
Pattern Recognition 47 (2014) 441–453
Contents lists available at ScienceDirect
Pattern Recognition
0031-32
http://d

n Corr
E-m

abhishe
principe
journal homepage: www.elsevier.com/locate/pr
The C-loss function for pattern classification

Abhishek Singh a,n, Rosha Pokharel b, Jose Principe b

a Department of Electrical & Computer Engineering, University of Illinois at Urbana-Champaign, United States
b Department of Electrical & Computer Engineering, University of Florida, Gainesville, United States
a r t i c l e i n f o

Article history:
Received 3 October 2012
Received in revised form
16 July 2013
Accepted 24 July 2013
Available online 3 August 2013

Keywords:
Classification
Correntropy
Neural network
Loss function
Backprojection
03/$ - see front matter & 2013 Elsevier Ltd. A
x.doi.org/10.1016/j.patcog.2013.07.017

esponding author. Tel.: +1 3526154195.
ail addresses: abhishek486@gmail.com, asingh
k_singh@ieee.org (A. Singh), rosha@cnel.ufl.ed
@cnel.ufl.edu (J. Principe).
a b s t r a c t

This paper presents a new loss function for neural network classification, inspired by the recently
proposed similarity measure called Correntropy. We show that this function essentially behaves like the
conventional square loss for samples that are well within the decision boundary and have small errors,
and L0 or counting norm for samples that are outliers or are difficult to classify. Depending on the value
of the kernel size parameter, the proposed loss function moves smoothly from convex to non-convex and
becomes a close approximation to the misclassification loss (ideal 0–1 loss). We show that the
discriminant function obtained by optimizing the proposed loss function in the neighborhood of the
ideal 0–1 loss function to train a neural network is immune to overfitting, more robust to outliers, and
has consistent and better generalization performance as compared to other commonly used loss
functions, even after prolonged training. The results also show that it is a close competitor to the
SVM. Since the proposed method is compatible with simple gradient based online learning, it is
a practical way of improving the performance of neural network classifiers.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Classification aims at assigning class labels to data using an
‘optimal’ decision rule that is learnt using a set of pre-labeled
training samples. This ‘optimal’ decision rule or discriminant
function f is learnt by minimizing the empirical risk, which is a
sample average of a loss function. The loss (function of the
prediction f ðxÞ, and the true label y) is essentially the price we
pay for predicting the label to be f ðxÞ, instead of y. This procedure
for learning the discriminant function is called the Empirical Risk
Minimization, and is a widely used principle for classification and
statistical learning [1,2].

The most natural loss function for classification is the mis-
classification error rate (or the 0–1 loss)

l0�1ðf ðxÞ; yÞ ¼ J ð�yf ðxÞÞþ J0; ð1Þ
where ð:Þþ denotes the positive part and J :J0 denotes the L0 norm.
This essentially is a count of the number of incorrect classifications
made by the decision rule f. Therefore, the 0–1 loss function
directly relates to the probability of misclassification. Optimization
of the risk based on such a loss function, however, is computa-
tionally intractable due to its non-continuity and non-convexity
[1,2]. Therefore, a surrogate loss function is applied to many
ll rights reserved.

18@illinois.edu,
u (R. Pokharel),
classification procedures. For example, well known loss functions
for training the weights of a neural network or a radial basis
function (RBF) network are the squared loss, ðy�f ðxÞÞ2, or
ð1�yf ðxÞÞ2, and the logistic loss, log ð1þ e�yf ðxÞÞ. The Support
Vector Machine (SVM) [3,4] uses the hinge loss, ½1�yf ðxÞ�þ.

Within the statistical learning community, convex surrogates of
the 0–1 misclassification loss are highly preferred because of the
virtues that convexity brings – unique optima, efficient optimiza-
tion using convex optimization tools and amenability to theore-
tical analysis of error bounds [5]. However, convex functions are
still poor approximations to the 0–1 loss function. They tend to be
boundless and offer poor robustness to outliers [2]. Another
important limitation is that the complexities of convex optimiza-
tion algorithms grow very fast with more data [6]. Some non-
convex loss functions have been proposed recently with the aim of
addressing these issues [7,8].

There is a large class of problems where optimization cannot be
done using convex programming techniques. For example, training
of deep networks for large scale AI problems primarily rely on
online, gradient-based methods [9,10]. Such neural network based
learning machines can benefit from non-convex loss functions, as
they can potentially offer better scalability, robustness and gen-
eralization performance. Although non-convex optimization and
loss functions do not offer many theoretical guarantees, the
empirical evidence that they work better in engineering applica-
tions is becoming overwhelming [6].

A loss function for classification that is inspired by the statistical
measure called Correntropy [11] was proposed in [12]. Correntropy

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2013.07.017
http://dx.doi.org/10.1016/j.patcog.2013.07.017
http://dx.doi.org/10.1016/j.patcog.2013.07.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.07.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.07.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.07.017&domain=pdf
mailto:abhishek486@gmail.com
mailto:asingh18@illinois.edu
mailto:abhishek_singh@ieee.org
mailto:rosha@cnel.ufl.edu
mailto:principe@cnel.ufl.edu
http://dx.doi.org/10.1016/j.patcog.2013.07.017

A. Singh et al. / Pattern Recognition 47 (2014) 441–453442
between two random variables is a generalized correlation function
or a robust measure of statistical similarity, which makes use of
second and higher order statistics. It has been successfully applied
to problems like robust regression [13], adaptive filtering [14–17],
pitch detection in speech [18,19], MACE (Minimum Average Corre-
lation Energy) filtering for object recognition [20], etc. In a classi-
fication setting, maximizing the similarity between the prediction
f ðxÞ and the target y in the Correntropy sense, effectively induces a
non-convex, smooth loss function (which we call C-loss) that can be
used to train a classifier using an online gradient based technique.

This paper extends our earlier work in [12] and further char-
acterizes the C-loss function for classification. We examine the
performance of a single hidden layer perceptron trained with the
C-loss function (using backpropagation) over different system para-
meters such as training epochs and network size. We obtain better
generalization results on several synthetic and real world datasets,
when compared to the traditional squared loss function.

Furthermore, we demonstrate the performance of the C-loss
function while training RBF networks as well. We obtain superior
results using the C-loss function when compared to the logistic
loss function, while training an RBF classifier.

We also compare the performance of the proposed loss func-
tion with SVMs, that use the hinge loss function.

Conventional neural network based classifiers suffer from the
problem of overfitting due to overtraining, which often causes
poor generalization. In all the abovementioned experiments, we
show that classifiers trained using the proposed C-loss function
are more robust to overfitting even on prolonged training, and are
able to maintain consistent generalization performance. The pro-
posed online method of training classifiers using the C-loss
function has the overall practical appeal that it offers more
consistent and better generalization performance at no additional
computational cost.

The next section formalizes the pattern classification problem
from the point of view of statistical learning. Section 3 introduces
the C-loss function, along with some of its properties. In Section 4
we discuss how the C-loss function can be used to train neural
network based classifiers. Section 5 presents our experimental
results. We compare the performance of the C-loss function to the
square loss (on MLPs), the logistic loss (on RBF networks), and
SVMs on several real world datasets obtained from UCI Machine
Learning Repository [21], using different neural network architec-
tures, and several different system parameters. In Sections 6 and 7
we present some important discussions and insights and draw
conclusions.
−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Margin α

Lo
ss

 fu
nc

tio
n

0−1 loss
Hinge loss
Square loss
Logistic loss

Fig. 1. The hinge and square loss functions, plotted along with the 0–1 loss.
2. Statistical theory of classification

2.1. Loss functions and risk

Suppose we are given a training set of observations Dn ¼
fðxi; yiÞ; i¼ 1;2;…;ng, assumed to be i.i.d. realizations of a random
pair ðX;YÞ. Here, XAX is the input vector and YAf�1;1g is the
class label (we consider a binary classification problem for now).
The goal of classification is to select a function f from a class of
functions F , such that the sign of f ðXÞ is an accurate prediction of Y
under an unknown joint distribution PðX;YÞ. In other words, we
want to select f AF that minimizes the risk R(f) given by

Rðf Þ ¼ E½l0�1ðYf ðXÞÞ� ¼ PðYasignðf ðXÞÞÞ: ð2Þ

The product yf ðxÞ is called the margin (denoted by α) and can be
treated as a measure of correctness of the decision for the sample x.
Given a sample set Dn of realizations, it is natural to consider the
empirical risk, or the sample average of the 0–1 loss

R̂ fð Þ ¼ 1
n

∑
n

i ¼ 1
l0�1 yif xið Þ� �

: ð3Þ

Optimization of the empirical risk as above, however, is computa-
tionally intractable, primarily because of the discontinuity of the 0–
1 loss function. The optimization procedure therefore involves
choosing a surrogate ϕðαÞ ¼ ϕðyf ðxÞÞ as the loss function. The result
is the minimization of the ϕ�risk and empirical ϕ�risk defined by
the following:

Rϕðf Þ ¼ E½ϕðYf ðXÞÞ� ð4Þ

R̂ϕ fð Þ ¼ 1
n

∑
n

i ¼ 1
ϕ yif xið Þ� �

: ð5Þ

Fig. 1 shows three commonly used surrogate loss functions –

the hinge loss used in SVMs, the square loss and the logistic loss
used in training neural networks and RBF networks.

In addition to making the optimization of the risk tractable,
choosing a surrogate loss function has another motivation. Mini-
mizing the sample average of an appropriately well behaved loss
function may have a regularizing effect [22].

2.2. Bayes' Optimal decision rule

Let pðxÞ ¼ PðY ¼ 1jX¼ xÞ be the conditional probability of the
positive class given X¼ x. Then, the decision-theoretic optimal
classification rule with the smallest generalization error is
sign½pðxÞ�1=2�. This is called the Bayes' optimal rule. The risk
associated with the Bayes' optimal rule is called the Bayes' optimal
risk Rn ¼ Rðf nÞ.

2.3. Fisher consistency
Definition 1. A margin-based loss function ϕðyf ðxÞÞ is said to be
Fisher consistent or ‘classification calibrated’ if the population
minimizer fn of the expected risk E½ϕðYf ðXÞÞ� has the same sign as
the Bayes' optimal decision rule sign½pðxÞ�1=2�.

Fisher consistency simply provides the reassurance that opti-
mizing a surrogate loss does not ultimately hinder the search for
a discriminant function that achieves the Bayes' optimal risk. Lin
[23] states a theorem that can be used to easily check if a given
function is Fisher consistent.

Theorem 1. If V is a function satisfying the following two
assumptions:

A. Singh et al. / Pattern Recognition 47 (2014) 441–453 443
1.
dist
the
VðzÞoVð�zÞ; 8z40

2.
 V ′ð0Þa0 exists
then, if E½VðYf ðXÞÞ� has a global minimizer f nðxÞ, then
sign½f nðxÞ� ¼ sign½pðxÞ�1=2�.

The proof is fairly straightforward and can be found in [23].
2.

0

0.5

1

1.5

2

2.5

3

3.5

Lo
ss

 fu
nc

tio
n

σ = 0.5

0−1 loss

σ = 1

σ = 2
3. Loss function induced by Correntropy

Cross Correntropy or simply Correntropy between two random
variables X and Y is a generalized similarity measure defined as

vðX;YÞ ¼ E½κsðX�YÞ�; ð6Þ
where κsðzÞ is defined to be a radial basis (Gaussian) function with
width parameter s, centered at zero and evaluated at z. In practice,
given only a finite number of realizations of the random variables,
Correntropy between them is computed as

v̂ X;Yð Þ ¼ 1
n

∑
n

i ¼ 1
κs xi�yi
� �

: ð7Þ

Correntropy is a measure of how similar two random variables
are, within a small neighborhood determined by the kernel width
s. On the other hand, metrics such as mean squared error (MSE)
provide a global measure. The localization provided by the kernel
width proves to be very useful in reducing the detrimental effects
of outliers and impulsive noise. A measure based on just second
order statistics such as MSE, can easily get biased in such
conditions.

In a classification setting, the goal is to maximize the similarity
between the classifier output and the true label, in the Corren-
tropy sense. Therefore, the loss function should be chosen such
that minimization of the expected risk is equivalent to maximiza-
tion of Correntropy. We therefore define the Correntropy induced
loss function or the C-loss function as

lCðy; f ðxÞÞ ¼ β½1�κsðy�f ðxÞÞ�: ð8Þ
This can also be expressed in terms of the classification margin1

α¼ yf ðxÞ as
lCðαÞ ¼ β½1�κsð1�αÞ� ð9Þ

lCðαÞ ¼ β½1�κsð1�yf ðxÞÞ�: ð10Þ
β is a positive scaling constant chosen such that lCðα¼ 0Þ ¼ 1.
Therefore β¼ ½1�expð�1=2s2Þ��1. Fig. 2 shows plots of the C-loss
function, for different values of the kernel width parameter s,
plotted against the margin α. The 0–1 loss is also shown. The
C-loss function has the distinct advantage that the kernel size s (or
bandwidth) tunes the behavior of the C-loss function from the
square loss (s¼ 2, and above) to the hinge loss ðs¼ 1Þ, and, for
smaller values, approaches the 0–1 loss function.

The expected risk associated with the C-loss function is

RCðf Þ ¼ βð1�E½κsð1�yf ðxÞÞ�Þ ð11Þ

RCðf Þ ¼ βð1�E½κsðy�f ðxÞÞ�Þ ð12Þ

RCðf Þ ¼ βð1�vðY ; f ðXÞÞÞ: ð13Þ
Clearly, minimizing the above risk is equivalent to maximizing the
similarity (in the Correntropy sense) between the predicted label
f(x) and the true label y.
1 Both α¼ yf ðxÞ, and e¼ y�f ðxÞ are quantities that measure the ‘margin’ or the
ance of the sample x from the discriminant function. We refer to either or both
se quantities throughout the paper.
If we make the change of variables, E ¼ Y�f ðXÞ, the estimator of
Correntropy can be written as

v̂ Eð Þ ¼ 1
n

∑
n

i ¼ 1
κs eið Þ: ð14Þ

From the Parzen density estimation principle [24], it can be easily
seen that the above quantity is simply an estimator of the pdf of E,
evaluated at 0. Therefore, maximizing the Correntropy of the
errors E of a classifier, with small kernel sizes, essentially max-
imizes pðE ¼ 0Þ. This is appropriate for regression problems as
demonstrated in [14,25]. But in a classification setting, the
dynamic range of the error is predefined a priori. Therefore, the
kernel size should be set such that the C-loss function approx-
imates the 0–1 loss function.

We now discuss some relevant properties of the C-loss function
that motivate its use as a robust loss for training classifiers. For an
exhaustive coverage of all properties of Correntropy, the reader is
referred to [11,13].

Property 1. The C-loss function lCðαÞ is Fisher consistent (or ‘classi-
fication calibrated’) for all positive values of the kernel width s, and
the population minimizer fn of the expected risk E½lCðYf ðXÞÞ� yields the
Bayes' optimal decision rule.

Proof.

lC αð Þ ¼ β 1�exp
�ð1�αÞ2

2s2

 !" #
; ð15Þ

It is easy to observe the following:
1.
Fig. 2
plotte
lCðαÞo lCð�αÞ; 8α40, and,
l′C αð Þ ¼ �β exp
�ð1�αÞ2

2s2

 !
1�α

s2

� �
ð16Þ

Therefore, l′Cð0Þa0 exists.
Using the above results and Theorem 1, we infer that if f nðxÞ is the
global minimizer of RC(f), then sign½f nðxÞ� ¼ sign½pðxÞ�1=2�. There-
fore, the loss function lCðαÞ is Fisher consistent or classification
calibrated. This property holds for all positive values of the kernel
width parameter s.

Qualitatively, Fisher consistency ensures that a higher price is paid
for incorrect classification of samples as compared to correctly
classifying them.&

Property 2. The expected risk obtained using the C-loss is a function
of second and higher order moments of the margin.
−1 −0.5 0 0.5 1

Margin α

. The C-loss function for different values of the kernel width parameter s,
d along with the 0–1 loss.

4

A. Singh et al. / Pattern Recognition 47 (2014) 441–453444
Proof. Using Taylor's series expansion of the exponential function,
the expected risk in (11) can be expanded as

RC fð Þ ¼ β 1� ∑
1

k ¼ 0

ð�1Þk
ð2s2Þkk!

E ð1�Yf ðXÞÞ2k
h i" #

ð17Þ

RC fð Þ ¼ β 1� ∑
1

k ¼ 0

ð�1Þk
ð2s2Þkk!

E ðY�f ðXÞÞ2k
h i" #

ð18Þ

The risk is therefore a function of all even moments of difference
in the prediction f ðXÞ and the true label Y. The risk computed using
the C-loss includes information from higher order statistics of the
error or the margin. On the other hand, using the squared loss only
includes the second order moment or the variance, which is just
one term (corresponding to k¼1) in (18).&

Property 3. In the space of the errors e¼ y�f ðxÞ, the empirical risk
obtained using the C-loss function behaves like the L2 norm for small
errors (samples correctly classified with high confidence). It behaves
like the L1 norm as the errors increase, and approaches the L0 norm
for very large errors (misclassified samples). The kernel size dictates
the rate at which the empirical risk transitions from L2 to L0 behavior
in the error space.

Proof. The empirical risk using the C-loss function is

R̂C fð Þ ¼ β 1�1
n

∑
n

i ¼ 1
exp

�e2i
2s2

� � !
ð19Þ

R̂C fð Þ ¼ 1�exp
�1
2s2

� �� ��1

1�1
n

∑
n

i ¼ 1
exp

�e2i
2s2

� � !
ð20Þ

Computing the limit as s-1, using L'Hospital rule,

lim
s-1

R̂C fð Þ ¼ lim
s-1

1
n
∑n

i ¼ 1exp
�e2i
2s2

� �
e2i

exp
�1
2s2

� � ð21Þ

lim
s-1

R̂C fð Þ ¼ 1
n

∑
n

i ¼ 1
e2i ¼ JeJ2 ð22Þ
0.1

0.
1

0.1

0.
2

0.2

0.20.2

0.3

0.3

0.
3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.
6

0.6

0.6

0.6

0.6

0.6

0.
6

0.6

0.
7

0.7

0.7

0.7

0.7

0.7

0.
7

0.7

0.
8

0.8

0.8

0.
8

0.
9

0.9

0.9

0.
9

e1

e 2

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. The empirical risk function in a 2D space of errors e¼ y�f ðxÞ, obtained using
the C-loss function, with s¼ 0:5. Near the origin, the behavior of the risk is similar
to the L2 norm. Further away, it transitions to the L1 norm. For large errors, the risk
function approaches the L0 or the counting norm.
Therefore, as s increases, the empirical risk behaves like an L2
norm in most of the space. Now, consider the limit as s-0þ,

lim
s-0þ

R̂C fð Þ ¼ lim
s-0þ

1�1
n
∑n

i ¼ 1exp
�e2i
2s2

� �� �

1�exp
�1
2s2

� �� � ð23Þ

Using the fact that the limit of the denominator is 1, we obtain

lim
s-0þ

R̂C fð Þ ¼ lim
s-0þ

1�1
n

∑
n

i ¼ 1
exp

�e2i
2s2

� � !
ð24Þ

lim
s-0þ

R̂C fð Þ ¼ 1
n

∑
n

i ¼ 1
lim
s-0þ

1�exp
�e2i
2s2

� �� �
ð25Þ

Now,

lim
s-0þ

1�exp
�e2i
2s2

� �� �
¼

0 if ei ¼ 0
1 if eia0

(
ð26Þ

Therefore the limit in (25) is essentially a count of the number of
non-zero error samples, or the L0 norm of the errors.

lim
s-0þ

R̂Cðf Þ ¼ JeJ0 ð27Þ

The kernel width (or, equivalently, the distance from the origin in
the space of errors) governs the nature of the empirical risk
obtained using the C-loss function. Fig. 3 depicts the transition
from an L2 norm like behavior close to the origin, to L0 behavior far
away, with an L1 like region in between. □

Property 4. For properly selected values of the kernel width, the
C-loss function becomes less sensitive to the ‘hard’ or ‘confusing’
samples near the decision boundary, leading to decision boundaries
that are robust to overfitting.

Justification: Let us compute the sensitivity of the C-loss
function with respect to the margin, or equivalently the error
e¼ y�f ðxÞ, by evaluating the following derivative:

∂lCðeÞ
∂e

¼ ∂
∂e

β 1�exp
�e2

2s2

� �� �
ð28Þ

∂lCðeÞ
∂e

¼ β

s2
exp

�e2

2s2

� �
e: ð29Þ
0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

en

D
er

iv
at

iv
e

of
 lo

ss
 fu

nc
tio

n

σ = 1

σ = 0.5

σ = 2

Derivative of
square loss

Fig. 4. The derivative of the C-loss function (dotted lines) for different values of
kernel width s. The derivative of the squared loss function (solid black plot) is also
shown. Samples which produce higher errors influence the weight update more if
the square loss function is used. However, in case of the C-loss function, highly
erroneous samples have less influence on the weights (the decision boundary),
depending on the kernel width s.

A. Singh et al. / Pattern Recognition 47 (2014) 441–453 445
Since e¼ y�f ðxÞ, it is easy to see that if 1o jejo2, the sample is
misclassified, and if 0o jejo1, the sample is correctly classified.
jej ¼ 1 represents the decision boundary. Fig. 4 shows the plots of
the sensitivity with respect to e, for different values of the kernel
width s. The derivative of the square loss is also shown for
comparison. It can be seen that the kernel width s controls the
sensitivity of the C-loss function over the error dynamic range, i.e.
its peak value and where it occurs in the space of the errors. The
samples within the main peak have a high influence on learning
the decision boundary. Thus, for s¼ 2, the large errors control
totally the placement of the discriminant function, with all issues
that are well known (high sensitivity to outliers, and overtraining
that occurs when the system has many free parameters and
produces separation surfaces that have high curvature). When
the sensitivity is centered at jejo1, essentially the centroid of the
class controls the placement of the discriminant function, not the
samples near the boundary. Moreover, the sensitivity is attenuated
far away in the erroneous samples region, so the discriminant
function is less likely to overfit these samples, even on prolonged
training.

It is interesting to notice from Figs. 1 and 2 that the C-loss
function with s¼ 1 provides an approximation to the hinge loss
function, and has the advantage that large errors are not weighted
as high as in case of the square loss function. However, looking at
Fig. 4, for s¼ 0:5, even the samples near the decision boundary
ðjej ¼ 1Þ are attenuated and the learning process becomes less
sensitive to these ‘difficult’ samples. This is beyond what can be
achieved with the hinge loss (or any convex loss). The C-loss
function aims at doing exactly this. Ignoring the ‘confusers’ near
the class boundaries can prevent overfitting.

Contrary to this approach, classifiers like AdaBoost place
exponentially large weightage to the difficult samples near the
boundary. While such an approach has enjoyed success in classify-
ing low noise and well separated classes, in the case of noisy and
highly overlapping classes, the AdaBoost algorithm is known to
overfit and yield poor generalization [26–28]. In fact, pruning such
difficult samples in the training set has been successfully used as a
way of regularizing the solution and improving the generalization
performance (by preventing overfitting) of classifiers like Ada-
Boost [29,30]. However, instead of using additional criteria for
ranking the samples based on their hardness and selecting thresh-
olds for pruning the dataset (as done in [30]), the proposed loss
function automatically achieves the same effect by simply choos-
ing a suitable value of the kernel width parameter, based on Fig. 4.
Our simulations in Section V corroborate this claim. We show that
even after prolonged training using the C-loss function with
s¼ 0:5, the generalization performance of the classifier is well
maintained. This is a significant advantage over traditional convex
loss functions, which resort on heuristic techniques like early
stopping of training to obtain better generalization.
Table 1
Specifications of datasets used in our evaluations. n¼number of samples,
f¼number of features, c¼number of classes, ntr¼number of samples used for
training.

Dataset name n f c ntr

Wisconsin Breast Cancer 683 9 2 200
Pima Indians Diabetes 768 8 2 300
Connectionist Bench 208 60 2 100
BUPA Liver Disorder 345 6 2 100
Cleveland Heart Disease 297 13 5 100
Blood Transfusion 748 5 2 300
Vowel Context 990 10 11 300
Image Segmentation 2310 19 7 500
Waveform 5000 21 3 1000
4. Training using C-loss function

The C-loss function (for so1) is a non-convex function of the
margin. Therefore it is difficult to obtain the optimal discriminant
function f using convex optimization techniques. However, since
the C-loss is always a smooth function, gradient based procedures
can still be utilized.

Fig. 3 shows that unlike the square loss and most metric spaces
(where the metric is constant), the C-loss function is local, i.e. the
sensitivity to the structure of the space is ‘local’ to the operating
point, where the locality is determined by the kernel width. Such
localization of sensitivity means that a gradient based optimiza-
tion procedure would be very slow to converge, if initialized far
away from the optimal solution. One way of avoiding such slow
convergence is to first approach the vicinity of the global optimum
using a global, convex loss function like the square loss or the
logistic loss, and then switch to the C-loss function [12]. This is
equivalent to using a loss function of the form:

lðy; f ðxÞ;mÞ ¼ ImoNs lgðy; f ðxÞÞ þ ð1�ImoNs Þβ½1�κsðy�f ðxÞÞ�;
where m denotes the current epoch2 of training, and ImoNs is an
indicator function that is equal to one if m is less that a predefined
constant Ns, and zero otherwise. lgðy; f ðxÞÞ stands for a global,
convex loss function such as the square loss or the logistic loss.

In the above formulation, however, it is difficult to know the
best value of Ns, that is the number of epochs after which the loss
function should switch. Based on our experience, there is an
optimum value of Ns that is data and architecture dependent,
and can be determined by cross validation.

To alleviate this problem to some extent, instead of having a
hard switching threshold like above, we propose to use a soft
switch between the two loss functions. We therefore define the
C-loss function to be a function of m as follows:

lCðy; f ðxÞ;mÞ ¼ ð1�γmÞlgðy; f ðxÞÞ þ γmβ½1�κsðy�f ðxÞÞ�; ð30Þ
where γm ¼m=N, and N is the total number of training epochs. This
means that the weighting of the loss functions in the above
equation linearly varies from 0 to 1 (and from 1 to 0) over the
total number of training epochs. When γm ¼m=N, the high
weighting on the convex loss function lg initially helps avoid local
optima and approach the vicinity of the global optimum. In the
vicinity of the optimum solution (in the latter stages of training),
the effect of the convex loss diminishes and the useful properties
of the C-loss function (particularly Property 4) begin to hold.
We show in our results that the classification performance using
the C-loss function as described by (30) remains consistent across
a wide range of values of N, unlike the traditional square loss or
logistic loss function.

We use the C-loss function as described by (30) in all the
experiments that follow.
5. Experiments and results

We carry out our experiments using datasets obtained from the
UCI Machine Learning Repository [21]. The specifications of the
datasets used are tabulated in Table 1.

We use the C-loss function for training single hidden layer
perceptrons and RBF networks using backpropagation.

Our evaluations are divided into two parts. In the first part
(Section 5.1), we analyze in detail the classification performance of
the C-loss function when system parameters such as number of
processing elements (PEs) and number of training epochs are
2 An epoch here denotes one pass of the entire training set. Therefore, if there
are Nt samples in the training data, each epoch consists of Nt sample updates.

A. Singh et al. / Pattern Recognition 47 (2014) 441–453446
varied in the network. Such an analysis is important since the
choice of these parameters is critical in practical applications, and
can often lead to problems like overfitting. We show that the use
of the C-loss function reduces the variability of classification
performance across these parameters, and therefore it should be
the preferred loss function while training networks for classifica-
tion problems.

In the second part (Section 5.2), we use cross validation to obtain
the optimum set of network parameters and compare the optimum
performance yielded by the C-loss function, to those obtained by
other classifiers. Although the primary objective of proposing the C-
loss function is to improve the performance of neural network
classifiers, in order to see how the C-loss trained networks compare
to the modern state-of-the-art methods we also compare our results
to the soft margin SVM (using Gaussian kernels).
5.1. Performance across system parameters

Wemotivate our analysis by first qualitatively evaluating the C-loss
function on some simple synthetic datasets. Fig. 5 shows a comparison
of the discriminant functions obtained by the C-loss function and the
square loss function, after training a single hidden layer perceptron
with 20 processing elements (PEs) in the hidden layer. In this example,
both the classes have Gaussian distributions with the same covariance
structure. The datasets are normalized to have unit variance along
each feature. In such a case, the Bayes' optimal discriminant is a
straight line, perpendicularly bisecting the line joining the centers of
−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fig. 5. Discriminant functions obtained while classifying a synthetic dataset. Both classe
function obtained using the C-loss function and (b) discriminant function obtained usi
overfitting.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−

−

−

Fig. 6. Discriminant functions obtained while classifying a synthetic dataset. One of the
(a) Discriminant function obtained using the C-loss function and (b) discriminant funct
causes overfitting.
the Gaussians. The C-loss function leads to a closer approximation of
the optimal discriminant, whereas the square loss function tends to
overfit the training samples, leading to poor generalization.

Fig. 6 shows another similar example. One of the classes is
drawn from a Gaussian distribution, whereas the second class has
a ‘half moon’ shape. Again, the square loss function creates a
discriminant function that is overfitted and too specific to the
training samples. The C-loss function produces a discriminant that
does not tend to overfit.

Motivated by these preliminary observations, we now quanti-
tatively explore in more detail the robustness of classification
performance to overfitting, when various system parameters like
number of PEs, number of training epochs are varied in the
network. We consider three real world datasets for this analysis
– Pima Indians Diabetes, Wisconsin Breast Cancer and Connectionist
Bench.

Fig. 7 shows plots of the classification (generalization) perfor-
mance of the C-loss functions with s¼ 0:5 and s¼ 1, and the
square loss function on the Diabetes dataset. Each plot shows the
classification performance at different training epochs. The total
number of training epochs N is varied along the rows and the
number of hidden layer processing elements (PEs) is varied along
the columns. Furthermore, each subplot is obtained by averaging
over 100 Monte Carlo runs, with random initial weights and
random sampling of the training data. Fig. 7 therefore shows the
performance of the C-loss and square loss functions across
9 different combinations of the two system parameters: the total
number of training epochs N and number of hidden layer PEs.
−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

s have a Gaussian distribution with the same covariance structure. (a) Discriminant
ng the conventional square loss function. The square loss function tends to cause

−3 −2 −1 0 1 2 3
3

2

1

0

1

2

3

classes is drawn from a Gaussian density and the other has a ‘half moon’ structure.
ion obtained using the conventional square loss function. The square loss function

A. Singh et al. / Pattern Recognition 47 (2014) 441–453 447
Figs. 8 and 9 show similar results for the Breast Cancer and
Connectionist Bench datasets, respectively. Note that for the
Connectionist Bench dataset, we first reduced its dimensionality
from 60 to 10, since all the classifiers we tested performed better
in the reduced space. Although several methods for dimensionality
reduction exist in the literature [31–34], we used the Chernoff
criterion based method proposed in [32] for this preprocessing.

A clear trend can be observed from the plots for all three
datasets: the generalization performance of the square loss func-
tion attains a peak, and then drops if the network is trained
further. However, the C-loss function does not tend to overfit the
training data even after prolonged training, as discussed in
Property 4. As the number of PEs is increased, the square loss
function becomes more prone to overfitting. However, the C-loss
function is more consistent across network topologies.

Table 2 tabulates the generalization performance obtained at
the end of training, for each of the 9 cases of Fig. 7, for the Diabetes
dataset. Among these, the best classification performance for the
C-loss functions (s¼ 0:5 and s¼ 1) and the square loss function
are shown in bold. The plots and the tabulated results also
0 5 10 15 20 25
68

69

70

71

72

73

74

75

76

77

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 10, N = 25

0 10 20
68

69

70

71

72

73

74

75

76

77

Trainin

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs

0 5 10 15 20 25
68

69

70

71

72

73

74

75

76

77

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 15, N = 25

0 10 20
68

69

70

71

72

73

74

75

76

77

Trainin

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

$ of PEs

0 5 10 15 20 25
68

69

70

71

72

73

74

75

76

77

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 20, N = 25

0 10 20
68

69

70

71

72

73

74

75

76

77

Trainin

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs

Fig. 7. Plots of the mean classification performance of the C-loss and the square loss fu
different total training epochs (N¼25, 50, 75). The number of PEs is varied along the c
square loss function tends to overfit the data with more training, resulting in a drop in ge
number of training epochs and the number of PEs in the network.
reconfirm that C-loss with s¼ 0:5 is a better kernel size.
Tables 3 and 4 show similar tabulations from Figs. 8 and 9, for
the Breast Cancer and Connectionist Bench datasets, respectively.

5.1.1. Comparing variance in generalization performance
It is clear from Figs. 7–9 that the C-loss function yields higher

generalization performance than the square loss function, across all
the 9 different combinations of the two system parameters – number
of training epochs and number of hidden layer PEs in the network. In
Table 5, we compute the variance of the generalization performance
over these 9 configurations of system parameters. That is, we compute
the variance along the rows of Tables 2–4. We observe that the C-loss
function (particularly with s¼ 0:5) not only produces better general-
ization than the square loss, but it is also more consistent (having less
variance) across changes in system parameters, as shown in Table 5 .
In other words, the C-loss function is less sensitive to the choice of
training parameters (number of training epochs and hidden layer PEs)
as compared to the square loss. The C-loss function therefore helps in
decoupling to some extent the network's generalization performance
from its training parameters.
30 40 50

g epochs

= 10, N = 50

0 10 20 30 40 50 60 70
68

69

70

71

72

73

74

75

76

77

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 10, N = 75

30 40 50

g epochs

= 15, N = 50

0 10 20 30 40 50 60 70
68

69

70

71

72

73

74

75

76

77

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 15, N = 75

30 40 50

g epochs

= 20, N = 50

0 10 20 30 40 50 60 70
68

69

70

71

72

73

74

75

76

77

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 20, N = 75

nctions on the Diabetes dataset, for different numbers of PEs (10, 15 and 20) and
olumns, and the number of total training epochs (N) is varied along the rows. The
neralization performance. The C-loss function remains relatively consistent over the

A. Singh et al. / Pattern Recognition 47 (2014) 441–453448
5.1.2. Best results over Monte Carlo trials
The plots in Figs. 7–9 and the values in Tables 2–4 have shown

the average generalization performance over 100 Monte Carlo runs
with random initialization of network weights and random
sampling of the training data. The averaged result reflects the
likelihood outcome of a naive user using the proposed method.
However, since we are proposing a new loss function, we would
also like to determine its best possible performance attainable
across the Monte Carlo trials. We do this as follows: We first
perform 100 Monte Carlo runs in which the neural network is
trained using randomly chosen training samples and random
initial weights. Out of these, we select the configuration that gives
the best classification performance after testing on test dataset.
This entire process is performed 100 times and an average of these
best results is presented.

Fig. 10 shows the plots of best generalization performance on
the Diabetes dataset, Breast Cancer dataset and Connectionist Bench
dataset. The best results are attained when the neural network
uses 20 hidden layer PEs and N¼20 for Diabetes dataset, 10 hidden
0 5 10 15 20 25
94

94.5

95

95.5

96

96.5

97

97.5

98

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 10, N = 25

0 10 20
94

94.5

95

95.5

96

96.5

97

97.5

98

Traini

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs

0 5 10 15 20 25
94

94.5

95

95.5

96

96.5

97

97.5

98

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 15, N = 25

0 10 20
94

94.5

95

95.5

96

96.5

97

97.5

98

Traini

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs

0 5 10 15 20 25
94

94.5

95

95.5

96

96.5

97

97.5

98

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 20, N = 25

0 10 20
94

94.5

95

95.5

96

96.5

97

97.5

98

Traini

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs

Fig. 8. Plots of the mean classification performance of the C-loss and the square loss fun
different total training epochs (N¼25, 50, 75). The number of PEs is varied along the c
function tends to overfit the data with more training, resulting in a drop in generalization
training epochs and the number of PEs in the network.
layer PEs and N¼50 for Breast Cancer dataset and, 20 hidden layer
PEs and N¼75 for Connectionist Bench dataset. The final results
obtained at the end of training are presented in Table 6.

5.1.3. Training RBF networks with C-loss
We now train RBF networks using the C-loss function, and

compare it to the logistic loss function. We randomly choose 50
samples from the training set to be RBF centers. We use isometric
Gaussians as the activation functions. At the output layer, we use
the C-loss function of (30) to train, but now, lg is the logistic loss
function defined as

lgðy; f ðxÞÞ ¼ log ð1þ e�yf ðxÞÞ: ð31Þ
We use the C-loss function with lg defined as above and compare it
to using the logistic loss function alone. Once the RBF centers are
chosen, the ‘hidden’ layer of the RBF network remains fixed while
training, and the output layer weights are adjusted using simple
gradient descent. The learning algorithm is therefore simpler than
a full blown backpropagation algorithm.
30 40 50

ng epochs

 = 10, N = 50

0 10 20 30 40 50 60 70
94

94.5

95

95.5

96

96.5

97

97.5

98

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 10, N = 75

30 40 50

ng epochs

 = 15, N = 50

0 10 20 30 40 50 60 70
94

94.5

95

95.5

96

96.5

97

97.5

98

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 15, N = 75

30 40 50

ng epochs

 = 20, N = 50

0 10 20 30 40 50 60 70
94

94.5

95

95.5

96

96.5

97

97.5

98

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 20, N = 75

ctions on the Breast Cancer dataset, for different numbers of PEs (10, 15 and 20) and
olumns, and the total training epochs N is varied along the rows. The square loss
performance. The C-loss function remains relatively consistent over the number of

A. Singh et al. / Pattern Recognition 47 (2014) 441–453 449
As before, we compare the generalization performance (on the
test set) during several stages of training. Our results on the
Diabetes, Breast Cancer, and Connectionist Bench datasets are
shown in Fig. 11. We have used the same training/testing dataset
division as in the experiments with MLPs. To avoid being sensitive
to a particular selection of the training set, and to avoid sensitivity
0 5 10 15 20 25
83

84

85

86

87

88

89

90

91

92

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 10, N = 25

0 10 20
83

84

85

86

87

88

89

90

91

92

Trainin

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs

0 5 10 15 20 25
83

84

85

86

87

88

89

90

91

92

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 15, N = 25

0 10 20
83

84

85

86

87

88

89

90

91

92

Trainin

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs

0 5 10 15 20 25
83

84

85

86

87

88

89

90

91

92

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 20, N = 25

0 10 20
83

84

85

86

87

88

89

90

91

92

Trainin

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs

Fig. 9. Plots of the mean classification performance of the C-loss and the square loss fun
and different total training epochs (N¼25, 50, 75). The number of PEs is varied along th
function tends to overfit the data with more training, resulting in a drop in generalization
training epochs and the number of PEs in the network.

Table 2
Generalization performance (in percent) on the DIABETES dataset, at the end of trainin
training epochs.

Number of PEs 10 1

Total training epochs, N 25 50 75 2

C-loss ðs¼ 0:5Þ performance 75.66 75.23 74.86 7
C-loss ðs¼ 1Þ performance 75:04 74.06 73.29 7
Square-loss performance 74:04 72.53 72.00 7
to a particular choice of RBF centers, we have repeated the training
over 100 Monte Carlo trials, with random training data and
randomly selected RBF centers. Fig. 11 shows the average results
across these 100 trials.

We observe a similar trend as in the MLP case. Although the
logistic loss is perhaps slightly more robust than the square loss,
30 40 50

g epochs

= 10, N = 50

0 10 20 30 40 50 60 70
83

84

85

86

87

88

89

90

91

92

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 10, N = 75

30 40 50

g epochs

= 15, N = 50

0 10 20 30 40 50 60 70
83

84

85

86

87

88

89

90

91

92

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 15, N = 75

30 40 50

g epochs

= 20, N = 50

0 10 20 30 40 50 60 70
83

84

85

86

87

88

89

90

91

92

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 20, N = 75

ctions on the Connectionist Bench data, for different numbers of PEs (10, 15 and 20)
e columns, and the total training epochs N is varied along the rows. The square loss
performance. The C-loss function remains relatively consistent over the number of

g using the C-loss and the square loss functions, for different numbers of PEs and

5 20

5 50 75 25 50 75

5.56 74.95 74.82 75:70 75.08 74.14
4.88 73.37 73.00 74.89 73.34 72.14
3.54 71.72 71.92 72.83 71.69 71.19

Table 3
Generalization performance (in percent) on the breast cancer dataset, at the end of training using the C-loss and the square loss functions, for different numbers of PEs and
total training epochs.

Number of PEs 10 15 20

Total training epochs, N 25 50 75 25 50 75 25 50 75

C-loss ðs¼ 0:5Þ performance 97:07 96.70 96.56 96.75 96.75 96.62 96.89 96.51 96.31
C-loss ðs¼ 1Þ performance 96:89 96.32 96.24 96.5 96.41 96.21 96.63 96.27 96.58
Square-loss performance 96:68 96.19 96.07 96.32 96.16 96.04 96.49 96.17 95.81

Table 4
Generalization performance (in percent) on the connectionist bench dataset, at the end training of using the C-loss and the square loss functions, for different numbers of PEs
and total training epochs.

Number of PEs 10 15 20

Total training epochs, N 25 50 75 25 50 75 25 50 75

C-loss ðs¼ 0:5Þ performance 89:17 88.9 88.43 88.98 88.81 88.94 88.74 88.93 88.07
C-loss ðs¼ 1Þ performance 88:93 88.05 87.50 88.83 87.97 88.24 88.45 87.78 87.17
Square-loss performance 88:02 87.09 87.07 87.95 87.64 87.64 87.72 87.66 86.71

Table 5
Variance of generalization performance of the C-loss function (s¼ 0:5 and s¼ 1)
and square loss function, across the 9 different combinations of training
parameters.

Dataset Diabetes Breast Cancer Conn. Bench

C-loss ðs¼ 0:5Þ variance 0:2477 0:0488 0:1227
C-loss ðs¼ 1Þ variance 1.0010 0.0498 0.1807
Square-loss variance 0.8762 0.0655 0.1936

A. Singh et al. / Pattern Recognition 47 (2014) 441–453450
the generalization performance nonetheless tends to suffer on
excessive training. The use of the C-loss function improves the
generalization. Note that the performance of the C-loss in this
experiment was found to be roughly the same for both s¼ 1 and
s¼ 0:5.

We do not show the performance variation across system
parameters like number of RBF centers, but we have observed
similar trends.

5.2. Further evaluation

In the previous results we have analyzed the performance
variation of the C-loss function across network parameters like
number of PEs and number of training epochs using three
datasets, and found that the C-loss yields results that are much
more robust across these parameters. In this section, we use more
datasets and compare the best performance of the C-loss function
after choosing the optimal network parameters using cross
validation.

While training MLPs, we use cross validation to select the
optimum number of hidden layer PEs and the number of training
epochs for each dataset. Similarly for training RBF networks, we
use cross validation to choose the optimum number of basis
functions, and the number of training epochs. We also compare
our results to those obtained by soft margin (Gaussian) kernel
SVMs. SVMs require setting a box constraint parameter, C, which is
effectively a regularization parameter. We use cross validation to
choose the best values of C and also the Gaussian kernel band-
width parameter, for each dataset.

Table 7 summarizes our results. We have used s¼ 0:5 in the
C-loss function for the results in this section. We observe that in all
nine datasets, the proposed C-loss function consistently and
significantly improves over the square loss and the logistic loss
when used to train MLPs and RBF networks, respectively. This
clearly demonstrates the robustness achieved by the C-loss over
the other losses while training networks. We also see that the
performance achieved by using the C-loss function is comparable
to those of SVM, and in some datasets (such as Pima Indians
Diabetes, Cleveland Heart Disease and Blood Transfusion), the C-loss
has a notably better performance. The best result for each dataset
is shown in bold.
6. Discussion

6.1. Applicability

We have seen in this paper that using the C-loss function is
robust to prolonged training, particularly on noisy and difficult
datasets like Diabetes. Overfitting is a serious problem since the
number of training epochs or the capacity of the model is never
‘optimally’ known, and it is always easy and tempting to overtrain
a model, with the hope of better results. If the class of discriminant
functions is highly restricted, or if the training is done for a very
small number of epochs, underfitting would be the cause of
suboptimal performance. In the case of underfitting, the C-loss
function is not expected to improve over the base loss function.
The C-loss function is best applicable when overfitting is expected
to occur, while training unconstrained models on noisy datasets,
over a large number of epochs.

6.2. Choice of kernel size

We have shown that the sensitivity of the C-loss function in the
error space is high only within a window, controlled by the kernel
width. Therefore, since the parameters of the discriminant func-
tion are not sensitive to samples outside this window, it prevents
overfitting. A question naturally arises: what should be the best
value of this kernel width? It is important to note that in any task
that uses kernels to weight data, the kernel size should always be
chosen relative to the dynamic range of the variable or signal on
which the kernel operates. In case of the C-loss function, this

0 10 20 30 40 50
40
45
50
55
60
65
70
75
80
85

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 20, N = 50

0 5 10 15 20 25
65

70

75

80

85

90

95

100

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 20, N = 25

0 10 20 30 40 50 60 70
50
55
60
65
70
75
80
85
90
95

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

of PEs = 20, N = 75

Fig. 10. Evolution of generalization performance of the C-loss function over training epochs, when the best performance is picked out of 100 Monte Carlo trials with random
initial weights and random sampling of training data. (a) Diabetes dataset, (b) Breast Cancer dataset, and (c) Connectionist Bench dataset.

Table 6
Best results obtained from 100 Monte Carlo runs with random initial weights and
random sampling of training data, using the C-loss function, for the three datasets.

Dataset Diabetes Breast Cancer Conn. Bench
PEs¼20, N¼50 PEs¼20, N¼25 PEs¼20, N¼75

Best performance 82.29 98.07 95.53
out of 100 Monte
Carlo trials

A. Singh et al. / Pattern Recognition 47 (2014) 441–453 451
variable is the classification margin or error. Clearly, a very high
value of the kernel width with respect to this error would
essentially reduce the C-loss function to the square loss, and it
would lose its benefits. In a classification task, the range of the
absolute value of the errors is fixed, and known a priori (either 0 to
2 or 0 to 1). This makes the task of choosing the kernel size in
classification much easier as compared to regression tasks such as
in [25,35]. Within this restricted range as well, more intuition on
choosing the kernel size is obtained by looking at Fig. 4, which
shows how the kernel width controls sensitivity of the C-loss
function in the space of errors. Choosing s¼ 0:5 places most of the
weight within the 0–1 range of the error, which corresponds to the
correctly classified samples. Choosing this kernel size should
provide the most robustness since outlying samples (high error)
as well as confusing samples (error around 1) are downweighted.
We have experimentally shown that as compared to a bigger
kernel like s¼ 1, choosing s¼ 0:5 does indeed yields better
results, particularly while training MLPs. We therefore recommend
using the value s¼ 0:5 to any user of the proposed method.

6.3. Choice of switching scheme

As an alternative to having a hard switching scheme as done
before in [12], in this paper we proposed a cost function that
smoothly (linearly) varies from a convex loss function to the C-loss
function over the training epochs, in order to avoid local optima. This
means that the longer the classifier is trained, the longer is the
training period in which the convex loss dominates, and the closer
the solution gets to the optimal as dictated by the convex loss.
However, as the weighting on the C-loss function increases, there is
always an improvement in generalization over the convex loss,
irrespective of how long the classifier is trained. This improvement
may be small in case of clean and well separated datasets, or may be
larger in case of highly noisy datasets like the Diabetes dataset.

If using a hard switching scheme, in addition to choosing the
number of training epochs, one also has to explicitly choose when to
switch the loss function. The use of the proposed ‘soft’ switching
scheme avoids making this explicit choice. Although it is difficult to
theoretically compare the two schemes, we propose the ‘soft’ switch-
ing scheme as another way of incorporating the C-loss function in
training. Both are valid ways of improving over the performance of
conventional convex losses. Alternatively, the kernel size can also be
‘annealed’ during training, to take advantage of the invex properties of
the C-loss. We plan to examine this and the other switching
alternatives in greater detail in a follow up publication.
7. Conclusion

We have presented a loss function for classification that is
inspired by a robust similarity measure, Correntropy. Correntropy
induces a loss function that is smooth and non-convex and
effectively approximates the L0 loss for samples with high errors,
and the L2 loss for small errors.

We have tested the proposed loss function on some noisy, real
world datasets. Instead of simply showing the ‘best classification
results’ of the proposed loss function on a larger number of
datasets, we chose to study deeper the behavior of the loss
function as the system parameters are varied. It is more interesting
and informative to note how consistent is the classification
performance of the C-loss function (particularly in comparison to
the square loss) across parameters like number of PEs and the total
number of training epochs, than comparing the absolute best
results of these classifiers in various datasets. Many classification
algorithms often underperform due to improper choice of such
parameters, or require additional techniques like cross validation
to scan for the best set of parameters. Using the proposed loss
function, this problem is alleviated.

Our simulations have been restricted to using simple first order
gradient descent method for training the networks. However, the
C-loss function can be used with online second order methods like
the Levenberg Marquadt algorithm as well, and we expect the
same behavior.

An important appeal of the C-loss function is that its computa-
tional complexity is the same as that of using the traditional
square loss or logistic loss. Therefore, the proposed algorithm is
a simple and practical way of improving any conventional neural
network based classifier, without resorting to more computation-
ally intensive cost functions like the minimization of the error
entropy [36]. A potential and important class of applications is for
big data, where the online nature of gradient descent can be used
by stochastically sampling the data, i.e. without requiring the
availability of all the data in memory, nor the use of huge matrices
as in SVMs.

0 20 40 60 80 100
68

69

70

71

72

73

74

75

76

77

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

0 20 40 60 80 100
94

94.5

95

95.5

96

96.5

97

97.5

98

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

0 20 40 60 80 100
83

84

85

86

87

88

89

90

91

92

Training epochs

P
er

ce
nt

ag
e

co
rr

ec
t c

la
ss

ifi
ca

tio
n

Fig. 11. Mean classification performance of the C-loss function (s¼ 0:5, and s¼ 1), and the logistic loss function, while training an RBF network. The plots show
generalization performance at different training epochs. Each curve is obtained after averaging over 100 Monte Carlo trials, with randomly chosen training set, RBF centers,
and initial weights. (a) Diabetes dataset, (b) Breast Cancer dataset, and (c) Connectionist Bench dataset.

Table 7
Classification results obtained using C-loss (on MLP and RBF network), square loss
(on MLP), logistic loss (on RBF network) and SVM. The best result for each dataset is
shown in bold.

Dataset name MLP RBF network SVM

Square loss C-loss Logistic loss C-loss

Wisconsin Breast Cancer 96.68 97:07 96.06 96.90 96.92
Pima Indians Diabetes 74.04 75.70 74.81 76:02 74.46
Connectionist Bench 88.02 89.17 88.16 90:29 90.22
BUPA Liver Disorder 66.52 69.93 65.88 69.12 70:12
Cleveland Heart Disease 60.01 62.32 60.32 62:84 61.08
Blood Transfusion 77.40 79:82 75.96 77.93 78.02
Vowel Context 76.26 80.14 77.18 80.69 80:98
Image Segmentation 95.03 96.30 94.88 96:38 95.08
Waveform 83.80 86:16 82.97 85.70 85.89

A. Singh et al. / Pattern Recognition 47 (2014) 441–453452
Conflict of interest

None declared.
Acknowledgements

Abhishek Singh was supported by the Joan and Lalit Bahl
Fellowship and the Computational Science and Engineering Fel-
lowship at the University of Illinois at Urbana-Champaign. Jose
Principe was supported by NSF grant ECCS 0856441.
Appendix A. Backpropagation using the C-loss function

Before deriving the backpropagation equations, the notation
used to denote the variables in neural network is summarized
below for convenience.

wjk
n: The weight between the PE (processing element) k and

the PE j of the previous layer, at the nth sample update.3

yj
n: Output of the PE j of the previous layer, at the nth sample

update.
netnk ¼∑jwn

jky
n
j : Weighted sum of all outputs yjn of the previous

layer, at the nth sample update.
gðÞ: Sigmoidal squashing function in each PE.
ynk ¼ gðnetnk Þ: Output of the PE k of the current layer, at the nth

sample update.
ynAf71g: The true label (or desired signal), for the nth sample.
3 If the network is trained for a total of N epochs, and if there are Nt number of
samples in the training set, then there are a total of n¼Nt � N sample updates
during the entire training procedure.
The weights of a multilayer perceptron (MLP) are updated by
moving opposite to the gradient of the empirical risk computed
using the C-loss function.

wnþ1
jk ¼wn

jk�μ
∂RCðe;mÞ

∂wn
jk

; ðA:1Þ

where the risk RCðe;mÞ is simply the sample average of the C-loss
function of (30), computed over the training set, at the mth epoch
of training. Using the chain rule, the above equation can be
written as

wnþ1
jk ¼wn

jk þ μ
∂RCðe;mÞ

∂en
g′ netnk
� �

ynj : ðA:2Þ

Since this is an online procedure, the derivative of the risk with
respect to the error at nth sample update, en, is essentially the
derivative of the C-loss function, evaluated at en. Therefore,

wnþ1
jk ¼wn

jk þ μ
∂lCðe;mÞ

∂en
g′ netnk
� �

ynj ; ðA:3Þ

where lCðe;mÞ is defined by (30). The above equation is the general
rule for updating all the weights of the MLP, and it is called the
Delta rule, written simply as

wnþ1
jk ¼wn

jk þ μδnky
n
j ; ðA:4Þ

where

δnk ¼
∂lCðe;mÞ

∂en
g′ netnk
� � ðA:5Þ

Depending on the type of weights (belonging to output layer or
hidden layer), the computation of δnk above differs. For the output
layer weights, the computation is as follows:

δno ¼
∂lCðe;mÞ

∂en
g′ netno
� �

: ðA:6Þ

For the previous (hidden) layer, the ‘deltas’ are computed as

δnh ¼ g′ðnetnhÞ ∑
No

o ¼ 1
δnow

n
ho; ðA:7Þ

where No is the number of output layer PEs. A two class classifica-
tion problem can therefore be generalized to No number of classes,
by having the true or ‘desired’ labels at each output PE according to
a ‘one class versus the rest’ strategy.

(A.(6) and A.7) can be used to update or train the weights of a
neural network classifier using the C-loss function.

References

[1] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
[2] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data

Mining, Inference and Prediction, Springer, 2006.
[3] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.

http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref1
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref2
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref2
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref3

A. Singh et al. / Pattern Recognition 47 (2014) 441–453 453
[4] C. Burges, A tutorial on support vector machines for pattern recognition, Data
Mining and Knowledge Discovery 2 (1998) 121–167.

[5] S.-H. Yang, B.-G. Hu, A stagewise least square loss function for classification, in:
SIAM International Conference on Data Mining, 2008.

[6] Y. LeCun, Who is afraid of non-convex loss functions?, in: NIPS Workshop on
Efficient Machine Learning, Vancouver, Canada (Videolecture), 2003.

[7] Y. Liu, X. Shen, Multicategory ψ-learning, Journal of American Statistical
Association 101 (474) (2006) 500–509.

[8] R. Collobert, F. Sinz, J. Weston, L. Bottou, Trading convexity for scalability, in:
23rd International Conference on Machine Learning (ICML), 2006.

[9] Y. Bengio, Learning Deep Architectures for AI, Technical Report 1312, Uni-
versity of Montreal, Department of Computer Science and Operations
Research, 2003.

[10] Y. Bengio, Y. LeCun, Scaling learning algorithms towards AI, in: L. Bottou,
O. Chapelle, D. DeCoste, J. Weston (Eds.), Large Scale Kernel Machines, MIT
Press, 2007.

[11] I. Santamaria, P. Pokharel, J. Principe, Generalized correlation function:
definition, properties, and application to blind equalization, IEEE Transactions
on Signal Processing 54 (06) (2006) 2187–2198.

[12] A. Singh, J. Principe, A loss function for classification based on a robust
similarity metric, in: IEEE World Congress on Computational Intelligence
(WCCI), International Joint Conference on Neural Networks (IJCNN), Barcelona,
Spain, 2010.

[13] W. Liu, P. Pokharel, J. Principe, Correntropy: properties and applications in
non-Gaussian signal processing, IEEE Transactions on Signal Processing 55 (11)
(2007) 5286–5298.

[14] A. Singh, J. Principe, Using correntropy as a cost function in linear adaptive
filters, in: International Joint Conference on Neural Networks, Atlanta, USA,
2009.

[15] A. Singh, J. Principe, A closed form recursive solution for maximum corren-
tropy training, in: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2010.

[16] D. Erdogmus, S. Han, A. Singh, Algorithms for entropy and correntropy
adaptation with applications to linear systems, Information Theoretic Learning
(2010) 141–179.

[17] A. Singh, Cost Functions for Supervised Learning Based on a Robust Similarity
Metric, Master's Thesis, University of Florida, 2010.

[18] J. Xu, J. Principe, A pitch detector based on a generalized correlation function,
IEEE Transactions on Audio, Speech and Language Processing 16 (8) (2008)
1420–1432.

[19] Y. Xinnan, H. Ren, Peak-gram: pitch detection based in generalized correlation
function across multiple channels, in: The 7th IASTED International Con-
ference on Signal Processing, Pattern Recognition and Applications, 2010.
[20] K.-H. Jeong, W. Liu, S. Han, E. Hasanbelliu, J. Principe, The correntropy MACE
filter, Pattern Recognition 42 (2009) 871–885.

[21] K. Bache, M. Lichman, UCI machine learning repository, URL: 〈http://archive.
ics.uci.edu/ml〉, 2013.

[22] P. Bartlett, M. Jordan, J. McAuliffe, Convexity, classification and risk bounds,
Journal of American Statistical Association 101 (473) (2006) 138–156.

[23] Y. Lin, A Note on Margin-Based Loss Functions in Classification, Technical
Report 1044, University of Wisconsin-Madison, Department of Statistics, 2001.

[24] E. Parzen, On the estimation of a probability density function and mode,
Annals of Mathematical Statistics 33 (1962) 1065–1076.

[25] A. Singh, J.C. Príncipe, Information theoretic learning with adaptive kernels,
Signal Processing 91 (2011) 203–213.

[26] T.G. Dietterich, An experimental comparison of three methods for construct-
ing ensembles of decision trees: bagging, boosting, and randomization,
Machine Learning 40 (2000) 139–157.

[27] G. Rätsch, T. Onoda, K.-R. Müller, Soft margins for adaboost, Machine Learning
42 (2001) 287–320.

[28] Y. Sun, S. Todorovic, J. Li, Reducing the overfitting of adaboost by controlling its
data distribution skewness, International Journal of Pattern Recognition and
Artificial Intelligence 20 (2005) 1093–1116.

[29] A. Angelova, Y. Abu-Mostafa, P. Perona, Pruning training sets for learning of
object categories, in: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR'05), 2005, pp. 494–501.

[30] S. Merler, B. Caprile, C. Furlanello, I. Techrep, Bias-variance control via hard
points shaving, International Journal of Pattern Recognition and Artificial
Intelligence 18 (2002) 891–903.

[31] R. Duda, P. Hart, D. Stork, Pattern Classification, Wiley, 2001.
[32] R.P.W. Duin, M. Loog, Linear dimensionality reduction via a heteroscedastic

extension of LDA: the chernoff criterion, IEEE TPAMI 26 (6) (2004) 732–739.
[33] M.S. Mahanta, A.S. Aghaei, K.N. Plataniotis, S. Pasupathy, Heteroscedastic

linear feature extraction based on sufficiency conditions, Pattern Recognition
45 (2) (2012) 821–830.

[34] L. Rueda, M. Herrera, Linear dimensionality reduction by maximizing the
chernoff distance in the transformed space, Pattern Recognition 41 (10) (2008)
3138–3152.

[35] A. Singh, J. Principe, Kernel width adaptation in information theoretic cost
functions, in: IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2010.

[36] J. Santos, L. Alexandre, J. Marques de Sa, The error entropy minimization
algorithm for neural network classification, in: International Conference on
Recent Advances in Soft Computing, 2004.
Abhishek Singh is a currently a Ph.D. candidate in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign. He received an
M.S. degree in Electrical and Computer Engineering from the University of Florida, Gainesville in 2010, and the B.Tech degree from Dhirubhai Ambani Institute of Information
and Communication Technology, India in 2008. He is the recipient of the Joan and Lalit Bahl Fellowship and the Computational Science and Engineering Fellowship for
interdisciplinary and computation-oriented research at the University of Illinois. His research interests include statistical signal processing, pattern recognition and machine
learning and application in computer vision and image analysis problems.
Rosha Pokharel is currently a Ph.D. student in the Computational NeuroEngineering Laboratory and the Department of Electrical and Computer Engineering at the
University of Florida, Gainesville.
Jose C. Principe is a Distinguished Professor of Electrical and Biomedical Engineering at the University of Florida since 2002. He joined the University of Florida in 1987, after
an eight year appointment as a Professor at the University of Aveiro, in Portugal. Dr. Principe holds degrees in electrical engineering from the University of Porto (Bachelor),
Portugal, University of Florida (Master and Ph.D.), USA and a Laurea Honoris Causa degree from the Universita Mediterranea in Reggio Calabria, Italy. Dr. Principe interests lie
in non-linear non-Gaussian optimal signal processing and modeling and in biomedical engineering. He created in 1991 the Computational NeuroEngineering Laboratory to
synergistically focus the research in biological information processing models. He recently received the Gabor Award from the International Neural Network Society for his
contributions.

Dr. Principe is a Fellow of the IEEE, Fellow of the AIMBE, past President of the International Neural Network Society, and Past Editor in Chief of the Transactions of
Biomedical Engineering, as well as a former member of the Advisory Science Board of the FDA. He holds 5 patents and has submitted seven more. Dr. Principe was
supervisory committee chair of 65 Ph.D. and 67 Master students, and he is an author of more than 500 refereed publications (3 books, 4 edited books, 14 book chapters, 200
journal papers and 380 conference proceedings).

http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref4
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref4
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0005
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0005
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0010
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0010
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref7
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref7
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref7
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0015
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0015
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0020
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0020
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0020
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref10
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref10
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref10
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref11
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref11
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref11
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0025
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0025
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0025
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0025
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref13
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref13
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref13
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0030
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0030
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0030
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0035
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0035
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0035
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref16
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref16
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref16
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0040
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0040
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref18
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref18
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref18
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0045
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0045
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0045
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref20
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref20
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref22
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref22
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0055
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0055
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref24
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref24
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref25
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref25
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref26
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref26
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref26
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref27
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref27
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref28
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref28
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref28
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0060
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0060
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0060
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref30
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref30
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref30
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref31
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref32
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref32
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref33
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref33
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref33
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref34
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref34
http://refhub.elsevier.com/S0031-3203(13)00315-4/sbref34
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0065
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0065
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0065
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0070
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0070
http://refhub.elsevier.com/S0031-3203(13)00315-4/othref0070

	The C-loss function for pattern classification
	Introduction
	Statistical theory of classification
	Loss functions and risk
	Bayes' Optimal decision rule
	Fisher consistency

	Loss function induced by Correntropy
	Training using C-loss function
	Experiments and results
	Performance across system parameters
	Comparing variance in generalization performance
	Best results over Monte Carlo trials
	Training RBF networks with C-loss

	Further evaluation

	Discussion
	Applicability
	Choice of kernel size
	Choice of switching scheme

	Conclusion
	Conflict of interest
	Acknowledgements
	Backpropagation using the C-loss function
	References

