
150 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

A Cost and Speed Model for k-ary
n-Cube Wormhole Routers

Andrew A. Chien, Member, IEEE

Abstract —The evaluation of advanced routing features must be based on both of costs and benefits. To date, adaptive routers
have generally been evaluated on the basis of the achieved network throughput (channel utilization), ignoring the effects of
implementation complexity. In this paper, we describe a parameterized cost model for router performance, characterized by two
numbers: router delay and flow control time. Grounding the cost model in a 0.8 micron gate array technology, we use it to compare a
number of proposed routing algorithms.

From these design studies, several insights into the implementation complexity of adaptive routers are clear. First, header update
and selection is expensive in adaptive routers, suggesting that absolute addressing should be reconsidered. Second, virtual
channels are expensive in terms of latency and cycle time, so decisions to include them to support adaptivity or even virtual lanes
should not be taken lightly. Third, requirements of larger crossbars and more complex arbitration cause some increase in the
complexity of adaptive routers, but the rate of increase is small. Last, the complexity of adaptive routers significantly increases their
setup delay and flow control cycle times, implying that claims of performance advantages in channel utilization and low load latency
must be carefully balanced against losses in achievable implementation speed.

Index Terms —Routing networks, multicomputers, gate array, wormhole routing, adaptive routing, parallel computing, deadlock
prevention.

—————————— ✦ ——————————

1 INTRODUCTION

OUTING networks are critical to the performance of
parallel machines because they determine the effi-

ciency with which processing elements can communicate
and cooperate. Three fundamental characteristics of a net-
work are its topology, routing, and flow control policies.
Though a wide variety of network design have been stud-
ied and implemented, we focus on a subset in order to
make an implementation study feasible. We consider a
family of networks which have k-ary n-cube topologies,
allow adaptive or multipath routing (i.e., choose paths dy-
namically based on router status), and implement worm-
hole routing, because deterministic versions of these net-
works have been used in a number of parallel machines.
We focus on examining the increased implementation com-
plexity due to adaptive routing with a particular emphasis
on how these changes affect achievable router speed. Our
evaluation focuses on two metrics of router implementation
speed: setup delay and flow control cycle time. These two
metrics directly affect two critical dimensions of router per-
formance: latency and bandwidth.

Many studies have been published reporting router per-
formance in network clock cycles, assuming unit router
delay (or some other arbitrary number of cycles). But, be-
cause the network clock cycles for different routers are gen-
erally not the same, results from these studies cannot be
compared directly. In this paper, we develop a parametric

cost and speed model for a family of routers based on a
canonical architecture. This model allows us to evaluate
and compare the cost of various routing features in hard-
ware resources as well as achievable router speed.

Making concrete comparisons requires a concrete cost and
speed model. We instantiate our parametric model, using a
0.8 micron gate array technology, and produce specific con-
stants for all aspects of the model. This model is then used to
compare a selection of routing algorithms: dimension order
[14], planar adaptive [8], turn model [29], and *-channels [6].
The comparison produces a variety of insights about the
relative latency and achievable clock rate of these routers. In
particular, we find that all of the adaptive routers we con-
sider are significantly slower (longer setup latency and lower
clock speeds) than deterministic routers due to header selec-
tion cost and the requirement of virtual channels for dead-
lock prevention. The negative performance impact of virtual
channels is particularly severe, incurring setup latency and
reducing network clock speeds. Consequently, a designer of
routing networks must carefully balance the benefits of
adaptive routing against these significant costs in deciding
whether or not to include adaptivity.

2 BACKGROUND

High performance routing networks, the subject of signifi-
cant study over the last fifteen years, are currently in wide-
spread use in machines such as the Intel Paragon [20], Intel
iWarp [7], [31], Ncube/2 [27], and the MIT J-Machine [11],
[13]. All of these multicomputer systems use direct networks,
meaning that the computing nodes are embedded in the
network topology and, as a result, some nodes are closer
than others. In addition, to use in multicomputers, direct

1045-9219/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• The author is with the Department of Computer Science, University of Illinois
at Urbana-Champaign, 1304 W. Springfield Avenue, Urbana, IL 61801.

 E-mail: achien@cs.uiuc.edu.

Manuscript received1 Nov. 1993.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100711.

R

CHIEN: A COST AND SPEED MODEL FOR K-ARY N-CUBE WORMHOLE ROUTERS 151

networks are gaining acceptance in shared memory ma-
chines, such as the MIT Alewife [2], [1], Stanford DASH
[24], and Tera Computer’s TERA machine [3]. All of these
machines use topologies from the family of k-ary n-cubes.
That is, in systems with kn nodes, the networks have n di-
mensions and k nodes along each dimension. All of the
routers considered in this paper can be used in k-ary n-cube
topologies.

2.1 Wormhole Routing
The performance of parallel systems is closely tied to the
throughput and latency provided by their routing net-
works. Many of these networks use virtual cut-through [22]
or wormhole routing [9], a technique which reduces message
latency by pipelining its transmission over a number of
channels along its path. For the remainder of this paper, we
focus on wormhole routed, direct networks.

Virtual cut-through and wormhole routing are distin-
guished by the action taken when a message’s path is
blocked. In virtual cut-through, the head of the message is
stopped and the rest of the message continues to move.
Eventually, if the head is stopped for long enough, the en-
tire message arrives and is buffered at the router where the
head is blocked. One major advantage of virtual cut
through is that deadlock prevention is relatively easy be-
cause a blocked message does not tie up any channels, only
buffers. A major disadvantage is that routers must be able
to buffer a number of entire messages, increasing router
size and, perhaps, reducing router speed. The buffering
requirement also places a fixed limit on the maximum mes-
sage size for any particular router implementation.

In contrast, a wormhole router stops a message “in
place” when its head is blocked. The head of the message
stops, and the remainder of the message is stopped, holding
the buffers and channels along the path it has already
formed. The primary advantage of wormhole routers is that
router buffer requirements can be small, allowing routers to
be extremely small and fast. The obvious disadvantage is
that, by allowing a message to retain the buffers and chan-
nels, wormhole routing increases the possibility of resource
cycles, which cause deadlock. A number of schemes have
been developed which solve this problem [9], [29].

2.2 Adaptive Routing
Adaptive routing has been proposed as a means of im-
proving network throughput and performance robustness.
A wide variety of adaptive routing algorithms have been
proposed [25], [12], [16], [8], [29], [6]. However, to date,
most evaluations of adaptive routing algorithms use regis-
ter transfer level simulation, which shows how adaptive
routing increases channel utilization but cannot measure
the impact of additional router complexity on network la-
tency and bandwidth.

Adaptive routing allows paths to be chosen dynamically
based on information about which channels are available,
potentially reducing network latency and increasing net-
work bandwidth by making better use of network re-
sources. However, while adaptive routing increases routing
freedom, it also increases the cost of deadlock prevention.
Significant additional hardware may be required (as much

as 2n-1 virtual channels for fully adaptive routing in n-
dimensional networks [25]). Further, adaptive routing in-
creases the complexity of routing decision logic and cross-
bar size. Both of these costs can reduce router speed and,
thus, must be weighed against the benefits of adaptive
routing to determine how much adaptivity and which
routing algorithm is most attractive. Concerns about the
complexity of adaptive routers are not new, as a number of
researchers have proposed limited adaptive routing
schemes which reduce both routing freedom and hardware
complexity [8], [16], [29]. Several examples of such routing
algorithms are studied in Section 6.

3 RELATED WORK

A number of other research projects have explored router
implementation issues. Some of the earliest involve tech-
niques for deadlock-free wormhole routing [14] and were
based on full crossbar architectures. Later studies opti-
mized the internal architectures based on the regularity of
dimension-order routing, partitioning crossbars, and subdi-
viding the router into a set of smaller, identical router auto-
mata. These organizational improvements produce signifi-
cant performance improvements, culminating in an organi-
zation similar to the router architecture shown in Fig. 5 [15],
[19], [33]. However, these studies have focused on dimen-
sion-order routing and have not directly considered the
cost of adaptive routing.

A recently published study of the Chaos router examines
the cost of adaptive routing. However, because the Chaos
router requires virtual cut-through routing, the results are not
directly comparable to those presented here. Another study by
Smitley et al. [35] examines the cost of adaptive routing in the
HNET system. Though the adaptive routing algorithm con-
sidered, deflection routing, is quite different, their conclusions
are quite similar to those presented in this paper.

A number of commercial wormhole routers have also
been constructed for the Symult 2010 [34] and the Intel
Paragon [20], [18]. The Paragon router is of particular inter-
est as it is implemented in a similar technology (0.8 micron
CMOS gate array) and gives performance comparable to
our router designs (higher setup delay and comparable cy-
cle time). Public figures for its setup delay and channel cy-
cle time are 40ns and 10ns, respectively.

4 BASIC ROUTER FUNCTIONS

A wormhole router must perform several basic functions:
switching, routing, flow control, multiplexing physical
channels, inter-chip signalling, and clock recovery. A basic
wormhole router architecture is shown in Fig. 1. Data
moves from left to right through the router and the com-
plementary flow control signals move along parallel paths
in the opposite direction. The essential components of the
router and their functionality are described below.

• Crossbar (CB) provides the basic switching function
from router inputs to outputs. If the switching func-
tion is not complete (all inputs to all outputs), it may
be possible to partition the crossbar into a set of
smaller crossbars for higher performance and lower

152 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

cost. The size of the crossbar may be proportional to
the number of inputs, outputs, and virtual channels.
Other approaches include buses and multiported
memories; these alternatives are discussed below.

• Flow Control units (FC) perform flow control between
routers, stopping a message in place, if necessary. This
function requires control logic and some buffering.
Signaling flow control information across the channel
incurs delay, so sufficient buffering to capture the data
in flight on the channel must be available.

• Address Decoders (AD) examine the packet header
and generate the set of possible routes, based on the
routing algorithm. This can range from a trivial bit
selection to several arithmetic operations. Address
decoders also compute the updated header. Most
routers use relative addressing.

• Routing Arbitration logic (RA) chooses the path and
connects and disconnects the input with an appropriate
output based on the routing algorithm and network
status information. It must do arbitration for the router
outputs, so its complexity and latency increase with the
number of choices possible for packet (routing freedom).

• Virtual Channel controllers (VC) multiplex the physi-
cal channels, providing a set of virtual channels that
can progress independently. The controller complexity
increases superlinearly in the number of virtual chan-
nels, due to increased buffering and arbitration re-
quirements. Physical channel arbitration is on the criti-
cal path for router latency.

Packets arriving at the router inputs are fed into the ad-
dress decoders, which generate a set of requests for possible
outputs. The routing arbitration logic combines the requests
from all of the inputs and the router status, and matches
inputs to appropriate outputs.1 If no appropriate outputs
are available, an input may be blocked. Our router archi-
tecture can connect all inputs to outputs in a single cycle
(assuming no output conflicts). However, as network packets
are typically multiple flits, this capability is not essential;
making connections sequentially does not significantly re-
duce performance.

1. For some routing algorithms [8], [29], the router state is only used to
choose between deadlock-free alternatives, allowing the router state to be
approximate.

Once an appropriate output has been selected, the
switch connection is maintained for the entire packet.
Following the last flit, the switch connection is broken
and the output freed for subsequent communications.
While no single router architecture is appropriate for all
routing algorithms and possible design parameters, this
basic architecture is attractive for a range of routing al-
gorithms [14], [8], [29] and has, in fact, been used for a
number of practical routers [14], [15], [30], [4], [33], [20].
Our canonical router architecture captures an attractive
design for networks of modest dimension and modest
numbers of virtual channels, providing a basis for direct
comparisons amongst a set of routing algorithms. Be-
yond three or four dimensions and about four virtual
channels, requiring a full crossbar for all virtual channels
at both inputs and outputs can become a significant de-
sign consideration. Beyond this point, memory-based or
bus-based approaches [32] become more attractive.
However, buses have electrical limitations on speed and
width and multiported memories typically must include
some type of crossbar interconnect to allow the multiple
ports to access the stored data. See [4] for a detailed dis-
cussion of this issue.

4.1 Performance Metrics
Routing network performance has two important attrib-
utes: routing latency (for short messages or on large ma-
chines, this is dominated by the time to set up a connection)
and bandwidth (determined by the flit size and the time to
do a flow-control operation). A router contributes to these
times through its routing setup latency and its flow control
latency, respectively. Other contributions include channel
delay (time of flight) and clock recapture overhead. Because
these inter-router times depend primarily on topology and
packaging, not routing algorithm, they are essentially iden-
tical for the router designs we consider. Consequently, we
focus instead on the internal router contribution to delays.
This presumes parallel interconnection between routers
using wires or fiber-optic cables; otherwise, the delay in-
herent in deserializing and serializing even small flits will
dominate the router latency.2 Such an arrangement is typi-
cal in parallel computers. Characterizing attainable router
speeds for a routing algorithm makes it possible to scale
simulation studies of channel utilization or latency in clock
cycles, providing a basis for normalized comparisons.
Pipelining can be used to increase the router throughput,
but as we will see, latch overhead is quite significant when
compared to the router latencies. Thus, pipelining would
significantly increase router delay.

4.1.1 Routing Latency
The per-node routing latency consists of two parts: the
inter-router delay and the internal router latency. We
focus on the internal router latency—the time to create a
connection through a router—which can be decomposed
into the following contributions:

2. For 16-bit flits, even a gigahertz 10
9 serial link will have greater delay

in the deserialization and serialization than the slowest router design con-
sidered in this paper.

Fig. 1. A canonical architecture for a wormhole router: data and flow
control paths only.

CHIEN: A COST AND SPEED MODEL FOR K-ARY N-CUBE WORMHOLE ROUTERS 153

1) Decode Address and generate connect requests (TAD),
2) Arbitration (TARB),
3) Updated header selection (TSEL),
4) Drive data through the crossbar (TCB), and
5) Virtual channel controller delay (TVC).

The speed of each of these operations directly affects the
router latency. Precisely how these factors combine depends
on the degree of routing freedom, how arbitration for re-
sources occurs, and how deadlock prevention is achieved.
However, all of them are significant in at least one of the
router designs considered. These issues are examined in de-
tail in a series of specific routing examples in Section 6.

4.1.2 Flow Control Latency
A router’s channel bandwidth depends on the size of a
flow control unit (flit) and the time required to do a flow
control operation. The internal flow control latency lim-
its the flit rate on network channels in multiprocessor
routers. Though higher bandwidth can be achieved by
increasing the flit size, such a choice increases router
complexity by introducing separate logical (flow control)
and physical signaling rates, requiring additional buff-
ering, slowing backpressure, and increasing routing la-
tency. In contrast, equating flit and physical transfer unit
(phit) size allows a simple token passing or XON/XOFF
(stop/start) protocol, simplifying router design. Equat-
ing the flit and phit sizes ties the flow control delay to
the signaling rate.

Flits are units of resource multiplexing (internally and
externally), so flow control latency determines the net-
work’s ability to share internal connections and external
channels amongst different packets. The unit of multiplex-
ing directly affects the responsiveness of the network. Reg-
ister-transfer level simulations of wormhole networks have
shown that smaller flit sizes give better network perform-
ance. In addition, flow control speed determines the amount
of buffering needed.

The critical path for flow control operations can be bro-
ken down into the following steps:

1) Flow controller delay (TFC),
2) Forward crossbar switch delay for data (TCB), and
3) Virtual Channel Controller delay (TVC).

Again, the particular contribution of these module
delays to overall flow control latency depends on the
choice of routing algorithm. No backward propagation
delays are included because the flow control is fully
pipelined. Typically, the main factor in flow control de-
lay is whether or not virtual channels are needed for
deadlock freedom. Surprisingly, virtual channel control-
lers can incur significant delay, contributing a large frac-
tion of the total flow control delay. We examine the spe-
cific contributions in the context of several routing algo-
rithms in Section 6.

5 A PARAMETRIC COST MODEL

A parametric cost model based on the complexity and
speed of each hardware module allows us to compare the
achievable hardware performance (complexity) of a variety

of router designs. In this section, we characterize the com-
plexity of each module in our canonical router architecture
in size and delay, examining their scalability for larger and
enhanced router designs.

5.1 Basic Module Delays
A wide variety of routing algorithms can be implemented
with our canonical router architecture and slight variants of
the following basic modules. The basic functionality of the
modules does not vary much from one routing algorithm to
the next. However, there are some subtle changes in logic
and critical path dependences. The minor changes neces-
sary are examined in greater detail in Section 6. Here, we
describe each router module and its implementation com-
plexity. Formulas for the gate count complexity and delay
can be found in Fig. 2.

• Crossbar: While there are many possible implemen-
tations, most routers use a tree of gates, or selectors,
for each output. Thus, crossbar size grows as the
product of the number of inputs and outputs, and the
delay grows logarithmically due to the depth of the
selection trees. A variety of electrical tricks are possi-
ble, but they generally reduce the gate count, rather
than increase the speed or reduce delay.

• Flow control unit: For each channel, a flow control
unit manages the local buffers, preventing overflow
and underflow. When the number of channels is in-
creased, more flow control units are required, but the
complexity of each does not increase. Major con-
tributors to flow control unit delay are the timing
constraints and delays for latches and flip-flops.

• Address Decoder: For each packet, an address de-
coder extracts the packet address and generates re-
quests for the acceptable outputs, based on the
routing algorithm. The address encoding can affect
the complexity of this operation, but the encoding
is typically chosen to minimize such effects. We
model the decoder delay as constant. The address
decoder also updates the header, decrementing, in-
crementing, or passing a dimension address based
on the routing decision. While updated headers can
be calculated in parallel with routing arbitration,
header selection is on the critical path and has de-
lay logarithmic in the number of possible routing
choices.

Module Parameter Gate count Delay

Crossbar P (ports) O(P
2
) c0 + c1 * log P

Flow Control Unit none O(1) c2

Address Decoder none O(1) c3

Routing Decision F (freedom) O(F
2
) c4 + c5 * log F

Header Selection F (freedom) O(F) c6 + c7 * log F

VC Controllers V (# vcs) O(V) c8 + c9 * log V

Fig. 2. Gate counts and delays for the router modules. P is the number
of inputs or outputs for the crossbar. F (freedom) is the routing free-
dom, the number of output choices an input can have, and is typically
the same as P. V is the number of virtual channels that a virtual chan-
nel controller must multiplex onto the physical channel.

154 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

• Routing Arbitration Logic: The arbitration module
takes the requested outputs and the switch status as in-
puts and generates switch connections (output channel
assignments). In the worst case, packets might arrive on
all inputs simultaneously, requiring circuits with at least
logarithmic depth in the number of inputs. We assume
simple arbitration algorithms implemented with log
depth circuits. See [36] for a thorough study of this issue.

• Virtual Channel Controller: Each virtual channel
controller must include at least one buffer for each
virtual channel being multiplexed onto the physical
channel. This implies at least a linearly increasing gate
count with respect to the number of virtual channels.
However, the VC delay increases logarithmically in
the number of virtual channels due to arbitration for
the physical channel and the gates required route the
latch outputs to the channel.

5.2 An Instantiated Cost Model
Our parameterized model is based on a family of routers
designed in the past year [4]. However, because the con-
stants are not explicit, it cannot be used to evaluate the
relative importance of factors determining router speed nor
for comparisons between routing algorithms. In this sec-
tion, we instantiate our model for a 0.8 micron CMOS gate
array technology, evaluating the relative cost of operations,
such as routing decision, crossbar setup, and flow control.
In Section 6, we use the instantiated model to compare a
variety of proposed routing algorithms.

Our performance model is instantiated based on a 0.8 mi-
cron CMOS gate array process.3 For reference, basic two-input
NAND gates in this technology have intrinsic delay below a
quarter of a nanosecond and delay of 350 to 750 picoseconds
for one to five gate loads (based on typical interconnect
routing). Our timing estimates are based on nominal estimates

3. Numbers presented are based on Mitsubishi Electronics M6007x and
M6008x Series 0.8 micron gate array family.

of wiring capacitance, nominal processing, and nominal oper-
ating temperature. Using complete designs for each module,
combined with gate-level timing estimates, gives the numbers
in Fig. 3 for the constants (ci) used in the expressions of delay.
In some cases, the models do not match the exact speeds real-
izable, due to discrete gate choices, such as using two-input
versus three-input gates. Instead, the models are designed to
match the basic growth of the latency. Though the constants
will differ across hardware technologies, we believe that the
essential elements of fan-in, fan-out, and logic complexity that
affect the delays in our designs will also be critical factors in
other gate arrays or even custom VLSI.

For each router module, we characterize its cost in gates
and its speed (latency) as a function of the number of inputs,
router dimension, etc. Though large increases in gate count
can reduce performance due to increased interconnect delay,
gate count is probably not a significant performance factor for
the designs considered; most designs fall in the 10,000-30,000
gate range, well within the limits of current technology.

An alternative way to characterize delays is in units of
gate delays. However, since such delays are nonuniform
due to differing fan-in and fan-out, as well as the use of
different speed gates in our design, we report the delays in
nanoseconds. Module gate counts expressions are shown in
Fig. 4. Lower order terms are omitted, as they may vary
greatly between particular designs. Gate counts for entire
routers are given at the end of Section 6, in Fig. 10. These
gate counts cover all of the router internals, but omit counts
for off chip connectivity–external clock synchronization and
input/output pads. Complete schematics for these designs
can be found in [4].

6 APPLICATIONS

Applying the canonical architecture and performance model
to routing algorithms highlights their differences and pro-
vides clock rate and latency estimates. Such estimates can be

Constant Value (nanoseconds)

c0 0.4

c1 0.6

c2 2.2

c3 2.7

c4 0.6

c5 0.6

c6 1.4

c7 0.6

c8 1.24

c9 0.6

Fig. 3. Module delay constants for a 0.8 micron CMOS process.

Module Parameter Gate Count Formula Typical Size

Crossbar P 29 P
2

460 (P = 4)

Flow Controller n.a. constant 320

Address Decoder n.a. constant 100

Routing Decision F 17 F
2

280 (F = 4)

VC controller V 126 V 380 (V = 3)

Fig. 4. Gate counts for router modules. All gate counts assume 16-bit flits and 16-bit internal data paths.

CHIEN: A COST AND SPEED MODEL FOR K-ARY N-CUBE WORMHOLE ROUTERS 155

used to normalize comparisons of register-transfer simula-
tion results. In this section, we first consider a baseline, a de-
terministic router (dimension-order or e-cube), and then
compare it to a variety of proposed adaptive router designs.
These studies show that adaptive routing approaches exhibit
a variety of requirements in crossbar size, routing arbitration
complexity, and the number of virtual channels required to
achieve deadlock-free adaptive routing. Using a dimension-
order router as the baseline, cost estimates show that both
planar-adaptive routing and the turn model can be imple-
mented with modest increases in hardware. However, both
produce a significant increase in setup delay and flow control
latency. Applying our model to the *-channels algorithm
shows that *-channels has slightly greater cost than the other
adaptive routers and differs in that it requires remote buffer
status information to make routing decisions.

6.1 Dimension-Order Router
Dimension-order routing routes a packet successively in each
dimension until the distance in that dimension is zero, then
proceeds to the next dimension. Numerous implementations
of dimension-order routers have been constructed by both
researchers and companies [14], [15], [19], [34], [20], [18], [33].
Applying our canonical router architecture produces a di-
mension-order router (see Fig. 5) which corresponds to the
basic organization of all of these designs.

The setup delay in a dimension-order router involves
decoding the address (and updating the header), a trivial
routing decision whether to continue in the current dimen-
sion or proceed to the next, connecting the crossbar, and
sending data through the crossbar. Because dimension or-
der routing only changes dimensions in order, there is one
crossbar for each dimension, and only three inputs D+, D-,

and from a higher dimension. The three outputs are D+, D-,
and to a lower dimension. This highly specialized datapath
partitions the router, allowing each part to run extremely
fast. The routing decision involves only a check for zero
and arbitration for the switch output. The equation for
setup delay can be written as shown:

TDimOrder = TAD + TARB + TCB,

which, based on our parameterized model and the fact that
the dimension order router requires P = 3, F = 3, and V = 0,
gives

TDimOrder = c3 + c4 + c5 * log F + c0 + c1 * log P,

TDimOrder = c3 + c4 + c5 * log 3 + c0 + c1 * log P,

which, for the 0.8 micron CMOS gate array, gives a setup
delay of 5.6ns. The address update time can be overlapped
with the later steps, but the address decoding time is on the
critical path. Of this setup delay, 2.7ns are spent in the ad-
dress decoder, 1.55ns are spent for the extremely simple
arbitration, and 1.35ns are spent crossing the crossbar. The
major contributor to the delay is the address decoding;
other aspects of the path setup are comparatively inexpen-
sive. Dimension-order routers do not require virtual chan-
nel controllers, so their setup delay is not a factor.

Performing a flow control operation in a dimension-order
router requires delay through the crossbar and the flow con-
troller. The flow control delay can be written as shown:

Tfc-DimOrder = TFC + TCB,

Tfc-DimOrder = c2 + c0 + c1 * log P.

Substituting P = 3 gives 3.55ns for a flow control opera-
tion in a dimension order router, an extremely low latency.
This means that the router could achieve 280 ¥ 106 flow
control operations per second or 280 ¥ 106 flits per second
along any particular channel. Even allowing for technology
differences, the setup time and router cycle time compare
favorably with a mature series of routers designed by
Seitz’s group at Caltech [33].4

As our studies show, the dimension-order router is sig-
nificantly simpler in both setup and flow control than any
of the adaptive routers, and consequently can operate at
high clock rates. However, the advantage is tenuous, as
adding even a few virtual lanes (and the required virtual
channel controllers) to dimension order routing can effec-
tively eliminate the speed advantage [5].

6.2 Planar-Adaptive Router
Planar-adaptive routing (PAR) has been proposed as an
inexpensive form of adaptive routing [8]. PAR is a minimal
adaptive router which reduces the cost of adaptive routing
by limiting it to only two dimensions at a time. This ap-
proach limits the crossbar size to 4 ¥ 4, routing decisions to
only four alternatives, and the number of virtual channels
to only three per physical channel. These requirements are
independent of the number of dimensions in the network.
The block diagram for a planar-adaptive router is shown in

4. The point is not to claim that our design is better, but rather that the
comparison is not skewed against deterministic routers.

Fig. 5. The block diagram for a dimension-order router. The 3 ¥ 3
crossbars are networks of three input selectors.

156 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

Fig. 6. In contrast to the dimension-order router, the planar-
adaptive router uses a partially specialized datapath for
each adaptive plane.

Adaptive routers make routing decisions based on
router state. Close examination of a router implementation
reveals that this flexibility must incur some overhead. In
particular, the routing decision logic becomes more compli-
cated. First, the routing decision logic uses both the incom-
ing packets and the current router state to make output
assignments. Second, the address decoders must first de-
code the packet header and then update it based on the
routing decision. This update is particularly important, as it
appears on the critical path for setup, and is present in all of the
adaptive routers considered. Our adaptive router designs each
compute all possible new headers (the number depends on
the routing freedom), then select the appropriate one. Using
relative addresses allows completion of routing in a dimen-
sion to be a simple zero-check operation. Planar adaptive
routers also require virtual channels for deadlock preven-
tion, so the critical path consists of address decoding, rout-
ing arbitration, header selection, crossbar delay, and virtual
channel controller delay. Thus the router setup delay for
the PAR is:

TPAR = TAD + TARB + TSEL + TCB + TVC.

Plugging in the expressions from Fig. 2,

TPAR = c3 + c4 + c5 * log F + c6 + c7 * log F

 + c0 + c1 * log P + c8 + c9 * log V

using P = 4, F = 4, and V = 3 based on the deadlock-freedom
requirements gives:

TPAR = c3 + c4 + c5 * 2 + c6 + c7 * 2 + c0

 + c1 * 2 + c8 + c9 * log 3,

which, for our 0.8 micron CMOS gate array model, gives a
setup latency of 10.9ns. This delay is nearly two times
larger than that of the dimension-order router. Clearly,
even inexpensive adaptive routing significantly increase
router setup latency. Most of the increase is due to two
things: header selection based on the routing decision and
virtual channel controllers. Together, these two components
account for approximately 5ns of the increase in setup la-
tency. Both the virtual channel control and header selection
operations lie on the critical path and, hence, slow the setup
of connections through the router. Though some adaptive
routers do not require virtual channels, all adaptive routers
that use relative addressing require header selection on the
critical path.

The flow control path in the planar-adaptive router is
similar to that of the dimension-order router with one ex-
ception. Because virtual channels are required for deadlock
prevention, the virtual channel controller must be part of
the flow control path. The flow control latency in the pla-
nar-adaptive router can be written as follows:

Tfc-PAR = TFC + TCB + TVC

Tfc-PAR = c2 + c0 + c1 * log P + c8 + c9 * log V.

Plugging in the values P = 4 and V = 3 for the PAR gives

Tfc-PAR = c2 + c0 + c1 * 2 + c8 + c9 * log 3,

which, based on our instantiated model, gives a flow control
delay of 6.15ns.5 This is almost two times that of the dimen-
sion-order router and a direct result of the introduction of
virtual channel controllers into the critical path. Adding vir-
tual channels incurs significant overhead and may directly
affect the speed of signaling that a router can achieve.

6.3 The Turn Model
The turn model is an interesting alternative approach to
adaptive routing which prevents deadlock without virtual
channels [29]. The turn model encompasses a large collec-
tion of routing algorithms. However, there are a range of
similar algorithms; we consider the negative-first algorithm.
It can be used in arbitrary dimensioned networks, and is
provably deadlock free. The idea is first to route adaptively
in all of the negative directions, until there are no more,
then route adaptively in all of the positive directions. Im-
plementing a negative first routing algorithm basically re-
quires crossbars which connect all inputs to all outputs
(only a few connections are prohibited). In addition, arbi-
tration for all inputs to all outputs is necessary. Since
deadlock freedom is assured by preventing turns, no vir-
tual channels are required. A block diagram of a turn
model router is shown in Fig. 7.

5. However, a two-dimensional PAR only requires two virtual channels,
reducing the setup delay and flow control times to 10.8ns and 5.8ns, re-
spectively.

Fig. 6. Block diagram for a planar-adaptive router. A slice for one
adaptive plane is shown.

CHIEN: A COST AND SPEED MODEL FOR K-ARY N-CUBE WORMHOLE ROUTERS 157

The setup path for a turn model router is more complex
than a dimension-order router’s, but in a way that differs
from the planar-adaptive router’s. The turn model requires
larger crossbars and larger arbitration circuits, but no vir-
tual channel controllers. Thus, the setup delay involves the
address decoder, the router decision logic, the header se-
lection logic and, finally, the crossbar delay. Our model for
address decode logic is conservative for a turn model
router, which requires information across a number of
dimensions in order to generate a set of acceptable out-
puts. The other routers (dimension order, planar adaptive,
and *-channels) each generate such requests by considering
only a few bits of the header independently. The setup de-
lay for a two-dimensional turn-model router can be written
as follows:

TTurn = TAD + TARB + TSEL + TCB,

TTurn = c3 + c4 + c5 * log F + c6 + c7 * log F + c0 + c1 * log P,

where, in this case, F = P = 2D + 1. The number of dimen-
sions is doubled because the routing algorithm does not
allow the crossbar to be partitioned. The plus one is due to
the network output port which delivers messages at their
destination. Since the routing speed depends on the num-
ber of dimensions, in Fig. 9, we give the setup delays for
range of network dimensions. The setup delay can be writ-
ten as below, where D is the network dimension.

 TTurn-D = c3 + c4 + c5 * log (2D + 1) + c6

 + c7 * log (2D + 1) + c0 + c1 * log(2D + 1).

The Turn model router has a larger setup delay than the
dimension-order router, due to the increased crossbar sizes
and arbitration delay. For two dimensions, the setup time is
9.1ns. However, it is still less than the setup delay for the
planar adaptive router, mostly because no virtual channels
are required. For higher dimensions, the setup delay of the
turn model router becomes larger due to crossbar size,

routing arbitration, and header selection. These terms all
grow with dimension, surpassing the cost of virtual chan-
nels in the planar-adaptive router at four dimensions.

The flow control delay for the Turn Model router has
similar structure to that of the dimension order router,
though the crossbar is a little larger. It can be written as
follows:

Tfc-Turn = TFC + TCB,

which, plugging in our parameterized model, gives

Tfc-Turn = c2 + c0 + c1 * log P.

As before, the speed depends on the dimension of network,
so with D as the network dimension:

TDfc-Turn = c2 + c0 + c1 * log(2D + 1).

A range of flow control cycle delays can be found in Fig. 9.
The flow control delay is also affected by the size of the

crossbar, producing a larger flow control delay than in the
dimension-order router. However, the flow control delay of
a turn model router is much lower than that in the planar-
adaptive router because no virtual channel controllers are
required. The two-dimensional turn model router, has a
flow control delay of 4.0ns, only 13 percent larger than that
for a dimension-order router. In three- and four- dimen-
sional networks, the flow control delay is only 21 percent
and 27 percent larger, respectively. The turn model router’s
flow control delay is smaller than that of the planar-
adaptive router, even beyond 10 dimensions, due to the
absence of virtual channel controllers. Avoiding the re-
quirement of virtual channel controllers simplifies routers,
giving significant performance benefits.

6.4 *-Channels Router
The *-channels router is interesting to compare to the other
routers because it provides deadlock-free, fully adaptive
minimal routing with a modest number of virtual channels
[6]. *-channels prevents deadlock in the fashion described
by Duato’s theory [17]. *-channels differs from the planar-
adaptive router, which provides only limited adaptivity
and the turn model, which in its most general form is a
nonminimal router. The *-channels router uses virtual
channels to separate the adaptive routing channels from
those reserved for dimension-order routing.

The *-channels router prevents deadlock by dynamically
disallowing paths based on occupancy of buffers in neigh-
boring nodes. This means that routing decisions depend
critically on the availability of accurate buffer status from
neighboring nodes. This issue is discussed below. For now,
we assume that buffer status information is available. Casting
a *-channels router into our canonical architecture produces a
router, as shown in Fig. 8. The crossbar is (4D + 1) ¥ (4D + 1),
or 9 ¥ 9 for the two-dimensional case shown. There is a
separate crossbar port and flow control unit for each virtual
channel. And, there is one VC for each physical channel.

The setup latency for the best case, assuming no stalling
for a previous packet, can be written as follows:

TSC = TAD + TARB + TSEL + TCB + TVC.

Fig. 7. A block diagram for a Turn model router.

158 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

Plugging in the expressions from Fig. 3,

TSC = c3 + c4 + c5 * log F + c6 + c7 * log F + c0

+ c1 * log P + c8 + c9 * log V.

For a two-dimensional network router, P = 9, F = 9, and V = 2
gives:

 TSC = c3 + c4 + c5 * log 9 + c6 + c7 log 9 + c0

+ c1 * log 9 + c8 + c9.

The *-channels routers includes the most costly alterna-
tives, requiring a large crossbar switch, virtual channels,
and maximal routing freedom, all of which combine to in-
crease router latency. In return, the primary advantage of
the *-channels router is that it provides fully adaptive
minimal routing. The setup delay of the *-channels router
for two-dimensional networks is 12.65ns, poorer than all
three of the other routers considered. Setup delays for a
number of dimensions are shown in Fig. 9. The setup delay
for *-channels is longer because it requires the worst im-
plementation features of both the planar adaptive router
and the turn model router: virtual channels AND large
crossbar switches. Furthermore, the *-channels router’s per-
formance disadvantage gets worse for higher dimensions,
extracting a significant cost for allowing all minimal paths.

Thus, even in the best case, its latency is significantly
worse than any of the other routers we have considered. If
the networks are run close to capacity, and short messages
are common, the need for accurate buffer status informa-
tion from neighboring nodes could further increase setup

delay. Because the node latency depends on whether one
packet follows another directly, the maximum incurred
latency for one packet following another can be as much as
2Tf, where Tf is the time of flight between routers. If a router
implementation includes significant FIFO buffering the de-
lay may increase further. This delay arises from the need to
assure that the preceding packet has been moved out of the
FIFO and across the crossbar. If it had not, then it would be
unsafe to route a packet along that path. This delay in-
creases node latency and reduces channel bandwidth. Such
delays will become more significant as clock rates and the
internode propagation delay in cycles the available silicon
for buffering increase. This overhead can be reduced by
using virtual lanes [10], which, in turn, incur a significant
additional hardware and cycle time overhead [5].

The flow control latency in the *-channels router is
nearly identical to that in the planar-adaptive router, re-
quiring the involvement of the flow controller, a slightly
larger crossbar, and a virtual channel controller.

Tfc-SC = TFC + TCB + TVC,

Tfc-SC = c2 + c0 + c1 * log P + c8 + c9 * log V,

which, for two dimensions, the values P = 4D + 1 = 9 and
V = 2, gives

Tfc-SC = c2 + c0 + c1 * log 9 + c8 + c9 * log 2,

which, based on our instantiated model, gives a flow control
delay of 6.5ns. This is larger than all of the other routers: di-
mension-order router, turn model, and planar-adaptive rout-
ers. The increased flow control latency is directly attributable
to the requirement for a large crossbar, arbitration across the
entire switch, and virtual channel controllers along the criti-
cal path. As with the setup delay, this disadvantage increases
with respect to the dimension-order and planar adaptive
routers as the dimension is increased.

6.5 Router Gate Counts
Router gate counts, based on the module gate count for-
mulas in Fig. 4 and the number of modules each routing
algorithm requires, are shown in Fig. 10. All gate counts
assume routers with 16-bit datapaths and channels. These
estimates are conservative as they do not include gates re-
quired for input/output buffering, pads, and synchroniza-
tion. However, they do show that hardware complexity of
adaptive routers is manageable with current technology.
This is particularly true for the low-dimensional networks,
which are the most attractive candidates.

6.6 Other Routing Alternatives
There are many other well-known adaptive, wormhole
routing approaches, but we could not consider all of them in
the space of one paper. Several were excluded because they
appear to be significantly more complex than the routers in-
cluded. In particular, the Dally-Aoki router [12], the Linder-
Harden router [25], the Ngai-Seitz router [28] fall into this
category. Another interesting approach, the Chaos router
[23], requires a significantly different basic router architec-
ture based on virtual cut-through routing, and therefore
was omitted. We chose a variety of the simplest adaptive,

Fig. 8. The architecture of a two-dimensional *-channels router. It requires
both large crossbars and virtual channel controllers.

CHIEN: A COST AND SPEED MODEL FOR K-ARY N-CUBE WORMHOLE ROUTERS 159

wormhole routing algorithms we could find. Even they re-
quired significant hardware and additional latency beyond
that required for a dimension-order router. It is our expecta-
tion that the more complex algorithms will suffer even more
severe penalties due to larger requirements in terms of com-
plex routing logic and virtual channels.

6.7 Discussion and Analysis
The purpose of developing a parametric speed model is to
compare the cost and complexity of a variety of routing algo-
rithms. In the process, the detailed analysis required to de-
sign such routers gives insight into the critical paths and de-
cisions in a router design. Based on our experience, we can
make a number of observations on how a routing algorithm
affects the complexity and speed of its implementation.

• All adaptive routers require a serialized routing deci-
sion and header update which increases their setup
delay relative to dimension order routers.

• Even computing all possible new headers in parallel
does not eliminate this cost, as even selecting the appro-
priate modified header incurs latency. Absolute network
addressing can help this problem, but will incur in-
creased routing decision cost (longer compare times).

• Virtual channels are expensive in terms of setup la-
tency and flow control cycle time.

• Crossbar growth effects are small,6 though our cost
model does not include the physical layout and inter-
connection issues.

6. Due, in part, to limiting ourselves to modest dimension and numbers
of virtual lanes.

Fig. 9. Setup delays and flow control cycle times for a variety of adaptive routers. n is the network dimension; FC cycle is the flow control cycle
time. Detailed data is reported in the Appendix.

Network Dimension (n)
Routing Algorithm 2 3 4 5 10
Dimension order 3,348 5,022 6,696 8,370 16,740
Planar adaptive 6,344 9,516 12,688 15,860 31,720
Turn Model 3,250 5,194 7,506 10,186 29,106
*-Channels 8,766 14,998 22,702 31,878 99,838

Fig. 10. Gate counts for adaptive routers, based on the module gate count models.

160 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

• Arbitration costs for increased routing freedom are as
significant as crossbar growth effects.

• Adaptive routers should not claim advantages in low-
load latency, as any apparent advantage is probably
eliminated by increases in router setup time.

• Some adaptive routers may have a significant poten-
tial throughput disadvantage, based on the flow con-
trol cycle time.

Though most routers have employed relative addressing,
its cost is significant in adaptive routers, and fixed address-
ing may have to be reconsidered to reduce header selection
cost. Virtual channels are quite expensive and requiring them
appears to be a significant performance disadvantage. How-
ever, their high cost means that deciding to include them in a
deterministic router to support virtual lanes might well nar-
row, or effectively eliminate, the speed gap between deter-
ministic and some adaptive routers. Surprisingly, the effect of
requiring larger crossbars is modest; router arbitration con-
tributes nearly an equal portion to delay.

With respect to the large number of adaptive routing
simulations normalized on router cycle time and assuming
constant latency per node, it is clear that the setup latency of
adaptive routers is likely to be significantly larger. This means
that apparent advantages in low load latency in router cycles
are probably illusory. Further, simulations demonstrating
higher channel utilization assuming the same flow control rate
are also probably not realistic. If the slower flow control
speeds of adaptive routers translate into lower speed signal-
ing, even throughput advantages of adaptive routers on non-
uniform loads may be erased by the brute speed advantage of
the deterministic routers. To be competitive, adaptive routers
will have to include higher speed signaling than the flow con-
trol rate, using larger flits and splitting each flit into a number
of phits, to provide a real throughput advantage.

Pipelining is the straightforward suggestion to reduce the
cycle time penalty for the adaptive routers; however, because
the clock rates are already quite high, pipelining in this con-
text has significant drawbacks. In the 0.8m CMOS gate array
technology, the minimum setup and latency for latches is
about 1ns. For flip-flops, it is even larger. This means that
each pipeline stage would incur at least an additional 1ns
delay. Thus, to match the cycle time of the unpipelined di-
mension-order router, most of the adaptive routers consid-
ered would have to use two or even three pipeline stages.

6.8 Internode Delays
In this paper, we have focused exclusively on intra-router
delays. In complete systems, the time of flight from one
router chip to another also contributes to the effective
routing delay. If inter-router delay is significant, it reduces
the importance of differences in intra-router delay. A vari-
ety of studies show chip crossing times from below one to
as many as several nanoseconds [21], [26], with the primary
determining factors being the electrical characteristics of the
wires, determined by packaging choices. If the system is
asynchronous, or there is significant clock skew, additional
margins are required to acquire synchronization at these
chip crossings. As a result, the chip crossing and synchroni-
zation time can be significant, reducing the impact of dif-
ferences in setup delay and flow control cycle time.

7 SUMMARY AND CONCLUSION

We have developed a parametric cost model for wormhole
routers. This model captures the cost and achievable speed
of the basic routing functions, providing a basis for cali-
brating simulation studies, and the complexity of a wide
variety of routing algorithms. Instantiating this for a par-
ticular technology, CMOS gate arrays, based on a family of
router designs [4], provides one set of constants for the
parameterized model, allowing the direct comparison and
evaluation of several specific routing algorithms on the ba-
sis of router setup delay and flow control speed.

Applying the instantiated model to several deterministic
and adaptive routing algorithms shows that adaptive rout-
ers are generally significantly more complex. In particular,
they require virtual channels (and, therefore, the virtual
channel controllers that incur significant delay) or larger
crossbars and routing decision circuitry. The net effect is to
produce slower routers. Of particular interest is the fact that
all adaptive routers considered suffered from increased
delay due to waiting for a routing decision and then se-
lecting an appropriate updated header. This serialization is
much less in deterministic routers, so it incurs a significant
relative increase in setup delay for adaptive routers. A
number of other specific insights as to the relative costs of
different adaptive routing algorithms were also presented.

• Header update and selection is expensive in adaptive
routers; absolute addressing should be considered.

• Virtual channels are expensive in terms of latency and
cycle time, so decisions to include them to support
adaptivity or even virtual lanes should not be taken
lightly.

• Larger crossbars and more complex arbitration cause
some increase in the complexity of adaptive routers,
but the rate of increase is small.

However, the broadest insight is that the complexity of
adaptive routers significantly increases their setup delay
and flow control cycle times, implying that claims of per-
formance advantages in channel utilization and low load
latency must be carefully balanced against losses in achiev-
able implementation speeds.

Beyond illuminating the difference between adaptive
routing algorithms, the objective of this work is to provide
a cost and speed model which can be used to calibrate and
fairly evaluate simulation results on the performance of
adaptive routing. In effect, this can provide a level playing
field where the benefits of adaptivity can be intelligently
evaluated and traded off against its cost. In this vein, this
paper is intended as neither a critique nor a promotion of
adaptive routing, but rather to allow adaptive and determi-
nistic routing algorithms to be compared more accurately.

APPENDIX
TABLES

A.1 Overall Delays
The table below summarizes the overall delays for a variety
of adaptive router configurations. Both setup delay and
flow control time are reported, based on the speed model
and a 0.8 m gate array process.

CHIEN: A COST AND SPEED MODEL FOR K-ARY N-CUBE WORMHOLE ROUTERS 161

Router n Setup Delay FC Cycle

Dimension order any 5.6 ns 3.55 ns

Planar adaptive any 10.9 ns 6.15 ns

Turn Model 2 9.1 ns 4.0 ns
3 10.0 ns 4.3 ns
4 10.6 ns 4.5 ns
5 11.2 ns 4.7 ns

10 12.8 ns 5.1 ns

*-Channels 2 12.7 ns 6.5 ns
3 13.6 ns 6.8 ns
4 14.3 ns 7.1 ns
5 14.8 ns 7.2 ns

10 16.6 ns 7.4 ns

A.2 Setup Delay Constituents
The table below gives the contribution of various router
modules to the setup delay. Of particular note are the large
address decoder, select, and virtual channel controller delays.

Router n AD ARB CB SEL VC

Dimension
order

any 2.7ns 1.55ns 1.35ns 0 0

Planar
adaptive

any 2.7ns 1.8ns 1.6ns 2.44ns 2.35ns

Turn Model 2 2.7ns 1.99ns 1.79ns 2.63ns 0
3 2.7ns 2.28ns 2.08ns 2.92ns 0
4 2.7ns 2.5ns 2.3ns 3.14ns 0
5 2.7ns 2.68ns 2.48ns 3.31ns 0

10 2.7ns 3.24ns 3.04ns 3.88ns 0

*-Channels 2 2.7ns 2.5ns 2.3ns 3.14ns 2.0ns
3 2.7ns 2.8ns 2.62ns 3.46ns 2.0ns
4 2.7ns 3.05ns 2.85ns 3.69ns 2.0ns
5 2.7ns 3.24ns 3.04ns 3.88ns 2.0ns

10 2.7ns 3.81ns 3.61ns 4.45ns 2.0ns

A.3 Cycle Time Constituents
The table below details the contributions of various router
modules to the flow control delay. In many designs, the
flow control delay determines the router cycle time. The
routers which do not require virtual channel controllers
have significantly lower cycle times.

Router n FC CB VC

Dimension order any 2.2ns 1.35ns 0

Planar adaptive any 2.2ns 1.6ns 2.35ns

Turn Model 2 2.2ns 1.79ns 0
3 2.2ns 2.08ns 0
4 2.2ns 2.3ns 0
5 2.2ns 2.48ns 0

10 2.2ns 3.04ns 0

*-Channels 2 2.2ns 2.3ns 2.0ns
3 2.2ns 2.62ns 2.0ns
4 2.2ns 2.85ns 2.0ns
5 2.2ns 3.04ns 2.0ns

10 2.2ns 3.61ns 2.0ns

ACKNOWLEDGMENTS

The research described in this paper was supported in part
by U.S. National Science Foundation grants CCR-9209336
and MIP-92-23732, U.S. Office of Naval Research grant
N00014-92-J-1961, and National Aeronautics and Space

Administration grant NAG 1-613. Additional support has
been provided by a generous special-purpose grant from
the AT&T Foundation.

The paper has benefited greatly from careful proofread-
ing by Jae Kim, Scott Pakin, and Harpinder Madan. The
parametric model presented in this paper is based on the
router designs done by Kazuhiro Aoyama. The studies
would not have been possible without the cooperation of
Mitsubishi Electric of America, particularly that of Mr.
Kenji Baba and Mr. Anil Chaudhry. A preliminary version
of this paper appeared in the informal proceedings of the
IEEE Workshop on Hot Interconnects, 1993.

REFERENCES

[1] A. Agarwal et al., “The MIT Alewife Machine: A Large-Scale Dis-
tributed-Memory Multiprocessor,” LCS Technical Memo 454, Mas-
sachusetts Inst. of Technology, Laboratory for Computer Science,
1991.

[2] A. Agarwal, “Limits on Interconnection Network Performance,”
IEEE Trans. Parallel and Distributed Systems, vol. 2, no. 4, pp. 398–
412, Apr. 1991.

[3] G. Alverson, R. Alverson, D. Callahan, B. Koblenz, A. Porterfield,
and B. Smith, “Exploiting Heterogeneous Parallelism on a Mul-
tithreaded Multiprocessor,” Proc. Sixth ACM Int’l Conf. Supercom-
puting, 1992.

[4] K. Aoyama, “Design Issues in Implementing an Adaptive
Router,” master’s thesis, Univ. of Illinois, Dept. of Computer Sci-
ence, Jan. 1993.

[5] K. Aoyama and A.A. Chien, “The Cost of Adaptivity and Virtual
Lanes in a Wormhole Router,” submitted to J. VLSI Design, 1993.

[6] P. Berman, L. Gravano, G. Pifarre, and J. Sanz,” Adaptive Dead-
lock and Livelock Free Routing with all Minimal Paths in Torus
Networks,” Proc. Symp. Parallel Algorithms and Architectures, 1992.

[7] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H.T. Kung, M.
Lam, B. Moore, C. Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. Sut-
ton, J. Urbanski, and J. Webb,” iWarp: An Integrated Solution to
High-Speed Parallel Computing,” Proc. Supercomputing ‘88, pp. 330–
341, Orlando, Fla. IEEE Press, 1988.

[8] A.A. Chien and J.H. Kim, “Planar-Adaptive Routing: Low-Cost
Adaptive Networks for Multiprocessors,” Proc. Int’l Symp. Com-
puter Architecture, pp. 268–277, May 1992.

[9] W. Dally and C. Seitz, “Deadlock-Free Message Routing in Multi-
processor Interconnection Networks,” IEEE Trans. Computers, vol. 36,
no. 5, May 1987.

[10] W.J. Dally, “Virtual Channel Flow Control,” IEEE Trans. Parallel
and Distributed Systems, vol. 3, no. 2, pp. 194–205, Feb. 1992.

[11] W.J. Dally, S. Ahmed, P. Carrick, A. Chien, R. Davison, J. Fiske, G.
Fyler, W. Horwat, J. Keen, S. Lear, R. Lethin, M. Vestrich, T.
Nguyen, M. Noakes, P. Nuth, and D. Wills, “Design and Imple-
mentation of the Message-Driven Processor,” Proc. 1992
Brown/MIT Conf. Advanced Research in VLSI and Parallel Systems, T.
Knight and J. Savage, eds., pp. 5–25. MIT Press, 1992.

[12] W.J. Dally and H. Aoki, “Deadlock-Free Adaptive Routing in
Multicomputer Networks Using Virtual Channels,” IEEE Trans.
Parallel and Distributed Systems, vol. 4, no. 4, pp. 466–474, Apr.
1993.

[13] W.J. Dally, J.A.S. Fiske, J.S. Keen, R.A. Lethin, M.D. Noakes, P.R.
Nuth, R.E. Davison, and G.A. Fyler, “The Message-Driven Proc-
essor,” IEEE Micro, Apr. 1992.

[14] W.J. Dally and C. Seitz, “The Torus Routing Chip,” Distributed
Computing, pp. 187–196, 1986.

[15] W.J. Dally and P. Song, “Design of a Self-Timed VLSI Multicom-
puter Communication Controller,” Proc. Int’l Conf. Computer De-
sign, pp. 230–234. IEEE CS Press, 1987.

[16] J. Draper and J. Ghosh, “Multipath e-Cube Algorithms (MECA)
for Adaptive Wormhole Routing and Broadcasting in k-ary n-
Cubes,” Proc. Fifth Int’l Parallel Processing Symp., 1992.

[17] J. Duato, “On the Design of Deadlock-Free Adaptive Routing
Algorithms for Multicomputers: Design Methodologies,” Proc.
Parallel Architectures and Languages, 1991.

[18] D. Dunning, “The Intel Paragon Router,” VLSI Seminar Talk,
Massachusetts Inst. of Technology, 1992.

162 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 2, FEBRUARY 1998

[19] C.M. Flaig, “VLSI Mesh Routing Systems,” master’s thesis, Cali-
fornia Inst. of Technology, Dept. of Computer Science, May 1987.

[20] Intel Corp., Paragon XP/S Product Overview, 1991.
[21] R. Kaw, “Comparison of Chip Crossing Delay in Various Pack-

aging Environments,” Proc. Int’l Conf. Computer Design, pp. 233–
236. IEEE CS Press, 1989.

[22] P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New
Computer Communications Switching Technique,” Computer
Networks, vol. 3, no. 4, pp. 267–286, 1979.

[23] S. Konstantinidou and L. Snyder, “Chaos Router: Architecture and
Performance,” Proc. Int’l Symp. Computer Architecture, pp. 212–221,
1991.

[24] D. Lenoski, J. Laudon, K. Gharacharloo, W. Weber, A. Gupta, J.
Hennessy, M. Horowitz, and M. Lam, “The Stanford Dash Multi-
processor,” Computer, vol. 25, no. 3, Mar. 1992.

[25] D. Linder and J. Harden, “An Adaptive and Fault Tolerant
Wormhole Routing Strategy for k-ary n-Cubes,” IEEE Trans. Com-
puters, vol. 40, no. 1, pp. 2–12, Jan. 1991.

[26] Mitsubishi Electronic Devices Group, Data Book for the Mitsubishi
M6007x and M6008x Series Gate Array Families, Nov. 1992.

[27] NCUBE, NCUBE 2 6400 Series Supercomputer: Technical Overview.
Beaverton, Ore., 1989.

[28] J. Ngai and C. Seitz, “A Framework for Adaptive Routing in
Multicomputer Networks,” Proc. 1989 ACM Symp. Parallel Algo-
rithms and Architectures, 1989.

[29] L. Ni and C. Glass, “The Turn Model for Adaptive Routing,” Proc.
Int’l Symp. Computer Architecture, 1992.

[30] P. Nuth and W. Dally, “The J-Machine Network,” Proc. 1992 IEEE
Int’l Conf. Computer Design: VLSI in Computers and Processors, pp. 420–
423, 1992.

[31] C. Peterson, J. Sutton, and P. Wiley, “iWarp: A 100-MOPS LIW
Microprocessor for Multicomputers,” IEEE Micro, June 1991.

[32] D. Reed and R. Fujimoto, Multicomputer Networks: Message-Based
Parallel Processing. MIT Press, 1985.

[33] C. Seitz and W. Su, “A Family of Routing and Communication
Chips Based on the Mosaic,” Proc. Univ. of Washington Symp. Inte-
grated Systems, 1993.

[34] C.L. Seitz, W.C. Athas, C.M. Flaig, A.J. Martin, J. Seizovic, C.S.
Steele, and W. Su, “The Architecture and Programming of the
Ametek Series 2010 Multicomputer,” Proc. Third Conf. Hypercube
Computers, pp. 33–36. ACM Press, Jan. 1988.

[35] D. Smitley, F. Hady, and D. Burns, “Hnet: A High-Performance
Network Evaluation Testbed Preliminary Results,” Proc. IEEE
Symp. Hot Interconnects ‘93, 1993.

[36] Y. Tamir and H. Chi, “Symmetric Crossbar Arbiters for VLSI
Communication Switches,” IEEE Trans. Parallel and Distributed
Systems, vol. 4, no. 1, Jan. 1993.

Andrew A. Chien received his BS in electrical
engineering from the Massachusetts Institute of
Technology in 1984 and his MS and PhD in
computer science from the Massachusetts Insti-
tute of Technology in 1987 and 1990, respec-
tively. Dr. Chien is currently an associate profes-
sor in the Department of Computer Science at
the University of Illinois at Urbana-Champaign,
where he holds a joint appointment as an asso-
ciate professor in the Department of Electrical
and Computer Engineering and as a senior re-

search scientist with the National Center for Supercomputing Applica-
tions (NCSA). He has published more than 60 papers in the areas of
computer architecture, network and interface architecture, high per-
formance object systems (compilation and runtime), operating sys-
tems, and high speed communication software. He is the recipient of
the 1994 U.S. National Science Foundation Young Investigator Award,
the C.W. Gear Outstanding Junior Faculty Award (1995), and the
Xerox Senior Faculty Award for Outstanding Research (1996). Dr.
Chien is a member of the IEEE and the IEEE Computer Society.

