dynamo employs a gossip based distributed failure 
detection and membership protocol. Dynamo is a completely decentralized system with 
minimal need for manual administration. Storage nodes can be added and removed from 
Dynamo without requiring any manual partitioning or redistribution.

Dynamo is targeted mainly at applications that need an “always writeable” data store 
where no updates are rejected due to failures or concurrent writes. This is a crucial 
requirement for many Amazon applications. Second, as noted earlier, Dynamo is built for 
an infrastructure within a single administrative domain where all nodes are assumed to be 



trusted. Third, applications that use Dynamo do not require support for hierarchical 
namespaces (a norm in many file systems) or complex relational schema (supported by 
traditional databases). Fourth, Dynamo is built for latency sensitive applications that 
require at least 99.9% of read and write operations to be performed within a few hundred 
milliseconds. To meet these stringent latency requirements, Dynamo avoids routing 
requests through multiple nodes (which is the typical design adopted by several 
distributed hash table systems such as Chord and Pastry). This is because multi-hop 
routing increases variability in response times, thereby increasing the latency at higher 
percentiles. Dynamo can be characterized as a zero-hop DHT, where each node maintains 
enough routing information locally to route a request to the appropriate node directly.

System Architecture

System Interface:
Dynamo stores objects associated with a key through a simple interface; it exposes two 
operations: get() and put().

Partitioning Algorithm:
Dynamo’s partitioning scheme relies on consistent hashing to distribute the load across 
multiple storage hosts. In consistent hashing, the output range of a hash function is 
treated as a fixed circular space or “ring” (i.e. the largest hash value wraps around to the 
smallest hash value). Dynamo uses a variant of consistent hashing: instead of mapping a 
node to a single point in the circle, each node gets assigned to multiple points in the ring. 
To this end, Dynamo uses the concept of “virtual nodes”. A virtual node looks like a 
single node in the system, but each node can be responsible for more than one virtual 
node.

Replication:
To achieve high availability and durability, Dynamo replicates its data on multiple hosts. 
Each data item is replicated at N hosts, where N is a parameter configured “per-instance”. 
Each key, k, is assigned to a coordinator node which is in charge of the replication of the 
data items that fall within its range.

Data Versioning:
Dynamo is designed to be an eventually consistent system. This means that update 
operations return before all replica nodes have received and applied the update. 
Subsequent read operations therefore may return different versions from different replica 
nodes. The update propagation time between replicas is limited in Amazon’s platform if 
no errors are present; under certain failure scenarios however “updates may not arrive at 
all replicas for an extend period of time”.

Such inconsistencies need to be taken into consideration by applications. As an example, 
the shopping cart application never rejects add-to-cart-operations. Even when evident that 
the replica does not feature the latest version of a shopping cart (indicated by a vector 
clock delivered with update requests, see below), it applies the add-operation to its local 
shopping cart. As a consequence of an update operation, Dynamo always creates a new 



and immutable version of the updated data item. In Amazon’s production systems most 
of these versions subsume one another linearly and the system can determine the latest 
version by syntactic reconciliation. However, because of failures (like network partitions) 
and concurrent updates multiple, conflicting versions of the same data item may be 
present in the system at the same time. As the data store cannot reconcile these 
concurrent versions only the client application that contains knowledge about its data 
structures and semantics is able to resolve version conflicts and conciliate a valid version 
out of two or more conflicting versions (semantic reconciliation). So, client applications 
using Dynamo have to be aware of this and must “explicitly acknowledge the possibility 
of multiple versions of the same data (in order to never lose any updates)”. To determine 
conflicting versions, perform syntactic reconciliation and support client application to 
resolve conflicting versions Dynamo uses the concept of vector clocks.

Handling Failures:

For tolerating failures provoked by temporary unavailability storage hosts, Dynamo is not 
employing any strict quorum approach but a sloopy one. These approaches imply that in 
case of read and write operations the first N healthy nodes of a data item’s preference list 
are taken into account. These are not necessarily the first N nodes walking clockwise 
around the consistent hashing ring.

A second measure to handle temporary unavailable storage hosts are so called hinted 
handoffs. They come into play if a node is note accessible during a write operation of a 
data item it is responsible for. In this case, the write coordinator will replicate the update 
to a different node, usually carrying no responsibility for this data item (to ensure 
durability on N nodes). In this replication request, the identifier of the node the update 
request was originally destined to is contained as a hint. As this node recovers and is 
available again, it will receive the update; the node having received the update as a 
substitute can then delete it from its local database.

Project Voldemort

Project Voldemort is an open source implementation of the basic parts of Dynamo’s 
distributed key-value storage system. LinkedIn is using it in their production environment 
for "certain high-scalability storage problems where simple functional partitioning is not 
sufficient." Both, keys and values can be complex, compound objects as well consisting 
of lists and maps. When compared to relational databases—the simple data
structure and API of a key-value store does not provide complex querying capabilities: 
joins have to be implemented in client applications while constraints on foreign-keys are 
impossible; besides, no triggers and views may be set up. However, they look at the 
following advantages of a simple key-value store:

• Only efficient queries are allowed.
• The performance of queries can be predicted quite well.
• Data can be easily distributed to a cluster or a collection of nodes.



• In service oriented architectures it is not uncommon to have no foreign key 
constraints and to do join in the application code as data is retrieved and stored in 
more than one service or data source.

• Gaining performance in a relational database often leads to de-normalized data 
structures or storing more complex objects as BLOBs or XML-documents.

• Application logic and storage can be separated nicely (in contrast to relational 
databases where application developers might get encouraged to mix business 
logic with storage operation or to implement business logic in the database as 
stored procedures to optimize performance).

• There is no such impedance mismatch between the object-oriented paradigm in 
applications and paradigm of the data store as it is present with relational 
databases.

System Architecture

Project Voldemort specifies a logical architecture consisting of a number of layers where 
each layer of the logical architecture has its own responsibility (e. g. TCP/IP network 
communication, serialization, version recovery, routing between nodes) and also 
implements an interface consisting of the operations get, put and delete.

The layered logical architecture provides certain flexibility for deployments of Project 
Voldemort as layers can be mixed and matched to meet the requirements of an 
application. For example, a compression layer may be introduced beneath to the 



serialization layer in order to compress all exchanged data. Likewise, intelligent routing 
(i. e. determining the node which manages the partition containing the requested data)
can be provided transparently by the data store if the network layer is placed on top of the 
routing layer; if these layers are twisted, the application can do the routing itself reducing 
latency caused by network hops.

Project Voldemort allows namespaces for key-/value-pairs called “stores“, in which keys 
are unique. While each key is associated with exactly one value, values are allowed to 
contain lists and maps as well as scalar values. Operations in Project Voldemort are 
atomic to exactly one key-/value-pair. Once a get operation is executed, the value is 
streamed from the server via a cursor. Documentation of Project Voldemort considers
this approach to not work very well in combination with values consisting of large lists 
“which must be kept on the server and streamed lazily via a cursor”; in this case, 
breaking the query into sub-queries is seen as more efficient.

Like Amazon’s Dynamo Project Voldemort is designed to be highly available for write 
operations, allows concurrent modifications of data and uses vector clocks to allow 
casual reasoning about different versions. If the data store itself cannot resolve version 
conflicts, client applications are requested for conflict resolution at read time. This read 
reconciliation approach is being favored over the strongly consistent but inefficient two-
phase commit (2PC) approach. This is the case because it requires little coordination and 
provides high availability and efficiency as well as failure tolerance. On the downside, 
client applications have to implement conflict resolution logic that is not necessary in 
2PC.

8. Document Stores

Document stores can be considered to be next step to the key-value stores because they 
store more complex data than the key-value stores. They store “documents” which allow 
values to be nested documents or lists as well as scalar values, and the attribute names are 
dynamically defined for each document at runtime.

Apache’s CouchDB and MongoDB will be looked at in this survey. Before that, here is a 
quick view on SimpleDB. SimpleDB, from Amazon, is a highly available document store 
that provides eventual consistency. It creates and manages multiple geographically 
distributed replicas of the data automatically to enable high availability and data 
durability. SimpleDB provides simple APIs to perform operations on the documents 
(Select, Delete, GetAttributes, and PutAttributes). Amazon provides a simple web 
services interface to create and store multiple data sets, query the data easily, and return 
the results. SimpleDB supports more than one grouping in one database: documents are 
put into domains, which support multiple indexes. So domains and their metadata can be 
enumerated. Select operations are on one domain, and specify a conjunction of 
constraints on attributes, basically in the form:

select <attributes> from <domain> where <list of attribute value constraints>



Different domains may be stored on different Amazon nodes. Domain indexes are 
automatically updated when any document’s attributes are modified. Unlike other 
document stores, it does not allow nested documents.

CouchDB

CouchDB, from Apache, is a “collection” of documents (similar to SimpleDB) whose 
data model is richer than SimpleDB. The main abstraction and data structure in CouchDB 
is a document. Documents consist of named fields that have a key/name and a value. The 
field values can be scalar (text, numeric, or boolean) or compound (a document or list). 
While relational databases are designed for structured and interdependent data; 
key-/value-stores operate on un-interpreted, isolated key-/value-pairs; document stores 
like CouchDB are designed for data (contained in documents) which do not correspond to 
a fixed schema but have some inner structure known to applications as well as the 
database itself. The advantages of this approach are that first there is no need for schema 
migrations which cause a lot of effort in the relational databases; secondly compared to 
key-/value-stores data can be evaluated more sophisticatedly. So, collections comprise 
the only schema in CouchDB, and secondary indexes must be explicitly created on fields 
in collections.

Queries are done through ‘views’ which are JavaScript functions that neither change nor 
save or cache the underlying documents but only present them to the requesting user or 
client application. Queries can be distributed in parallel over multiple nodes using a map-
reduce mechanism. The map function gets a document as a parameter, does some
calculation, may emit arbitrary data based on the view’s criteria. The data structure 
emitted by the map function is a triplet consisting of the document id, a key and a value 
result. Documents get sorted by the key which does not have to be unique but may be 
present in more than one document. The value emitted by the map function is optional 
and may contain arbitrary data. The document id is set by CouchDB implicitly and 
represents the document that was given to the emitting map function as an argument. 
After the map function has been executed, the results get passed to an optional reduce 
function which can do some aggregation on the view.  As all documents of the database 
are processed by a view’s functions this can be time consuming and resource intensive 
for large databases. Therefore a view is not created and indexed when write operations 
occur but on demand (at the first request directed to it) and updated incrementally when it 
is requested again.

Replication

CouchDB provides asynchronous replication to achieve scalability and does not use 
sharding. The replication process operates incrementally where only modified data since 
the last replication gets transmitted to another. The whole documents are not transferred 
but only changed fields and attachment-blobs. CouchDB also supports partial replication 
where a JavaScript filter function can be defined which passes through the data for 
replication and rejects the rest of the database. CouchDB adopts a peer-approach for 
distribution where each server has the same set of responsibilities and there are no 



distinguished roles. Two database nodes can replicate databases (documents, document 
attachments, views) bilaterally if they reach each other via network. The replication 
process works incrementally and can detect conflicting versions in simple manner as each 
update of a document causes CouchDB to create a new revision of the updated document 
and a list of outdated revision numbers is stored. If there are version conflicts, then the 
participating node is aware of them and can escalate the conflicting versions to clients for 
conflict resolution. In case of no version conflicts, the node with the outdated version 
updates the document. In such a model, the reads can go to any server (not caring about 
the latest values) and updates must be propagated to all the servers.

ACID properties

For providing durability, all updates on documents and indexes are flushed to disk on 
commit, by writing to the end of a file. So, together with the MVCC mechanism it is 
claimed that CouchDB provides ACID semantics at the document level. The single 
update operations are either executed to completion or fail/rollback so that the database 
never contains partly saved or updated documents.

CouchDb does not guarantee consistency since each client sees a self-consistent view of 
the database. All replicas are always writable and they do not replicate with each other by 
themselves. This leads to a MVCC system in which version conflicts have to be resolved 
at read time by client applications: CouchDB will notify the application for any updates 
on the document since it was fetched by the application. The application can then try to 
combine the updates, or can just retry its update and overwrite.

MongoDB

MongoDB is also a document store that has many similarities to CouchDB. It is a 
schema-free document store that contains one or more collections consisting of 
documents. Like CouchDB, MongoDB also provided indexes on collections and supports 
map-reduce for complex aggregations across documents. But it differs from CouchDB in 
a number of ways as seen below.

MongoDB supports dynamic queries with automatic use of indices, like RDBMSs. 
MongoDB allows specifying indexes on document fields of a collection. The information 
gathered about these fields is stored in B-Trees and utilized by the query optimizing 
component to “to quickly sort through and order the documents in a collection” thereby 
enhancing read performance. As in relational databases, indexes accelerate select as well 
as update operations as documents can be found faster by the index than via a full 
collection scan; on the other side indexes add overhead to insert/dlete operations as the B-
tree index has to be updated in addition to the collection itself. Therefore the MongoDB 
manual concludes that “indexes are best for collections where the number of reads is 
much greater than the number of writes. In CouchDB, data is indexed and searched by 
writing map-reduce views.

Automatic sharding



MongoDB does automatic sharding by distributing load/data across “thousands of nodes” 
with automatic failover and load balancing. It is inspired by Google’s BigTable. Sharding 
is done on a per-collection basis and not on the whole database. MongoDB automatically 
detects which collections grow much faster than the average so that they become eligible 
for sharding while the other collections may still reside on single nodes. MongoDB also 
detects imbalances in the load across the shards and can automatically rebalance data to 
reduce disproportionate load distribution. While CouchDB achieves scalability through 
asynchronous replication, MongoDB achieves it through sharding (however an extension 
of CouchDB called CouchDB Lounge supports sharding).

Replication

MongoDB uses asynchronous replication for redundancy and failover (not for a ‘dirty 
read’ as seen in CouchDB). In this model, only one database node (called primary node) 
is in charge of write operations at any instant. Read operations may go to this same server 
for strong consistency semantics or to any of its replica peers if eventual consistency is 
sufficient. It does not provide the global consistency of a traditional DBMS, but a local 
consistency on the up-to-date primary copy of a document. MongoDB may use 2 
approaches for replication: 

• master-slave replication: one server acts as a master for handling write requests 
and replication those operations to the other servers.

• replica sets: group of nodes work together to provide automated failover. It is an 
extension of the master-slave approach wherein automatic failover and recovery is 
added for all the member nodes.

Atomic updates

MongoDB provides atomic updates on fields by providing modifiers that update 
individual values and update a document only if field values match a given previous 
value. On the other hand, CouchDB provides MVCC on documents.

9. Extensible Record Stores

Extensible Record Stores is motivated by Google’s success with Big Table. Although 
most extensible record stores (like HBase, HyperTable,Cassandra) were patterned after 
BigTable, it appears that none of the extensible records stores come anywhere near to 
BigTable’s scalability at present.

The basic data model is rows and columns, and the basic scalability model is splitting 
both rows and columns over multiple nodes:

• Rows are split across nodes through sharding on the primary key. They 
typically split by range rather than a hash function. This means that queries on 
ranges of values do not have to go to every node. 



• Columns of a table are distributed over multiple nodes by using “column 
groups”. These may seem like a new complexity, but column groups are 
simply a way for the customer to indicate which columns are best stored 
together.

These two partitioning (horizontal and vertical) can be used simultaneously on the same 
table. For example, if a customer table is partitioned into three column groups (say, 
separating the customer name/address from financial and login information), then each of 
the three column groups is treated as a separate table for the purposes of sharding the 
rows by customer ID: the column groups for one customer may or may not be on the 
same server. 

Big Table

Bigtable ,as described by Google, is “a distributed storage system for managing 
structured data that is designed to scale to a very large size: petabytes of data across 
thousands of commodity servers”. Bigtable has achieved several goals: wide 
applicability, scalability, high performance, and high availability. In this course, Google 
has shared the following lessons learnt from experience with Big Table:

Failure Types in Distributed Systems: Large distributed systems are vulnerable to many 
types of failures, not just the standard network partitions and fail-stop failures assumed in 
many distributed protocols. Hence, Google argue that such sources of failure also have to 
be addressed when designing and implementing distributed systems protocols.

Feature Implementation: A lesson learned at Google while developing Bigtable at 
Google is to implement new features into such a system only if the actual usage patterns 
for them are known. A counterexample are general purpose distributed transactions that 
were planned for Bigtable but never implemented as there was never an immediate need 
for them. It turned out that most applications using Bigtable only needed single-row 
transactions.

System-Level Monitoring: A practical suggestion is to monitor the system as well at its 
clients in order to detect and analyze problems.

Value Simple Designs: the most important lesson to be learned from Bigtable’s
development is that simplicity and clarity in design as well as code are of great value, 
especially for big and unexpectedly evolving systems like Bigtable.

Data Model: Big Table is “a sparse, distributed, persistent multidimensional sorted map”. 
Values are stored as arrays of bytes which do not get interpreted by the data store. They 
are addressed by the triplet (row-key, column-key, timestamp).



Rows:The row keys in a table are arbitrary strings (currently up to 64KB in size, although 
10-100 bytes is a typical size for most of our users). Every read or write of data under a 
single row key is atomic (regardless of the number of different columns being read or 
written in the row), a design decision that makes it easier for clients to reason about the 
system's behavior in the presence of concurrent updates to the same row. Bigtable 
maintains data in lexicographic order by row key. The row range for a table is 
dynamically partitioned. Each row range is called a tablet, which is the unit of 
distribution and load balancing. As a result, reads of short row ranges are efficient and 
typically require communication with only a small number of machines.

Column Families: Column keys are grouped into sets called column families, which form 
the basic unit of access control. All data stored in a column family is usually of the same 
type (we compress data in the same column family together). A column key is named 
using the syntax: family:qualifier. Access control and both disk and memory accounting 
are performed at the column-family level.

Timestamps: Each cell in a Bigtable can contain multiple versions of the same data; these 
versions are indexed by timestamp. Different versions of a cell are stored in decreasing 
timestamp order, so that the most recent versions can be read first. To make the 
management of versioned data less onerous, we support two per-column-family settings 
that tell Bigtable to garbage-collect cell versions automatically. The client can specify 
either that only the last n versions of a cell be kept, or that only new-enough versions be 
kept (e.g., only keep values that were written in the last seven days).

The implementation consists of the following major components:
• Multiple tablet servers:  each of which is responsible for a number of tablets. This 

implies the handling of read and write requests for tablets as well as the splitting 
of tablets “that have grown too large”. Tablet servers can be added and removed 
at runtime.

• A client library provided for applications to interact with Bigtable instances. The 
library responsible for looking up tablet servers that are in charge of data that 
shall be read or written, directing requests to them and providing their responses 
to client applications.

• One master server: Firstly, it manages the tablets and tablet servers: it assigns 
tablets to tablet servers, detects added and removed tablet servers, and distributes 
workload across them. Secondly, it is responsible to process changes of a Bigtable 



schema, like the creation of tables and column families. Lastly, it has to garbage-
collect deleted or expired files stored in GFS for the particular Bigtable instance. 
Despite these responsibilities the load on master servers is expected to be low as 
client libraries lookup tablet location information themselves and therefore “most 
clients never communicate with the master”. As the master server is a single point 
of failure for a Bigtable instances it is backed up by a second machine.

Big Table has been very successful at Google and is used by more than sixty Google 
products and projects, including Google Analytics, Google Finance, Orkut, Personalized
Search, Writely, and Google Earth.

Hbase

HBase, from Apache, is an open-source, distributed, versioned, column-oriented store 
modeled after Google's Bigtable. It is built using Java for providing a fault-tolerant way 
of storing large quantities of sparse data. It uses HDFS (Hadoop Distributed File System) 
which takes the same role as GFS in BigTable. It serves as source and destination for the 
jobs executed in the Map-Reduce framework in Hadoop. HBase is an open-source 
implementation to provide BigTable-like capabilities and borrows many of the BigTable 
features like compression, in-memory operation and bloom filters on a per-column basis. 
It is used in many data-driven websites and, in 2010, was elected for implementing 
Facebook’s Messaging Platform.

Cassandra

Cassandra, originally developed by Facebook, adopts ideas and concepts of both, 
Amazon’s Dynamo as well as Google’s Bigtable. It has been adopted by other companies 
like Twitter, Dig and Rackspace. It can be described as a distributed storage system for 
managing structured data that is designed to scale to a very large size. 

The ‘Inbox Search’ problem led to the initial design and development of Cassandra at 
Facebook. The users can exchange personal messages with their contacts which appear in 
the inbox of a recipient and the problem was to find an efficient way of storing, indexing 
and searching these messages. The major requirements of problems of such nature are 
listed below [18]:

• Processing of a large amount and high growth rate of data
• High and incremental scalability
• Cost-effectiveness
• Reliability at massive scale since outages in the service can have significant 

negative impact
• The ability to run on top of an infrastructure of hundreds of nodes (commodity 

servers) across different datacenters.
• A high write throughput while not sacrificing read efficiency
• No single point of failure
• Treatment of failures as a norm rather than an exception



Data Model

An instance of Cassandra typically consists of only one table which represents a 
“distributed multidimensional map indexed by a key”. The values in the table are 
addressed by the triplet (row-key, column-key, timestamp) [columnkey
as column-family:column (for simple columns contained in the column family) or 
column-family:supercolumn:column (for columns subsumed under a supercolumn)].  The 
dimensions in the triplet are as follows:

• row-key: rows are identified by a string-key of arbitrary length.
• Column-key: identifies a column in a row and is addressed with ‘column 

families’/ ’column’/ ’super column’.
o Column families: As in Bigtable, column-families have to be defined in 

advance, i. e. before a cluster of servers comprising a Cassandra instance 
is launched. A column family consists of columns and super columns 
which can be added dynamically (i. e. at runtime) to column-families and 
are not restricted in number.

o Columns: have a name and store a number of values per row which are 
identified by a timestamp (like in Bigtable). Each row in a table can have a 
different number of columns, so a table cannot be thought of as a 
rectangle. Client applications may specify the ordering of columns within 
a column family and super column which can either be by name or by 
timestamp.

o Super columns: have a name and an arbitrary number of columns 
associated with them. Again, the number of columns per super-column 
may differ per row.

Partitioning

A consistent hashing function, which preserves the order of row-keys, is used to partition 
and distribute data among the nodes. The order preservation property of the hash function 
is important to support range scans over the data of a table. Consistent hashing is also 
used by Dynamo, but Cassandra handles this differently: while Dynamo hashes physical 
nodes to the ring multiple times (as virtual nodes), Cassandra measures and analyzes the 
load information of servers and moves nodes on the consistent hash ring to get the data 
and processing load balanced. Lakshman and Malik claim that this method has been 
chosen as “it makes the design and implementation very tractable and helps to make very 
deterministic choices about load balancing” [18].

Replication

Replication is managed by a coordinator node and the coordinator node for a key is the 
first node on the consistent hash ring that is visited when walking from the key’s position 
on the ring in clockwise direction. Following replication strategies are available:



• Rack Unaware: replication strategy within a datacenter where (N − 1)^15 nodes 
succeeding the coordinator node on the consistent hash ring are chosen to 
replicate data to them (N is a replication factor).

• Rack Aware and Datacenter Aware: replication strategies in which a leader is 
elected for the cluster that is in charge of maintaining the invariant that no node is 
responsible for more than N-1 ranges in the ring. This is done with a system 
called Zookeeper which is part of Apache’s Hadoop project for providing a 
“centralized service for maintaining configuration information, naming, providing 
distributed synchronization and providing group services”. The metadata about 
the nodes’ responsibilities for key ranges is cached locally at each node as well as 
in the Zookeeper system. Nodes that have crashed and start up again therefore can 
determine which key-ranges they are responsible for. This metadata is similar to 
the preference list maintained in Amazon’s Dynamo.

Failure Detection

Nodes within a Cassandra cluster try to locally detect whether another node is up 
or down to avoid connection attempts to unreachable nodes. The mechanism employed 
for this purpose of failure detection is based on a modified version of the Accrual Failure 
Detector. The failure detector does not give a Boolean result for the failure detection but 
provide a suspicion level for the monitored nodes which indicates the probability about 
their availability. It is claimed that experience has shown that Accrual Failure Detectors 
are very good in both their accuracy and their speed and they also adjust well to network 
conditions and server load conditions [18].

Persistence

Unlike Bigtable and its derivatives, Cassandra persist its data to local files instead 
of a distributed file system. However, the data representation in memory/disk, the 
processing of read/write operations is borrowed from Bigtable.

• Write operations first go to a persistent commit log and then to an in-memory data 
structure. This in-memory data structure gets persisted to disk as an immutable 
file if it reaches a certain threshold of size. All writes to disk are sequential and an 
index is created “for efficient lookup based on row key” (like the block-indices of 
SSTables used in Bigtable).

• Read operations consider the in-memory data structure as well as the data files 
persisted on disk. “In order to prevent lookups into files that do not contain the 
key, a bloom filter, summarizing the keys in the file, is also stored in each data 
file and also kept in memory”. It “is first consulted to check if the key being 
looked up does indeed exist in the given file”.

Cassandra also maintains indices for column families and columns to “jump to the right 
chunk on disk for column retrieval” and avoid the scanning of all columns on disk.



10. Conclusion

So far, this document discussed about the motivation, evolution and some 
implementations of the NoSQL databases. The NoSQL databases were broadly classified 
into 3 categories and we analyzed few data store implementations that fall into those 
categories. Each of them has been motivated by varying requirements which has led to 
their development mostly from the industry. Each data store and its implementation has 
strengths at addressing specific enterprise or cloud concerns such as being easy to 
operate, providing a flexible data model, high availability, high scalability and fault 
tolerance. Each NoSQL database should be used in a way that it meets its claims and the 
overall system requirements. It was seen as to how the different data stores were designed 
to achieve high availability and scalability at the expense of strong consistency. The 
different data stores use different techniques to achieve this goal and seem to suit well for 
their requirements. The following table gives a summary of some of the features across 
the data stores that have been discussed here.

Data store Classification License Concurrency 
control

Data 
storage

Replication

Dynamo Key-value store Proprietary MVCC Plug-in Asynchronous
Voldemort Key-value store Apache MVCC RAM Asynchronous
CouchDB Document store Apache MVCC Disk Asynchronous
MongoDB Document store GPL Locks Disk Asynchronous
Big Table Extensible store Proprietary Lock/stamps GFS Asynchronous/

Synchronous
HBase Extensible store Apache Locks HDFS Asynchronous
Cassandra Extensible store Apache MVCC Disk Asynchronous
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