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An ensemble is a collective decision-making system which applies a strategy to combine the predictions
of learned classifiers to generate its prediction of new instances. Early research has proved that ensemble
classifiers in most cases can be more accurate than any single component classifier both empirically and
theoretically. Though many ensemble approaches are proposed, it is still not an easy task to find a suit-
able ensemble configuration for a specific dataset. In some early works, the ensemble is selected manu-
ally according to the experience of the specialists. Metaheuristic methods can be alternative solutions to
find configurations. Ant Colony Optimization (ACO) is one popular approach among metaheuristics. In
this work, we propose a new ensemble construction method which applies ACO to the stacking ensemble
construction process to generate domain-specific configurations. A number of experiments are performed
to compare the proposed approach with some well-known ensemble methods on 18 benchmark data
mining datasets. The approach is also applied to learning ensembles for a real-world cost-sensitive data
mining problem. The experiment results show that the new approach can generate better stacking
ensembles.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Over years of development, it has become more and more diffi-
cult to improve significantly the performance of a single classifier.
Recently, there has been growing research interest in the method
to combine different classifiers together to achieve better perfor-
mance. The combining method is referred to as Ensemble. In early
research, ensembles were proved empirically and theoretically to
perform more accurately than any single component classifier in
most cases. If an ensemble is generated by a set of classifiers which
are trained from the same learning algorithm, this ensemble is a
homogeneous ensemble. If an ensemble is generated by a set of
classifiers, which are trained from different learning algorithms,
this ensemble is a heterogeneous ensemble (Dietterich, 2000).
For example, Bagging (Breiman, 1996) and Boosting (Schapire,
1990) are homogeneous ensembles, while stacking (Wolpert,
1992) is a heterogeneous ensemble.

To generate an ensemble to achieve expected results, two
important things should be considered carefully. The first is to
introduce enough diversity into the components of an ensemble.
The second is to choose a suitable combining method to combine
the diverse outputs to a single output (Polikar, 2006). The diversity
is the foundation of an ensemble. However, as the diversity in-
creases, the marginal effect decreases after a certain threshold.
The memories and computing cost increase significantly while
the performance does not improve steadily. For early Bagging
and Boosting methods, the diversity is achieved by using the re-
sample strategy. The classifiers included in Bagging are trained
with the data subsets, which are randomly sampled from the origi-
nal dataset. A majority voting scheme is applied as the combining
method to make a collective decision. Boosting uses a weighted re-
sample strategy. The weights of all instances are initialized equally.
If an instance is misclassified, its weight will be increased. Thus it
will be more likely to select the misclassified instances into the
next training subset. The diversity generating process stops when
the errors are too small. The combining scheme of Boosting is a
weighted majority voting. Compared to Bagging and Boosting,
stacking does not manipulate the training dataset directly. Instead,
an ensemble of classifiers is generated based on two levels. In the
base level, multiple classifiers are trained with different learning
algorithms. The diversity is introduced because different
learning algorithms make different errors in the same dataset. A
meta-classifier is applied to generate the final prediction. The
meta-classifier is trained with a learning algorithm using a meta-
dataset which combines the outputs of base-level classifiers and
the real class label.

One problem of stacking is how to obtain an ‘‘appropriate’’ con-
figuration of the base-level classifiers and meta-classifier for each
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domain-specific dataset. The number of base-level classifiers and
the kinds of learning algorithms are closely related to the diversity.
The kind of meta-classifier is also important to the fusion of the
base-level classifiers. However, such configuration is still ‘‘Black
Art’’ (Wolpert, 1992). Some researchers have proposed different
methods to determine the configuration of stacking. Ting and
Witten solved two issues about the type of meta-classifier and
the kinds of its input attributes (Ting & Witten, 1999). Dz̆eroski
and Z̆enko introduced Multi-Response Model Trees as the meta-
classifier (Džeroski & Z̆enko, 2002). Zheng and Padmanabhan
(2007) and Zhu (2010) proposed their Data Envelopment Analysis
(DEA) approaches respectively. Ledezma et al. and Ordóñez et al.
proposed approaches which search the ensemble configurations
using Genetic Algorithms (GAs) (Ledezma, Aler, & Borrajo, 2002;
Ordóñez, Ledezma, & Sanchis, 2008).

In this work, we propose an approach using Ant Colony Optimi-
zation (ACO) to optimize the stacking configuration. ACO is a meta-
heuristic algorithm which is inspired by the foraging behaviour in
real ant colonies. Some approaches were proposed recently to ap-
ply ACO in data mining. Parpinelli et al. proposed Ant Miner to ex-
tract classification rules (Parpinelli, Lopes, & Freitas, 2002). Some
approaches apply ACO in feature subset selection tasks (Al-Ani,
2006; Zhang, Chen, & He, 2010).

The rest of this paper is organized as follows. In Section 2, the
background of this work, including the related ensemble ap-
proaches and the Ant Colony Optimization method, is introduced.
In Section 3, the details of our approach are presented. In Section 4,
a number of conducted experiments are described to compare our
approach with other ensemble methods. Further, the experiment
results are presented and discussed in this section. In Section 5,
our approach is applied to solve a real-world data mining problem.
In the last section, a conclusion is given.
2. Background

2.1. Ensembles

2.1.1. Bagging
Bagging, short for bootstrap aggregating, is considered one of

the earliest ensemble scheme (Breiman, 1996). Bagging is intuitive
but powerful, especially when the data size is limited. Bagging gen-
erates a series of training subsets by random sampling with
replacement from the original training set. Then the different clas-
sifiers are trained by the same classification algorithm with differ-
ent training subsets. When a certain number of classifiers are
generated, these individuals are combined by the majority voting
scheme. Given a testing instance, different outputs will be given
from the trained classifiers, and the majority will be considered
as the final decision.

A Random Forest is a combination of tree predictors such that
each tree depends on the values of a random vector sampled inde-
pendently and with the same distribution for all trees in the forest
(Breiman, 2001). Random Forest can be considered a special type of
Bagging.
2.1.2. Boosting
In 1990, Schapire’s weak learning framework was proposed

(Schapire, 1990). An elegant algorithm, Boosting, which boosts
any given weak learners to a strong learner was also provided in
this work.

Boosting also applies re-sampling of training data set and
majority voting. However, Boosting does not treat all the instances
equally, but focuses on the more informative instances which are
important to the classification decision. The algorithm generates
three classifiers using the same weak learner. The first learner C1
is trained with a random subset of the training set. The second
learner C2 is trained with a more informative dataset by iteratively
flipping a fair coin to decide which instances to add. If a head
comes up, some samples are selected from the training set and pre-
sented to C1 until an instance is misclassified by C1. This instance is
added to the training set of C2. If a tail comes up, a similar process
is conducted whereas the first correctly classified instance is se-
lected. The third learner C3 is trained with the instances which
are differently classified by C1 and C2 by filtering the whole train-
ing set. Finally, a three-way majority voting scheme is used to
combine the three classifiers.

AdaBoost is a popular variation of the original Boosting scheme
(Freund & Schapire, 1997). AdaBoost maintains a weighted distri-
bution of instances, trains a series of classifiers of the same weak
learner with different instances drawn according to the distribu-
tion and finally combines the weak learners through a weighted
majority voting scheme to generate the final decision. At the begin-
ning of the process, all the instances are initialized with the same
weight. For each training iteration, a training subset is drawn from
the instances distribution Dt . Then the classification error of this
weak learner is calculated and used in changing the weight updat-
ing parameter at to manipulate the sample distribution to enlarge
the probabilities of the currently misclassified instances to be used
in the next training iteration. After the weight updating and nor-
malization, the new instances distribution Dtþ1 is generated. at is
also used as the weight of the weak learner in the weighted
majority voting procedure. Some variations of AdaBoost, such as
AdaBoost.M1 and AdaBoost.R, have been proposed (Freund &
Schapire, 1996, 1997).
2.1.3. Stacking
In the previous ensemble schemes, the individual weak learners

are the same. On the other hand, stacking has a two-level struc-
ture: level-0 (base-level) classifiers and a level-1 (meta) classifier
(Wolpert, 1992). The base-level classifiers are trained with the
training set and generate their predictions. Then the meta-classifier
is trained with the meta-data to map the outputs of the base-level
classifiers to the actual class label. The meta-data could be
ððy1

i ; y
2
i ; . . . ; ym

i Þ; yiÞ, where ym
i means the prediction given by the

mth base-level classifier on the ithinstances, and yi is the actual class
label. During the process of classifying a new instance, the trained
base-level classifiers will give their individual predictions, and the
predictions will be considered as the input of the meta-classifier to
generate the final decision.

GA-Ensemble was proposed by Ordóñez et al. as an extension of
their previous approach (Ordóñez et al., 2008). GA-Ensemble ap-
plies a genetic algorithm in searching the configurations according
to different datasets without a priori assumptions. At the begin-
ning, a set of candidate base-level classifiers is trained to generate
a pool of base-level classifiers thus to improve the efficiency with-
out losing accuracy. The candidate set must be encoded in a chro-
mosome, which represents a potential configuration. Binary
encoding is used to accompany the canonical GA, where a 0 in
the gene means that the classifier of this gene will not be used in
the configuration and a 1 means the classifier will be used. The last
gene in a chromosome represents two different stacking combin-
ing schemes: multi-response model tree or majority voting. This
GA search process will iterate for several generations. For each
generation, the classification accuracies on validation sets are used
as the fitness values to evaluate the chromosomes. Some elite
chromosomes will be kept for the next generation and some poor
ones will be eliminated. Mutation and crossover operations will
be applied to some chromosomes to generate new chromosomes.
After all generations are finished, the best chromosome will be
chosen as the final configuration.
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Todorovski and Džeroski proposed a meta level approach called
Meta Decision Tree (MDT) in a learning stacking ensemble (Todo-
rovski et al., 2000). The tree is named MLC4.5, indicating a modifi-
cation from the C4.5 DT. The meta data set for the MDT is
composed of the properties which reflect the confidence of the
base classifiers instead of the probability distribution or the simple
class label. Such properties are the entropy, the maximum proba-
bility and the fraction of training samples. The tree uses the class
labels in the leaf nodes only. The leaves of MDT specify which base
classifiers should be used instead of predicting the class label
directly.

Zhu proposed the DEA-Stacking approach which applies data
envelopment analysis (DEA) to find optimal stackings (Zhu, 2010).
DEA is a linear programming methodology to measure the effi-
ciency of multiple decision-making units (DMUs) when the produc-
tion process presents a structure of multiple inputs and outputs
(Ramanathan, 2003). DEA-Stacking considers the classifiers as the
DMUs in DEA. In this approach, the inputs and outputs of a DMU
are extracted from the confusion matrix of the model. At the first
stage, the classifiers are trained and evaluated. The DEA models
take the number of false positive and false negative as the inputs
and the number of true positive and true negative as the outputs
of the DMUs to find out the efficient one(s) to be the base classi-
fier(s). Several classifiers with an efficiency of 1 will be selected
as the base classifiers in stacking. At the second stage, the meta
classifier is also selected by the DEA models. The stackings with
each learning algorithm in the set combining the selected base
classifier(s) is treated as the DMUs to find the most efficient as
the final configuration.

2.2. Ant Colony Optimizations (ACO)

The idea of ACO is inspired by the collective behaviour of real
ant colonies, which enables the ants to find the shortest path from
their nest to the food source (Dorigo & Stützle, 2004). Each ant has
limited intelligence to find the best or shortest path; however it
can use indirect communication to communicate with other ants.
When an ant is walking, it deposits a chemical material called a
pheromone on the ground. The ants can smell the pheromone and
use it to find their way. The ants choose their path to walk in a
probabilistic manner, so that the paths with stronger pheromone
concentrations will be chosen with larger probabilities. If the pher-
omone is absent, the ants will randomly choose a path to walk.
After a period, the shorter path is chosen more frequently, which
means more ants walk this way and the pheromone accumulates
faster. The accumulation of pheromone attracts more ants to
choose this path. Double bridge experiments have proven this
behaviour system (Goss, Aron, Deneubourg, & Pasteels, 1989). If a
path is not chosen by the ants, the pheromone will evaporate.
The accumulation of pheromone is positive feedback to encourage
the ants to choose the shortest path. However, some ants may se-
lect paths with less pheromone, but this situation is very important
for the ants to get rid of the local shortest path to find another way
to achieve the global shortest path. If the new path is shorter than
the current path, the pheromone will accumulate and attract more
ants to walk this way. Then the optimal path will be changed to
this one. In conclusion, although the ability of ants is limited, the
optimal shortest path is likely to be achieved by the collective
behaviour of ants through this indirect communication. Some
works have proved the convergence of ACO with rigid mathemat-
ical reasoning (Gutjahr, 2002).

2.3. Application of ACO in data mining

The ACO approach is widely used in many aspects of data min-
ing. In data mining tasks, feature subset selection is an important
step to reduce the redundant features and therefore build more
precise and efficient models. Al-Ani presented a feature searching
procedure based on ACO which utilizes both local importance of
features and overall performance of feature subsets (Al-Ani,
2006). This approach is applied to speech segment and texture
classification problems and outperforms the GA-based approaches.
Sivagaminathan and Ramakrishnan proposed an approach which is
a hybrid method based on ACO and Artificial Neural Networks
(ANNs) to address feature selection. The ANNs are employed as
the classification models, which produce the error corresponding
to each subset (selected by ants) in order to find the optimal
solution set, whereas the ACO is used for evaluating the process
to determine the final subset. A heuristic value calculation is
applied in the approach to reduce the set of available features
(Sivagaminathan & Ramakrishnan, 2007).

In relation to rule-based classification problems, Parpinelli et al.
proposed an algorithm called Ant-Miner (Ant Colony-based Data
Miner) to extract classification rules from a dataset (Parpinelli
et al., 2002). Each ant in the colony represents a classification rule
such as IF h term1 i AND h term2 i AND � � � h termn i THEN h class i,
where termi is generated in the preliminary test and represents
the trails in the ground, where the ants live. For each iteration,
the pheromone of the trail, which is adopted by the ‘‘ants’’ will
increase. At the end of each iteration, the best ‘‘ant’’ is added to a
list which contains all the classification rules discovered by
Ant-Miner. The authors claimed that Ant-Miner could discover
more rules and perform better than C4.5, a well-known approach
for the same task.

Liu et al. demonstrated a variant of Ant-Miner called Ant-
Miner3, which has better performance than Ant-Miner applied in
the study by Parpinelli et al. Two main improvements are included
in this study. First, Ant-Miner3 has a flexible stochastic component
to balance the exploitation and exploration process. By using this
mechanism, the generated models are more accurate. Second, a
different pheromone update rule is designed in order to cause fu-
ture ants to make better decisions. There are some drawbacks of
this approach. It requires the setting of a number of parameters
to achieve desired performance and it has not been evaluated on
a real-world data mining problem (Liu, Abbas, & McKay, 2003).
Wang and Feng proposed an improved ant colony algorithm for
mining classification rules called ACO-Miner (Wang & Feng,
2005). Compared to the classical Ant-Miner, ACO-Miner is able to
produce simple state transition rules and self-adaptive pheromone
updating rules. In addition, ACO-Miner applies a new heuristic
function to avoid convergence to a single constructed rule too
quickly; thus it can generate better predictive rules in several
benchmark data sets. However, it has the same drawbacks of
Ant-Miner3.

By using ACO in data mining classification problems, rule
pruner is a technique that removes uncorrelated variables in the
antecedent part of a classification rule. Chan and Freitas proposed
a new hybrid rule pruner for Ant-Miner (Chan & Freitas, 2006). The
objective of the new rule pruner is to shorten the classification
rules in order to provide more compact knowledge to support
decision-making. Ant-Miner with the new rule pruner has lower
accuracy than the one with the original rule pruner on several data
sets. However, the comprehensibility of the generated rules is sig-
nificantly improved.

ACO has also been applied to learn knowledge represented in
other representations. Campos et al. used ACO to learn Bayesian
Networks (Campos, Fernández-Luna, Gámez, & Puerta, 2002). A
Bayesian Network (BN) is a probabilistic graphical model compris-
ing nodes and directed edges in the form of directed acyclic graphs.
In the study, ACO is used to guide a scoring-based search process,
as ACO allows the searching to exploit heuristic knowledge with
simple but efficient forms of cooperation between independent
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agents (ants). Pinto et al. proposed two ACO-based approaches to
learn the structure of a BN (Pinto, Nägele, Dejori, Runkler, & Sousa,
2009).

Although stacking is a well-known heterogeneous ensemble
technique, it is still a difficult problem to configure an optimal
stacking for a specific dataset. From several applications of ACO
in data mining problems, ACO performs well but has not been em-
ployed for handling the stacking configuration problem. Thus we
develop an integrated approach called ACO-Stacking for the prob-
lem. Moreover, the previous stacking ensemble learning tech-
niques consider only the global performance of the stacking
ensemble while ignoring the local performance information of
individual base-level classifiers. In this research, different kinds
of local information are studied to improve the performance of
ACO-Stacking. Furthermore, we evaluate and compare the perfor-
mance of ACO-Stacking with many existing data mining methods
on a number of benchmark and real-world problems. We show
that ACO-Stacking is a promising approach for handling problems
in data mining.
3. ACO-Stacking approach

Considering the outstanding performance of ACO in different
applications, we extend the application of ACO in stacking config-
uration optimization. In an ACO-Stacking construction task, a set of
base-level classifier candidates and a set of meta-classifier candi-
dates are given as well as the training sets, the validation sets
and the testing set. The base-level classifiers in the set are taken
as the ‘‘paths’’ to be selected by the ants. For each iteration, an
ant tries to select a path in its route to achieve better performance.
Each ant is assigned a certain meta-classifier to combine with the
selected ‘‘paths’’ into the ‘‘path’’ package of the ant. A stacking
model is configured with the base-level classifiers (‘‘paths’’ of the
ant) and the meta-classifier. This stacking is then trained with
the training set(s) and validated with the validation set(s). If the
new ‘‘path’’ package is better than the existing one, it will replace
the existing package. Otherwise, the existing ‘‘path’’ package of this
ant does not change. At the end, the configuration (the ‘‘path’’
package) of the best ant will be the final configuration of the ap-
proach. Finally this configuration is tested by using the test set.
The above process is given in Fig. 1. In the following subsection,
the algorithm framework of ACO-Stacking is discussed.
3.1. ACO-Stacking algorithm framework

Before discussing the algorithm framework, some notations
that will be used in the algorithm description are given as follows:
Fig. 1. General process
� C is the pool of base-level classifier candidates. It contains m
classifiers generated from the learning algorithms,
C ¼ fc1; � � � ; cmg.
� k artificial ants in the colony, each ant carries a meta combining

method and represents a stacking configuration.
� li: the pheromone associated with the ci in C.
� gi: the local information of ci, which is a metric to evaluate the

ability of ci.
� Sj: the stacking configuration constructed by the jth ant, j 6 k.
� aS: the evaluation criterion of the stacking S. Here the classifica-

tion accuracy of S is used as aS.
� s: the evaporation rate and s 2 ½0;1�.
� L: the maximum iteration number.

At the beginning of ACO-Stacking, a set C containing base-level
classifier candidates is given. Some pre-tests are conducted to
gather the local information of the base-level classifiers. Here,
the term ‘‘local information’’ is used to represent the metric to
evaluate the individual classification performances of the base-level
classifiers. Moreover, the pheromone li of each base-level classifier
ci is initialized to a small positive number for the probability selec-
tion process. The pheromone will increase or decrease during the
ACO searching process. Each ant in the colony is assigned a learn-
ing algorithm as its meta combining scheme to generate the
meta-classifier. Thus an ant represents a stacking configuration.
The number of ants is usually set to be multiples of the meta
combining schemes. After all the settings and configurations are
prepared, the main process of the ACO heuristic begins. Like other
ACO approaches, ACO-Stacking will execute several iterations. In
the first iteration, each ant is given a base-level classifier randomly
and the accuracy aSi

of this configuration is calculated from an
independent validation set. In the following iterations, when the
jth ant begins its configuration searching, it selects a classifier ‘c’
from the pool C which does not exist in its current configuration
Sj using roulette wheel selection. The probabilities of classifiers
are normalized and mapped to the fractions of the roulette. The
larger the fraction in the roulette, the larger the possibility that this
classifier will be selected. The probability pi of the classifier ci to be
selected by the jth ant is given by Eq. (1).

pi ¼
qiPm

t¼1;ciRSj
qt

if ci R Sj;

0 otherwise:

8<
: ð1Þ

where qi refers to the metric of the ith classifier to be mapped in the
roulette. The qi could be generated by using the pheromone of the
ith classifier only or the product of its pheromone and its local infor-
mation. Suppose that ci is selected then a new configuration S0j of
this ant is generated where S0j ¼ Sj [ ci. Then S0j is tested by the same
validation set. If the performance of S0j is better than Sj, it will
replace Sj and then the ant continues to find another base-level
of ACO-Stacking.



Fig. 2. An illustration of decision boundary.
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classifier to add to the new Sj according to the same strategy to gen-
erate a new stacking. If S0j cannot improve the accuracy of Sj, this ant
keeps its current stacking configuration and stops its search in the
iteration. Then the next ant in the colony starts its searching, until
all the k ants finish their search. During the ants’ searching process,
once a classifier ci is chosen to be added to any Sj to generate a bet-
ter configuration S0j, the pheromone of ci will accumulate, thus
enhancing the probability of this classifier being selected by the
other ants. The improvement of accuracy from Sj to S0j is used to up-
date the pheromone of ci. The update rule is given in Eq. (2).

l0i ¼ li � ð1� sÞ þ CC � li �
aS0j
� aSj

aSj

ð2Þ

where CC refers to a constant number. The evaporation rate s and
CC are introduced to adjust the emphasis of historical knowledge
and the current knowledge. The greater s is, the less historical infor-
mation will be used. The greater CC is, the more important current
knowledge is considered.

During the ACO metaheuristic, the pheromone of the strong
candidates will accumulate and the pheromone of the poor ones
will vanish. After all iterations finish, the best configuration Sbest

among all k ants will be chosen as the final stacking configuration.

3.2. Local information

In the previous subsection, local information is mentioned as
the metric to evaluate the abilities of the base-level classifiers. In
this subsection, we focus on the discussion of the adoption of local
information. Firstly, consider the situation where an approach does
not implement local information of the classifiers. In such a case,
only the pheromone can affect the probabilities of selecting
base-level classifiers. In the previous discussion, the pheromone
represents how the classifier improves the global performance.
However, in the early iterations of the approach, the selection of
the base-level classifiers is quite random. Some ‘‘weak’’ classifiers
may be selected in the early iterations and acquire pheromone
accumulation. Therefore the ‘‘weak’’ classifiers will get larger val-
ues of pheromone and are more likely to be selected in the follow-
ing iterations than some ‘‘strong’’ ones which have no pheromone
accumulation. Such situations cause increased execution time to
generate a promising configuration, as some ‘‘weak’’ classifiers
are selected and discarded again and again. To solve this problem,
selecting some ‘‘strong’’ classifiers in the early iterations is quite
important. Local information of the classifiers is therefore used to
identify the ‘‘strong’’ and ‘‘weak’’ classifiers. Local information is
also called heuristic information and local importance (Pinto
et al., 2009; Al-Ani, 2006).

The accuracy is the global performance evaluation of the stac-
kings constructed by ACO-Stacking. With the aim of optimizing
the data fusion of ensembles which can generate better decision
boundaries from the different base-level classifiers, one intuitive
option is to use the base-level classifiers which already have good
decision boundaries. An illustration is given in Fig. 2 of two bound-
aries which separate two kinds of data objects. In the simple exam-
ple, each decision boundary makes mistakes when separating the
two categories of objects. The dotted line mistakes two triangles
as the circles while the solid line mistakes one triangle as the circle.
To adopt different parts of the lines will either improve or under-
mine the separation.

A pre-test of each ci on the whole training set is conducted to
gather measures of the local information. The measure Precision
(Pr) could be suitable as the local information used to fuse the
decision boundaries of different classifiers. Precision is the
measure used to evaluate the percentage of correctly classified
positive instances in the instances which are classified as positive
by a classifier. We set the class which takes up the largest percent-
age in the dataset as the positive class in the measure of precision.
The higher precision indicates fewer mistakes in the boundary of
this classifier. In other words, this classifier is ‘‘stronger’’.

Although the use of Precision as the local information improves
the performance of the approach, there are some limitations.
Sometimes the classifiers with greater precision may have similar
decision boundaries for certain difficult problems. Thus including
these classifiers only overlaps their boundaries and cannot im-
prove performance significantly. Some classifiers may have smaller
precision values, but their decision boundaries are quite different
from those classifiers with high precision values. In such cases,
selecting these classifiers may improve the overall performance.
We materialized the differences in decision boundaries into the
correlative differences of the predictions given by different classi-
fiers on the training set. Some previous approaches inspired us to
develop the measure of the correlative differences of classifiers
(Merz, 1999; Lu, Wu, Zhu, & Bongard, 2010). Merz considered the
usage of correspondence analysis in combining classifiers (Merz,
1999). Lu et al. proposed an ensemble pruning approach via indi-
vidual diversity contribution ordering (Lu et al., 2010).

Given the pre-test set, each classifier runs a ten-fold cross vali-
dation. Both the training set and testing set are the same for each
classifier in the same fold which ensures that all the classifiers are
treated equally. When the pre-test is finished, all the predictions of
the classifiers on the same instance in the set are collected. The dif-
ference: Di;j between Ci and Cj is the number of instances when
they make different predictions. The difference matrix of the clas-
sifiers is:

0 D1;2 � � � D1;n

D2;1 0 � � � D2;n

..

. ..
. . .

. ..
.

Dn;1 � � � Dn�1;n 0

����������

����������

In the matrix, Di;j ¼ Dj;i and the larger Di;j, the larger differences be-
tween Ci and Cj.

The local information gi of the ith classifier is calculated from the
items in matrix by Eq. (3):

gi ¼
Pm

t¼1;ct2Sj
Di;t

k
ð3Þ

where k equals the number of classifiers in the current configura-
tion Sj. According to the equation, the larger the average difference
of the candidate classifier ci from the classifiers in Sj, the greater the
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difference between the decision boundary of ci and the decision
boundaries of the current stacking Sj. Thus if this ci is selected,
the data fusion may be improved.

Up to this point, the local information used in our approach and
its importance in improving the performance of ensembles have
been discussed. However, the time taken to apply local information
still requires consideration. In order to generate promising
ensembles, it is necessary to introduce enough diversity into the
components of an ensemble (Polikar, 2006). Depending on local
information to select base-level classifiers will overemphasize
the ‘‘strong’’ classifiers and may reduce diversity in the stacking.
Thus, ACO-Stacking uses the pheromone alone in the roulette
selection function (1) in the first half of the iterations and then uses
the product of pheromone and local information in the selection
function in the following iterations.
3.3. Different versions of ACO-Stacking

We have implemented three different versions of ACO-Stacking,
which are called ACO-S1, ACO-S2, and ACO-S3. They are descibed
in the following subsections.
3.3.1. ACO-S1
In this version, the meta learning algorithm is set to the

C4.5 Decision Tree (DT) (Quinlan, 1993) so there is only one
meta-classifier. Moreover, local information is not implemented
in this version to guide the searching process. Thus the update rule
is given in Eq. (1) with qi ¼ li. The approach is more stochastic
than the other versions in exploring many possible combinations
of base-level classifiers with the same meta-classifier. Thus, more
iterations are needed to find the optimal solution. Since all ants
use the same meta-classifier, only the combinations of base-level
classifiers can affect the performance of the ants. The pseudo code
of ACO-S1 is presented in Fig. 3.
3.3.2. ACO-S2
ACO-S2 has three main features. Firstly, the meta-classifiers of

the ants can be built by assigning a learning algorithm from a
set. Each learning algorithm is treated equally and is assigned to
the ants by a uniform distribution. By using more learning algo-
rithms to learn meta-classifiers, the approach can adapt to the
characteristics of the datasets in different domains.
Fig. 3. The algorith
Secondly, a pool of base-level classifiers is generated to acceler-
ate the execution speed. The metaheuristic methods usually suffer
from a long execution time. In the stacking training process, the
base-level classifiers should be trained and the outputs are
used to generate the meta training set for the training of the
meta-classifiers. If many stackings will be generated and trained,
the same base-level classifiers may be trained several times using
the same training sets, which is very costly. To improve the
efficiency of the approach, the pool of classifiers proposed in
GA-Ensemble is generated a priori in our approach (Ordóñez
et al., 2008). Consider the stacking training process, where the
training set is split into ten partitions. One partition is separated
to be the validation partition and the other nine partitions are used
to train the classifiers until all the partitions are validated. The out-
puts of each validation partition of this learning algorithm are
joined together. For each base-level learning algorithm, this pro-
cess is conducted. Next, all the prediction results of the base-level
classifiers on each training instance are stored in a pool. To gener-
ate a stacking ensemble, only the meta-classifier needs to be
trained. The meta training set is the conjunction of the predictions
of the selected base-level classifiers in the pool.

Thirdly, local information is introduced. Before ACO-S2 starts to
search for the configurations, the pool of base-level classifiers is
generated. Then a series of pre-tests is conducted to find the suit-
able metric to act as the local information. In ACO-S2, the preci-
sions of the base-level classifiers are used as the local
information. For each classifier ci in the pool, its local information
gi is initialized and the pheromone li is initialized with a small po-
sitive value. Once the local information of the classifier is set, it
cannot be changed during the searching process. Thus the proba-
bility pi of selecting the classifier ci is changed to Eq. (4).

pi ¼
li�giPm

t¼1;ciRSj
lt�gt

if ci R Sj;

0 otherwise:

8<
: ð4Þ

where gi is the precision of ci. The pseudo code of ACO-S2 is pre-
sented in Fig. 4.
3.3.3. ACO-S3
In this version, we use the correlative differences of different

base-level classifiers on the training set as the local information.
The other components of ACO-S3 are the same as those of ACO-S2.
m of ACO-S1.



Fig. 4. The algorithm of ACO-S2.
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3.4. Differences between ACO-Stacking and GA-based approaches

In Section 2, we briefly introduced GA-Ensemble, a GA-based
stacking configuration search approach. Though ACO-Stacking
and GA-Ensemble are all hybrids of metaheuristics with stacking
ensembles, there are some differences between them. During the
ACO searching process, the ants use the pheromone as an indirect
communication method, while during the GA searching process,
the chromosomes cannot communicate with each other. The cross-
over points and the mutation points are selected randomly, so
some well-performed stackings may generate poor offspring. The
searching process in GA-Ensemble is therefore more stochastic
than that in ACO-Stacking.

To escape from sticking in local minima, the weak ants in ACO-
Stacking will not be eliminated but simply stop searching in this
iteration. In GA-Ensemble, the last n cull chromosomes will be elim-
inated and the top m elite chromosomes will be kept for the next
generation. The mutation and crossover operations on the elite
chromosomes are used to escape from local minima. However,
there are no strategies to stop the same weak stackings from being
generated again in the following generations, which will be expen-
sive because these weak stackings have to be evaluated again.

ACO-Stacking is more flexible than GA-Ensemble in meta-
classifiers selection. GA-Ensemble can only select either a multi-
ple-response model tree or a majority voting scheme as the
meta-classifiers, while ACO-Stacking can select the meta-classifiers
from a set of learning algorithms. If the number of base-level classi-
fier candidates in ACO-Stacking is the same as the number of genes
representing classifier candidates in GA-Ensemble, the search space
of ACO-Stacking is larger than that of GA-Ensemble. Furthermore, if
the best meta-classifier for a certain dataset is neither the majority
voting scheme nor a model tree, GA-Ensemble is unable to find it.
4. Experiments and results

To compare the performance of ACO-Stacking approaches and
the other well-known ensemble approaches, experiments are
conducted in the Waikato Environment for Knowledge Analysis -
WEKA (Hall et al., 2009). This environment implements some
well-known ensemble methods and different machine learning
algorithms to generate classifiers.

To make the experiment results more robust, a ten-fold cross
validation scheme is used for each data set during the experiments.
A dataset is randomly split into 10 mutually exclusive and exhaus-
tive folds. Each time, one fold is selected as the test set and the
other nine folds are combined together as the training set. The
learning approaches use the training set to train the models and
use the test set to evaluate the models. The average of evaluation
results is given.

Eighteen data mining datasets in different domains from the
UCI machine learning repository (Frank & Asuncion, 2010) are used
to compare different approaches. The names and some properties
of these datasets are summarized in Table 1. During the experi-
ment, all the datasets are kept the same as those in the repository,
without any preprocessing or feature selection.

4.1. Learning algorithms and experiment settings

In order to obtain optimal configurations of stacking, ten differ-
ent learning algorithms in WEKA are used as the base-level classi-
fier candidates. The ten algorithms can be categorized into
different kinds of methods, thus making them as diverse as possi-
ble when generating classifiers.

� Naïve Bayes (NB) (John & Langley, 1995) learns classifiers by the
naive probabilistic estimator based on the Bayes’ theorem.
� Logistic Regresion (LeCessie & VanHouwelingen, 1992) builds a

multinomial Logistic Regression model to make predictions.
� IB1 (Aha, Kibler, & Albert, 1991) learns the instance-based near-

est neighbour classifier using normalized Euclidean distance.
� IBk is similar to IB1, which uses k-nearest neighbour instead of

one nearest neighbour. Here, k ¼ 5 is used.
� KStar (Cleary & Trigg, 1995). KStar is an instance-based classi-

fier. The class label of a test instance is decided by entropy-
based functions.



Table 1
Dataset description.

Dataset Attributes Instances Classes

Balance-Scale 5 625 3
Breast-w 11 699 2
Chess 37 3196 2
Colic 27 368 2
Credit-A 15 690 2
Credit-G 21 1000 2
Glass 10 214 7
Heart-C 14 303 2
Heart-statlog 14 270 2
Hepatitis 20 155 2
Ionosphere 35 351 2
Iris 5 150 3
Labor 17 57 2
Lymphography 19 148 4
Sonar 61 208 2
Vehicle 19 846 4
Vote 17 435 2
Wine 14 178 3

Table 3
GA parameters.

Parameter Value

Population size 30
Generations 10
Elite rate 0.1
Cull rate 0.1
Cross operation Uniform
Mutation rate 0.1
Crossover rate 0.5
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� OneR (Holte, 1993). The classifier uses the minimum-error attri-
bute for prediction.
� PART (Frank & Witten, 1998) builds a partial C4.5 decision tree

in each iteration and turns the ‘‘best’’ leaf into a classification
rule using the separate-and-conquer strategy.
� ZeroR. It uses 0-R classifiers for prediction.
� Decision Stump (Iba & Langley, 1992) generates a one-level

decision tree classifier.
� C4.5 Decision Tree (DT) (Quinlan, 1993) generates a decision

tree classifier.

These algorithms are also used as the meta-classifier candidates
for ACO-Stacking. The parameters of ACO, including the number of
ants in the colony, the maximal iteration, the evaporation rate and
the constant CC, are listed in Table 2.
4.2. Compared approaches

In the experiments, the stackings found by ACO-Stacking are
compared with the following ensemble approaches.

� AdaBoost with C4.5 DT as its base-level learning algorithm;
� Bagging with C4.5 DT as its base-level learning algorithm and

F ¼ 0:67;
� Random Forest (Breiman, 2001);
� StackingC with Naïve Bayes, IBk, and C4.5 DT as its base-level

learning algorithms and a Multi-Response Model Tree as its
meta learning algorithm (Seewald, 2002; Džeroski & Z̆enko,
2002);
� GA-Ensemble that uses the same base-level classifiers as

ACO-Stacking. The meta combining method is determined by
GA-Ensemble; either a Multi-Response Model Tree or a majority
voting scheme can be selected. The parameters of GA-Ensemble
are listed in Table 3.
Table 2
ACO parameters.

Parameter Value

Colony size 30
Iterations 10
Evaporation rate 0.1
CC 10
4.3. Results and analysis

Table 4 summarizes the results of the average accuracies of the
approaches from the 18 datasets. In some datasets, such as Iono-
sphere, Iris and Vote, the performance of all the approaches is
not significantly different from each other. In the simple datasets,
all the approaches are promising. However, in some datasets, such
as Balance-Scale and Sonar, the accuracies of stacking-based
approaches (StackingC, GA-Ensemble, ACO-S1, ACO-S2, and ACO-S3)
are better than the non-stacking-based approaches; furthermore,
the metaheuristic stacking-based approaches are better than
the non-metaheuristic stacking approaches. For example, in the
Balance-Scale dataset, the accuracies of Bagging, AdaBoost and
Random Forest are smaller than 80%, while the best result,
98.88%, is achieved by ACO-S1.

In the following empirical and statistical tests, we focus on the
comparison between ACO-S3 and the other approaches. The com-
parisons of the different versions of ACO-Stacking are also given.

4.3.1. Empirical analysis
The empirical w/t/l test results are given in the last row of Ta-

ble 4, where w means that ACO-S3 outperforms the corresponding
approach, t means that their performances are the same and l
means that ACO-S3 is not as good as the corresponding approach.
Compared with Bagging, Random Forest and GA-Ensemble, ACO-S3
respectively wins in 12, 13, and 11 of the 18 datasets. It ties in one,
two, and two datasets respectively. On the other hand, ACO-S3
loses in five, three, and five datasets respectively. Compared with
StackingC, ACO-S3 wins in 10 datasets, ties in one dataset and loses
in seven datasets. Compared with AdaBoost, ACO-S3 wins in 13
datasets, ties in one dataset, and loses in four datasets.

Relative Improvement (RAI) is also conducted to evaluate the
approaches. RAI is calculated by using Eq. (5).

p ¼
Xai � a0i

a0i
ð5Þ

where ai refers to the accuracy of ACO-S3 in the ith data set and a0i
refers to the accuracy of the approach being compared with.
According to the RAI test in Table 5, ACO-S3 gains relative improve-
ment of 97.05% with Bagging, 70.46% with AdaBoost, 71.56%
with Random Forest, 58.04% with StackingC and 20.98% with
GA-Ensemble. From the two empirical tests, ACO-S3 outperforms
Bagging, AdaBoost, Random Forest, StackingC and GA-Ensemble.

4.3.2. Statistical analysis
To demonstrate the statistical significance of the experiments,

pairwise T-tests are conducted. The performances of the other ap-
proaches and those of the ACO-S3 are compared to find statistical
significance. The results of the T-test are also shown in Table 4. The
T-test results show that ACO-S3 significantly outperforms Bagging
in seven of the 18 datasets at the 5% level and in two of them at the
10% level. ACO-S3 is significantly better than Random Forest in four
datasets at the 5% level and in three datasets at the 10% level. It is
significantly superior to GA-Ensemble in three datasets at the 5%
level and in two datasets at the 10% level. Moreover, ACO-S3 is



Table 4
The classification accuracies of the ensembles.

Dataset Bagging AdaBoost Random Forest StackingC GA-Ensemble ACO-S1 ACO-S2 ACO-S3

Balance-Scale 71.68 a 76.48 a 76.96a 86.08a 98.72 98.88 98.56 98.72
Breast-W 95.14a 96.42 95.99 97.28d 96.14b 97.00 95.14a 96.99
Chess 99.44 99.50 98.91a 99.44 99.19 99.34 99.14a 99.34
Colic 67.93a 70.92a 71.47b 64.13a 75.00 82.88c 76.90 78.26
Credit-A 86.38 84.35 84.35 86.81 85.65 84.35a 82.32a 85.94
Credit-G 74.0 69.6a 74.1 74.7 73.7b 74.8b 75.0 76.1
Glass 73.83 79.44c 73.36 69.16a 77.10 72.43 76.17 75.23
Heart-C 78.88 76.90 79.21 84.16c 77.89 81.19 74.59a 78.22
Heart-statlog 80.0a 80.37 78.15a 84.16 80.0a 81.85 75.93a 82.96
Hepatitis 83.23 b 85.81 80.65a 81.94 84.52 83.23 87.74 86.45
Ionosphere 93.45 93.16 93.45 90.88 92.88 92.02 89.17 92.31
Iris 95.33 93.33b 95.33 95.33 95.33 94.67 96.0 95.33
Labor 84.21b 89.47 87.72 89.47 85.96a 91.29 87.72 92.9825
Lymphography 79.05 81.08 81.08 83.11 82.43 82.43 85.81c 81.08
Sonar 74.52a 77.88 80.77 81.73 86.06 81.73 87.98c 83.65
Vehicle 76.60a 76.24a 77.07b 74.11a 75.53a 75.2941 74.23a 79.91
Vote 96.32 95.86 95.86 96.78 95.17 95.63 94.25 95.17
Wine 94.94a 96.63a 97.19b 96.07a 98.31 97.75b 98.31 98.88

w/t/l 12/1/5 13/1/4 13/2/3 10/1/7 11/2/5 11/2/5 12/1/5 –

a Using paired T-test, the average accuracy is significantly worse than that of ACO-S3 at 0.05 level.
b Using paired T-test, the average accuracy is significantly worse than that of ACO-S3 at 0.1 level.
c Using paired T-test, the average accuracy is significantly better than that of ACO-S3 at 0.05.
d Using paired T-test, the average accuracy is significantly better than that of ACO-S3 at 0.1 level.

Table 5
RAI test result.

Bagging AdaBoost Random Forest StackingC GA-Ensemble ACO-S1 ACO-S2 ACO-S3

RAI 97.05% 70.46% 71.56% 58.04% 20.98% 13.78% 29.53% –
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not significantly inferior to the above three approaches in any
datasets in the experiments. Compared with AdaBoost, ACO-S3 is
significantly superior in five datasets at the 5% level and in one
dataset at the 10% level, while it is significantly inferior in one
dataset at the 5% level. Compared with StackingC, ACO-S3 is signif-
icantly superior in five datasets at the 5% level and significantly
inferior in two datasets.

The non-parametric Friedman test (Friedman, 1937) is con-
ducted to compare the performance of different approches over
multiple datasets (Demšar, 2006; García & Herrera, 2008). The aver-
age rankings of these approaches can be found in the second row of
Table 6. The Friedman test obtains a p-value of 0.08041. In other
words, we can reject the null hypothesis that all approaches have
equivalent performance at the 10% level of significance. The Holm’s
procedure (Holm, 1979) is used to find the adjusted p-value when
comparing various approaches with ACO-S3. These values are listed
in the last row of Table 6. Compared with Bagging, Random Forest
and AdaBoost, ACO-S3 performs significantly better than them at
the 5% level. It can be observed that ACO-S3 outperforms ACO-S2
and GA-Ensemble significantly at the 10% level. The same conclu-
sion can be obtained when Hochberg’s procedure and Hommel’s
procedure have been used (García & Herrera, 2008).

In general, ACO-S3 is superior to many other approaches in dif-
ferent tests. Therefore, we can conclude that the performance of
ACO-S3 is promising.
Table 6
Average rankings and adjusted p-values.

Bagging AdaBoost Random Forest S

Average rankings 5.2778 5.0 5.1389 4
Adjusted p-value 0.0241 0.0486 0.0351 0
4.3.3. Comparisons of different versions of ACO-Stacking
The same tests (w/t/l, RAI, T-test, Friedman test, Holm’s proce-

dure) are used to compare the performance of different versions
of ACO-Stacking. The results of w/t/l and RAI tests between the
three versions are summarized in Table 7 and the T-test results be-
tween ACO-S1 and ACO-S2 are given in Table 8. The Friedman test
generates a p-value of 0.09173. Thus we can reject the null hypoth-
esis that the three different versions of ACO-Stacking have equiva-
lent performance at the 10% level of significance.

Comparing ACO-S1 and ACO-S2, in the w/t/l test as well as the
p-values in T-test (Table 8), ACO-S1 wins in 11 of the datasets
and loses in seven datasets. ACO-S1 is significantly superior to
ACO-S2 in six datasets at the 5% level and in three datasets at
the 10% level. ACO-S2 significantly outperforms ACO-S1 in only
one dataset at the 5% level and in two datasets at the 10% level.
According to the RAI test, the result is �13.10%, which means
ACO-S2 cannot show improvement over ACO-S1. The adjusted
p-value obtained by using Holm’s procedure is 0.40466. Thus
ACO-S1 and ACO-S2 are not significantly different.

In the w/t/l test in Table 7, ACO-S3 wins in 12 of the datasets,
ties in one dataset and loses in the remaining five datasets com-
pared with ACO-S2. Furthermore, ACO-S3 outperforms ACO-S2 in
six datasets at the 5% level and is inferior in Lymphography and So-
nar at the 5% level (Table 4). According to the RAI test in Table 7,
ACO-S3 gains relative improvement of 29.53% with ACO-S2. The
tackingC GA-Ensemble ACO-S1 ACO-S2 ACO-S3

.3611 4.6389 3.9722 4.7222 2.8889

.1427 0.0989 0.1846 0.0989 –



Table 7
Results of w/t/l tests and RAI tests.

Test Result

ACO-S2 vs. ACO-S1 w/t/l test 7/0/11
RAI test �13.10%

ACO-S3 vs. ACO-S1 w/t/l test 11/2/5
RAI test 13.78%

ACO-S3 vs. ACO-S2 w/t/l test 12/1/5
RAI test 29.63%

Table 8
T-test results: comparing ACO-S2 with ACO-S1.

Dataset p-value

Balance-Scale 0.0839330
Breast-W 0.00668037
Chess 0.0786766
Colic 0.03740137
Credit-A 0.01089679
Credit-G 0.44267226
Glass 0.0979825
Heart-C 0.00153940
Heart-statlog 0.02943033
Hepatitis 0.12527892
Ionosphere 0.22912368
Iris 0.0645235
Labor 0.0748713
Lymphography 0.19531785
Sonar 0.00471518
Vehicle 0.04860191
Vote 0.16595619
Wine 0.47400674
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adjusted p-value obtained by using Holm’s procedure is 0.06052.
Thus ACO-S3 significantly outperforms ACO-S2 at the 10% level.

In the w/t/l test in Table 7,, ACO-S3 wins in 11 of the datasets,
ties in two datasets and loses in five datasets compared with
ACO-S1. In the T-test, ACO-S3 is significantly superior to ACO-S1
in one dataset at the 5% level and in two datasets at the 10% level,
but inferior to ACO-S1 in one dataset at the 5% level (Table 4).
According to the RAI test, the relative improvement is 13.78%.
The adjusted p-value obtained by using Holm’s procedure is
0.18242. Thus ACO-S1 and ACO-S3 are not significantly different.

We are also interested in the number of base-level classifiers
used in the stackings found by different versions of ACO-Stacking.
The average numbers of base-level classifiers in different versions
of ACO-Stacking are given in Table 9. For ACO-S1, its average num-
ber of base-level classifiers is much more than those in ACO-S2 and
ACO-S3. This interesting phenomenon could be explained by the
differences of the versions. ACO-S1 focuses on the search for the
combinations of base-level classifiers with the same meta-classi-
fier. Given a sufficient number of iterations, ACO-S1, which is more
stochastic without local information, can discover good stackings
with more base-level classifiers. The other versions use local
information to guide the searching process and use different
meta-classifiers to extend the searching space. The local informa-
tion in ACO-S2 helps the construction of the combination of
base-level classifiers to focus on the ‘‘powerful’’ candidates so that
some less strong, but potentially useful candidates, are ignored.
Thus the average number of base-level classifiers in ACO-S2 is
Table 9
Average numbers of base-level classifiers in stackings.

Approaches Number of base-level classifiers

ACO-S1 4.9375
ACO-S2 3.125
ACO-S3 3.3333
smaller. The major difference between ACO-S2 and ACO-S3 is that
ACO-S3 uses the correlative differences as the local information.
The correlative differences focus on searching the base-level classi-
fiers which are not similar to the existing ones in the stackings.
This local information does not ignore the base-level classifiers
with ‘‘average’’ performance. The optimized local information im-
proves the performance while bringing a small increase in the
average number of base-level classifiers. From the above analysis,
ACO-S3 could be the best of the three versions.
5. A real-world cost-sensitive data mining application

In this section, ACO-Stacking is used to handle a real-world data
mining application in direct marketing. Direct marketing is a type
of marketing that reaches its potential customers without tradi-
tional advertising, such as TV, newspapers or radio, and instead
communicates directly with the consumer with advertising such
as direct mail, catalogues and email advertisements. Direct
marketing companies often maintain massive databases of their
customers’ information, including (but not limited to) their con-
tacts, their previous purchasing records, their responses to previ-
ous marketing campaigns and so on.

Not every customer in the databases is interested in the prod-
ucts or services of the company, so some customers will never pur-
chase. Other customers will only purchase occasionally and spend
small amounts of money. Only a few customers are highly loyal to
the company and purchase frequently. The former two kinds of
customers account for a much larger proportion of the databases
than the loyal ones (e.g., 95% to 5%). In other words, the direct mar-
keting databases are highly unbalanced.

Furthermore, buyers contribute different profits when they re-
spond to a marketing campaign. Some buyers are identified as most
likely to respond and make a purchase, so the company may send
some gifts with the catalogue. However, although they respond,
they may only place a small order; thus the company can only earn
a small amount of profit. On the other hand, some buyers seldom
respond to a campaign but will place a big order if they respond.
So in the direct marketing problem, the profit varies significantly
among customers. Thus, this problem is cost-sensitive.

Because of budget constraints and required return of marketing
investment, the company cannot contact all customers in the data-
base. Therefore, it is essential to identify the customers who are
more responsive to marketing activities and more profitable for
the company. For a marketing campaign, typically only the names
in the top two deciles or the 80th percentile (i.e. those with the
highest probabilities of responding) will receive the promotion
materials from the company (Zahavi & Levin, 1997).

Direct marketing companies therefore build varieties of predic-
tive models from the databases to narrow their target customer
groups, thus realizing a desirable return within the budget. Until re-
cently, the dominant models in this field were statistically based,
for example regression and discriminant analysis. Some data min-
ing and machine learning approaches were also proposed to learn
models for direct marketing applications. For instance, Zahavi and
Levin applied Neural Networks to target marketing (Zahavi & Levin,
1997). Bhattacharyya proposed his approach of applying a genetic
algorithm (Bhattacharyya, 1999). Cui et al. studied model selection
for direct marketing (Cui, Wong, Zhang, & Li, 2008). Our ACO-Stack-
ing can be easily applied to handle this direct marketing problem.
5.1. The direct marketing database

A large real-life direct marketing dataset from a U.S.-based cat-
alogue company provided by the Direct Marketing Education Foun-
dation, is used to evaluate ACO-Stacking and other approaches. The



2698 Y. Chen et al. / Expert Systems with Applications 41 (2014) 2688–2702
company sells multiple product lines of merchandise, from gifts
and apparel to consumer electronics. It regularly sends catalogues
to its customers by mail. This dataset contains 106,284 records in a
recent promotion, as well as their purchase history over a 12-year
history. The dataset also contains the demographic information
from the 1995 U.S. Census and credit information from a commer-
cial vendor. Thus there are 361 variables in each record. The most
recent promotion sent a catalogue to every customer in this data-
set and achieved a 5.4% response rate, representing 5740 buyers.

The statistical summary of the cost/profit from the direct mar-
keting dataset is given in Table 10. The maximum profit is
US$612.66, which is about 140 times the minimal profit and 16
times the average profit. The maximal cost is US$9.18, which is
about 27 times the minimal cost and about 12 times the average
cost. The average profit is about 52 times the average cost in the
dataset.

For a direct marketing dataset with so many variables, it is nec-
essary to conduct some features (variables) selection to reduce the
dimension of it. In this application, 17 variables are selected by the
forward wrapper selection process. For example, the variables
about the lifetime total orders, the lifetime total sales, whether
the customer placed telephone orders, whether the customer paid
by cash, etc. are selected.

5.2. Evaluation methods for direct marketing models

In direct marketing applications, the accuracy may not be the
most appropriate method for assessing the performance of classifi-
ers (Wong & and Cui, 2010). First, despite the dataset being huge,
the response rate is very small (5.4% in this case). In other words,
the dataset is extremely unbalanced. If a classifier makes predic-
tions that all the potential customers do not respond, the accuracy
will still be 94.6%, which seems to be pretty good for conventional
accuracy-based applications. However, this result is meaningless
for this problem. As we mentioned before, due to the budget con-
straints, only the potential customers in the top decile or top two
deciles of the database are likely to be contacted in a direct market-
ing campaign, but a model with high accuracy may not have supe-
rior performance in the top decile (s). Second, the accuracy cannot
show the distinction of different misclassification errors. For direct
marketing, false negatives are more costly than false positives, be-
cause the potential sale and profit of a false negative may be much
larger than the mailing cost of a false positive.

The decile analysis which estimates the enhancement of the re-
sponse rate and profit at different depths of the dataset is used to
evaluate the performance of a classifier. To use the decile analysis,
the names with their response rates should be sorted into a rank list
in decreasing order. The names in the first decile indicate that they
are most likely to respond and generate profits while the names in
the last decile are unwilling to respond and purchase. The cumula-
tive lift, which is usually the most important criterion for the decile
analysis, will be used in this approach as well (Zahavi & Levin, 1997;
Cui et al., 2008). Lift is a measure of the effectiveness of a predictive
Table 10
Summary of the cost/profit (US$) of the direct marketing dataset.

Statistics metric Value

Maximum Profit 612.66
Minimum Profit 4.36
Average Profit 38.77
Standard Deviation of Profit 37.622

Maximum Cost 9.18
Minimum Cost 0.34
Average Cost 0.74
Standard Deviation of Cost 0.301
model, which is calculated as the ratio between the results obtained
with the classifier and with a random model at a certain depth of
the dataset. In direct marketing, the response rate and profit rate
are the most important measures. Thus the cumulative response lift,
cumulative profit lift and lifted profits are used to compare different
approaches. Cumulative response lift evaluates the ratio between
the response received from the customers with a classifier and
those with a random model at a certain depth of the dataset. Cumu-
lative profit lift evaluates the ratio between the earning profits ob-
tained with a classifier and those with a random model. The lifted
profits evaluate the actual amount of lifted profit obtained with a
classifier will earn against that with a random model. A lift chart
(Fig. 5) and different tables (Tables 12–17) are used to present the
performance of different models across the ten deciles.
5.2.1. ACO-Stacking for direct marketing problem
Due to the flexibility of ACO-Stacking, it is easy to modify this

approach to tackle the direct marketing problem. Since the optimi-
zation objective is changed from maximizing the overall accuracy
to maximizing the cumulative response/profit lift in certain deciles,
a in the approach is modified accordingly. The total profit of the
customers in the top two deciles in the validation set is used as a,
the evaluation criterion of a stacking ensemble. However, the profit
of each customer (instance) is transparent to the learning algo-
rithms in the process of training the base-level classifiers and the
meta-classifier. In other words, each instance in the training set is
treated equally by the cost-insensitive learning algorithms. On
the other hand, the profits of the customers of the validation set
are used to calculate a, in order to find a good stacking ensemble.
We modify ACO-S3 to generate a ranking list of the instances in
the validation set by sorting their probabilities of responding in
decreasing order. The profits of the instances in the top two deciles
of the list are calculated to be the a of this configuration. The other
components are the same as those in ACO-S3 discussed in Section 3.
5.3. Experiments and results

An experiment and an analysis of the results are conducted to
evaluate the performance of ACO-Stacking in the direct marketing
problem. The ten-fold cross validation scheme is used in the exper-
iment as well.

In the experiment, ACO-Stacking uses ten different learning
algorithms. They are C4.5 DT, CART, Decision Stump, Logistic, NB,
NB Simple, NB Updateable, OneR, PART and VFI. NB simple is a
Fig. 5. Lift chart of ACO-Stacking.



Table 11
Parameters of ACO-Stacking for direct marketing application.

Parameter Value

Colony size 20
Iterations 10
Evaporation rate 0.1
CC 10

Fig. 6. Cost matrix of AdaCost.
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variant of NB which models the numerical attributes by a normal
distribution (Duda, Hart, & Stork, 2012). NB updateable is another
variant of NB (John & Langley, 1995). VFI generates a classifier that
classifies an instance based on feature intervals (Demiröz &
Güvenir, 1997). The set of learning algorithms is different from that
used in Section 4.1; because the size of the database is much larger
than those of the benchmark datasets, some instances-based learn-
ing algorithms such as KStar and IBk are replaced by other learning
algorithms. The parameters of ACO-Stacking are given in Table 11.

5.3.1. Compared methods
ACO-Stacking is compared with two sets of existing methods.

The first set includes the conventional methods that have been ap-
plied in direct marketing problems, such as Logistic Regression,
Naïve Bayes, Neural Networks and Bayesian Networks (Zahavi &
Levin, 1997; Cui et al., 2008). The second set contains some ensem-
ble and/or cost-sensitive methods including Bagging (Breiman,
1996), AdaCost (Fan, Stolfo, Zhang, & Chan, 1999) and AdaC2
(Sun, Kamel, Wong, & Wang, 2007). In Bagging, the learning algo-
rithm is Logistic Regression and the random subset fraction is
0.667.

AdaCost (Fan et al., 1999) is a cost-sensitive version of AdaBoost
(Freund & Schapire, 1997). It uses the different costs of the corre-
sponding misclassification errors to adjust the training distribution
on successive boosting rounds and thereby build a better cost-sen-
sitive ensemble. The different costs of corresponding misclassifi-
cation errors are given in a confusion matrix. To develop a
confusion matrix, one must determine which errors might be
committed and their corresponding costs. In this direct marketing
dataset, there are two classes: buyer and non-buyer. Therefore
there are two kinds of errors: classifying buyer as non-buyer and
the reverse. The confusion matrix in this experiment is given in
Table 12
Average cumulative response lift of ten-fold cross-validation compared with conventional

Models Logistic Regression Bayesian Networks
Decile Response Lift Response Lift

1 374.7 (15.9)a 357.6 (17.8)a

2 261.3 (8.9)a 263.0 (7.8)
3 216.4 (6.4) 214.1 (7.1)
4 184.8 (3.9) 182.3 (5.3)
5 161.4 (3.7) 158.8 (2.3)
6 145.1 (2.1) 141.4 (2.4)
7 130.2 (1.4) 128.2 (1.8)
8 118.6 (1.2) 116.5 (1.4)
9 108.6 (1.2) 108.0 (0.7)
10 100.0 100.0

The reported figures are the means of the lifts of the 10 experiments, with the standard
a Using paired t-test, the cumulative response lift is significantly smaller than that of
Fig. 6. The penalty for the error of mistaking non-buyer as buyer
is one and the penalty for mistaking buyer as non-buyer is ten.
The penalty for mistaking buyer as non-buyer is larger because
the potential profit of a buyer is much larger than the cost of mar-
keting material and mailing. Moreover, the number of iterations of
the AdaCost is set to 10. Because of the constant costs defined in the
cost matrix, AdaCost treats all instances which commit the same
misclassification equally. However, the costs of different instances
often vary even if the same misclassification errors are committed.

Sun et al. proposed an approach which incorporates the individ-
ual misclassification costs into the training distribution adjustment
process of AdaCost (Sun et al., 2007). Three algorithms, AdaC1,
AdaC2 and AdaC3 are proposed. AdaC2 performs better in their pa-
per, so AdaC2 is compared in our experiment. The differences be-
tween AdaC2 and Adaboost is that the update rule in Adaboost
(Freund & Schapire, 1997) is modified by adding the specific cost
of each instance. For AdaCost and AdaC2, the weak learner is Logis-
tic Regression.
5.3.2. Results and analysis
Tables 12 and 15 show the cumulative response lift of ACO-

Stacking compared with the two sets of methods. Tables 13 and
16 display the cumulative profit lift of ACO-Stacking compared
with the other methods. Moreover, Tables 14 and 17 respectively
show the average lifted profit (US$) of ACO-Stacking and the com-
pared methods. In the tables, the number in bold font in each dec-
ile indicates that the method in this column achieves the best
results in this decile compared with the other methods. The pair-
wise T-tests are conducted to compare the results as well.

From Table 12, the ensembles generated by ACO-Stacking (ACO-
Stacking ensembles) achieve the average cumulative response lift
of 401.5 and 301.3 in the first two deciles respectively. The results
suggest that by mailing to the first two deciles alone, the ACO-
Stacking ensembles generate over three times as many respon-
dents as a random mailing without a model. The average response
lift of the ACO-Stacking ensembles is significantly higher than
those of Bayesian Networks and Naïve Bayes in the top decile,
and is significantly higher than those of Logistic Regression and
Naïve Bayes in the top two deciles. From Table 13, the average
cumulative profit lift of the ACO-Stacking ensembles is signifi-
cantly higher than those of the conventional methods in the top
decile and significantly higher than those of Naïve Bayes in the
top six deciles. According to Table 14, an average lifted profit of
US$9,198.7 will be obtained if a marketing campaign is conducted
to the top 20% of customers identified by the ACO-Stacking
ensembles.

The comparison between ACO-Stacking and the other ensemble
and cost-sensitive methods is more interesting. As shown in
methods.

Neural Networks Naïve Bayes ACO-Stacking
Response Lift Response Lift Response Lift

380.1 (21.7) 280.7 (19.0)a 401.5 (47.5)
275.3 (9.2) 220.0 (11.4)a 301.3 (70.4)
218.6 (5.7) 187.1 (6.9)a 232.3 (36.1)
183.6 (4.9) 162.5 (5.3)a 192.3 (21.1)
160.5 (2.9) 146.6 (3.1)a 164.2 (13.9)
144.4 (2.2) 134.8 (2.2)a 145.9 (7.6)
130.6 (1.5) 126.8 (1.0)a 130.9 (4.9)
118.8 (1.2) 117.7 (1.5) 118.4 (2.9)
108.9 (0.7) 108.6 (0.5) 108.5 (1.5)
100.0 100.0 100.0

deviations in parentheses.
ACO-Stacking at 0.05 level.



Table 13
Average Cumulative Profit Lift of Ten-fold Cross-validation Compared with Conventional Methods.

Models Logistic Regression Bayesian Networks Neural Networks Naïve Bayes ACO-Stacking
Decile Cum. Lift Cum. Lift Cum. Lift Cum. Lift Cum. Lift

1 589.9 (33.0)a 565.6 (39.7) a 597.1 (40.6) a 478.2 (44.3) a 637.1 (63.4)
2 354.8 (18.1) 365.2 (14.3) 377.5 (19.8) 326.6 (22.0)a 414.1 (92.4)
3 274.5 (11.8) 275.0 (11.2) 278.2 (9.5) 251.1 (14.4)a 295.8 (49.1)
4 221.3 (7.3) 220.4 (7.6) 220.7 (7.3) 203.4 (11.4)a 232.7 (30.3)
5 184.1 (5.7) 183.5 (4.2) 183.2 (4.7) 173.5 (5.3)a 189.8 (20.1)
6 159.3 (3.6) 156.5 (3.5) 159.3 (3.6) 151.7 (4.6)a 162.9 (11.8)
7 139.0 (3.0) 137.9 (3.0) 139.5 (2.3) 137.2 (2.9) 141.1 (7.5)
8 123.3 (1.6) 122.4 (2.3) 123.6 (1.6) 123.3 (2.3) 123.9 (4.4)
9 110.4 (1.2) 110.5 (1.3) 111.0 (1.0) 111.1 (0.8) 111.2 (2.0)
10 100.0 100.0 100.0 100.0 100.0

The reported figures are the means of the lifts of the 10 experiments, with the standard deviations in parentheses.
a Using paired t-test, the cumulative profit lift is significantly smaller than that of ACO-Stacking at 0.05 level.

Table 14
Average Lifted Profits ($) of Ten-fold Cross-validation Compared with Conventional Methods.

Deciles Logistic Regression Bayesian Networks Neural Networks Naïve Bayes ACO-Stacking

1 7184.6 6821.0 7312.4 5553.0 7886.2
2 7770.5 7784.2 8155.9 6650.9 9198.7
3 7683.7 7707.2 7845.6 6662.6 8600.2
4 7120.2 7063.8 7082.6 6076.3 7778.8
5 6171.8 6124.9 6096.7 5392.7 6581.9
6 5222.6 4977.4 5227.8 4546.2 5535.2
7 4003.2 3886.3 4055.4 3812.4 4209.8
8 2732.3 2635.3 2769.3 2727.6 2805.6
9 1376.2 1396.6 1438.6 1464.0 1481.9
10 0.0 0.0 0.0 0.0 0.0

The reported figures are the means of the lifts of the 10 experiments.
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Table 15
Average Cumulative Response Lift of Ten-fold Cross-validation Compared with
Ensemble and Cost-Sensitive Methods.

Models Bagging AdaCost AdaC2 ACO-Stacking
Decile Response Lift Response Lift Response Lift Response Lift

1 372.9 (17.1)a 139.0 (46.8)a 375.0 (17.2)a 401.5 (47.5)
2 261.7 (9.2)a 95.8 (14.2)a 263.1 (8.5)a 301.3 (70.4)
3 217.2 (5.0) 63.9 (9.5)a 217.0 (6.4) 232.3 (36.1)
4 184.2 (3.7) 80.4 (56.0)a 184.2 (4.0) 192.3 (21.1)
5 162.0 (3.7) 194.8 (7.6)b 161.1 (3.4) 164.2 (13.9)
6 145.2 (2.6) 162.3 (6.4)b 144.8 (2.0) 145.9 (7.6)
7 130.1 (1.5) 139.1 (5.5)b 129.9 (1.5) 130.9 (4.9)
8 118.8 (1.1) 121.8 (4.8)b 118.6 (1.0) 118.4 (2.8)
9 108.7 (0.8) 108.3 (4.0) 108.6 (0.8) 108.5 (1.5)
10 100.0 100.0 100.0 100.0

The reported figures are the means of the lifts of the 10 experiments, with the
standard deviations in parentheses.

a Using paired t-test, the cumulative response lift is significantly smaller than
that of ACO-Stacking at 0.05 level.

b Using paired t-test, the cumulative response lift is significantly larger than that
of ACO-Stacking at 0.05 level.

Table 17
Average lifted profits ($) of ten-fold cross-validation compared with ensemble and
cost-sensitive methods.

Decile Bagging AdaCost AdaC2 ACO-Stacking

1 7080.5 2047.0 7246.3 7886.2
2 7707.4 1352.1 7872.8 9198.7
3 7663.0 �565.2 7725.3 8600.2
4 7020.0 124.8 7096.1 7778.8
5 6131.5 10713.0 6160.1 6581.9
6 5177.6 8461.4 5208.5 5535.2
7 3921.7 6208.1 3962.4 4209.8
8 2680.2 3952.7 2717.5 2805.6
9 1340.2 1708.9 1380.4 1481.9
10 0.0 0.0 0.0 0.0

The reported figures are the means of the lifts of the 10 experiments.

Table 16
Average cumulative profit lift of ten-fold cross-validation compared with ensemble
and cost-sensitive methods.

Models Bagging AdaCost AdaC2 ACO-Stacking
Decile Cum. Lift Cum. Lift Cum. Lift Cum. Lift

1 584.9 (34.7)a 241.3 (54.9)a 593.6 (31.1)a 637.1 (63.4)
2 364.1 (20.4) 145.3 (30.0)a 367.7 (18.0) 414.1 (92.4)
3 275.2 (10.4) 86.7 (19.9)a 275.3 (11.7) 295.8 (49.1)
4 220.5 (6.6) 100.7 (74.8)a 220.7 (7.4) 232.7 (30.3)
5 184.5 (5.6) 246.4 (10.1)b 184.0 (5.5) 189.8 (20.1)
6 159.6 (4.1) 196.4 (8.3)b 159.2 (3.7) 162.9 (11.8)
7 138.9 (3.4) 160.7 (7.0)b 138.5 (3.5) 141.1 (7.5)
8 123.5 (1.5) 133.9 (6.1)b 123.2 (1.3) 123.9 (4.4)
9 110.8 (1.4) 113.1 (5.2) 110.5 (1.3) 111.2 (2.0)
10 100.0 100.0 100.0 100.0

The reported figures are the means of the lifts of the 10 experiments, with the
standard deviations in parentheses.

a Using paired t-test, the cumulative profit lift is significantly smaller than that of
ACO-Stacking at 0.05 level.

b Using paired t-test, the cumulative profit lift is significantly larger than that of
ACO-Stacking at 0.05 level.
Table 15, the ACO-Stacking ensembles significantly outperform
those generated by Bagging, AdaCost and AdaC2 in the average
cumulative response lift in the top two deciles. Compared with
AdaCost, the average cumulative response lift of the ACO-Stacking
ensembles is significantly higher in the top four deciles, while sig-
nificantly inferior in the following four deciles. Similar phenomena
can be found in Tables 16 and 17. Due to budget constraints, the
average cumulative response/profit lift in the fifth and the follow-
ing deciles may not be important for marketing decision makers.
As shown in Table 16, the average cumulative profit lift of the
ACO-Stacking ensembles is significantly higher than those of
Bagging, AdaCost and AdaC2 in the top decile. From Table 17, the
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direct marketers can gain more profits if they mail to the top 10%,
20%, 30% or 40% of customers according to the ACO-Stacking
ensembles.

In summary, ACO-Stacking significantly outperforms most of
the other methods in the top two deciles in both cumulative re-
sponse lifts and cumulative profit lifts. This suggests that our ap-
proach can generate good cost-sensitive ensembles from ordinary
learning algorithms.
6. Conclusions

6.1. Findings

In this work, a comprehensive study is conducted to optimize
the performance of ACO-Stacking. In the study, we develop differ-
ent versions of the ACO-Stacking approach by considering different
ideas, such as the adoption of local information. In the first version
(ACO-S1), no local information is implemented and only one learn-
ing algorithm (C4.5 DT) is used to create the meta-classifier. We fo-
cus on the effects of ACO in guiding the search and the combination
of base-level classifiers. The first version aims to find as many as
possible combinations of base-level classifiers with the same
meta-classifier. The second version (ACO-S2) is quite different from
the first. We implement the concept of a classifiers pool. The
base-level classifiers are all trained prior to the stacking searching
process, instead of training them when they are selected by some
stackings. The classifiers pool may improve the efficiency of the
training process (Ordóñez et al., 2008). The second difference is
that we extend the searching space of the stacking by introducing
the meta-classifiers set. The local information is also introduced in
this version to accelerate the convergence process to find the opti-
mal solution. The third version (ACO-S3) is similar to the second,
the major change being that the correlative differences of base-le-
vel classifiers are used as the local information. From the compar-
ison between ACO-Stacking and other ensemble methods
including AdaBoost, Bagging, Random Forest, StackingC and GA-
Ensemble, on the 18-benchmark datasets, it can be observed that
ACO-Stacking has better performance than other ensemble meth-
ods in many datasets. By using Holm’s procedure (Holm, 1979),
ACO-S3 outperforms Bagging, Random Forest and AdaBoost at
the 5% level of significance. It outperforms GA-Ensemble at the
10% level of significance.

From the comparison between these three versions of ACO-
Stacking, ACO-S3 wins ACO-S1 in 11 benchmark datasets, and wins
ACO-S2 in 12 benchmark datasets. However, ACO-S1 wins ACO-S2
in 11 benchmark datasets. We found that, without integrating local
information into ACO-Stacking, the pure ACO-Stacking approach is
more stochastic than other versions in generating ensembles. The
pool of base-level classifiers is expected to provide better results.
However, since ACO-S2 applies precision as the local information,
the base-level classifiers with higher precision may have similar
decision boundaries for certain difficult problems while some
base-level classifiers with lower precision may have better deci-
sion boundaries. Moreover, if such situations occur frequently in
the search process, the performance of ACO-S2 could be affected,
which explains why ACO-S2 is significantly outperformed by
ACO-S3 in six datasets at the 5% level. ACO-S3 uses correlative dif-
ferences of base-level classifiers to overcome such problem in or-
der to have a more diverse combination of base-level classifiers.

For the results of the real-world cost-sensitive data mining
application in direct marketing, the proposed approach is able to
generate good cost-sensitive ensembles as it significantly outper-
forms most of the other methods including Logistic Regression,
Bayesian Networks, Bagging, AdaCost, and AdaC2 in both cumula-
tive response lifts and cumulative profit lifts.
6.2. Contributions and implications

In this work, the contributions are threefold. Firstly, this is the
first work to apply Ant Colony Optimization to a stacking configu-
ration problem. Stacking is a well-known ensemble; however, how
to configure an optimal stacking for a specific dataset is still re-
garded as a ‘‘black art’’. Furthermore, though Ant Colony Optimiza-
tion performs well in many applications, it has not been
implemented in solving stacking configuration problems. In this
study, ACO is firstly integrated into the stacking configuration
searching process. Secondly, we implement the local information
in the ACO-Stacking process. Several kinds of local information
are studied to improve the performance of ACO. The correlative dif-
ferences, which represent the variations of predictions from differ-
ent classifiers, are adopted in our latest version of ACO-Stacking.
Thirdly, this approach could be applied to solve different data min-
ing problems and real-world direct marketing problems.

Direct marketing data is often very unbalanced and cost-sensi-
tive, thus making it hard to solve its problems with regular data
mining models. ACO-Stacking is modified with cost-sensitive mea-
sures to tackle this problem. It is important to emphasize that it is
not necessary for the learning algorithms used to generate the
base-level classifiers and meta-level classifier to be cost-sensitive.
By using our ACO-Stacking method, these non-cost-sensitive learn-
ing algorithms can be employed to handle cost-sensitive data-min-
ing problems. In comparison with other approaches, our approach
performs better. In the dataset, our approach gains a higher cumu-
lative response rate and greater profits than other approaches.

6.3. Future work

In this work, we limit our ACO-Stacking approach to a single
performance evaluation criterion for each application. For exam-
ple, only accuracy is used in the benchmark datasets and only
the cumulative profit lift is used for the direct marketing applica-
tion. ACO has been proved to be strong in multi-criteria optimiza-
tion problems. One possible future direction is to extend
ACO-Stacking to find multi-criteria ensembles. Furthermore, only
two measures for local information (Precision and correlative dif-
ferences) are selected and applied in the approach. However, many
other criteria can be employed as local information, so the best
metric for local information can be further explored.

A relatively short execution time is very essential for an appli-
cation. One future direction of this work is to modify ACO-Stacking
to run in parallel to improve the efficiency. Much research has been
done to parallelize the ACO approach on a Graphic Processing Unit
thereby to accelerate the execution efficiency without many addi-
tional resources required.

Ensembles do not only refer to ensembles of classifiers. Nowa-
days, ensembles are widely used in clustering and regression tasks
(Zhou, Wu, Tang, & Chen, 2001; Fern & Brodley, 2003). In the fu-
ture, we may try to use our ACO-Stacking approach in clustering
and regression tasks.
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Todorovski, L., & Džeroski, S. (2000). Combining multiple models with meta
decision trees. In Proceedings of the 4th european conference on principles of data
mining and knowledge discovery, PKDD ’00 (pp. 54–64). Berlin, Heidelberg:
Springer.

Wang, Z., & Feng, B. (2005). Classification rule mining with an improved ant colony
algorithm. In AI 2004: Advances in Artificial Intelligence (pp. 357–367). Springer.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
Wong, M. L. & Cui, G. (2010). Data mining using parallel multi-objective

evolutionary algorithms on graphics hardware. In Proceedings of 2010 IEEE
Congress on Evolutionary Computation (pp. 1–8).

Zahavi, J., & Levin, N. (1997). Applying neural computing to target marketing.
Journal of Interactive Marketing, 11(1), 5–22.

Zhang, X., Chen, X., & He, Z. (2010). An ACO-based algorithm for parameter
optimization of support vector machines. Expert Systems with Applications, 37,
6618–6628.

Zheng, Z., & Padmanabhan, B. (2007). Constructing ensembles from data
envelopment analysis. INFORMS Journal on Computing, 19(4), 486–496.

Zhou, Z. H., Wu, J. X., Tang, W., & Chen, Z. Q. (2001). Combining regression
estimators: Ga-based selective neural network ensemble. International Journal
of Computational Intelligence and Applications, 1(4), 341–356.

Zhu, D. (2010). A hybrid approach for efficient ensembles. Decision Support Systems,
48(3), 480–487.

http://refhub.elsevier.com/S0957-4174(13)00895-6/h0015
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0015
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0020
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0025
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0030
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0030
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0030
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0035
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0035
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0040
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0040
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0040
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0040
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0045
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0045
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0045
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0050
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0050
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0050
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0055
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0055
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0060
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0065
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0070
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0075
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0075
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0075
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0080
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0080
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0080
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0085
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0085
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0085
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0090
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0090
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0090
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0095
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0095
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0095
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0100
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0100
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0105
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0105
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0110
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0110
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0115
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0115
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0120
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0120
http://portal.acm.org/citation.cfm?id=141975.142031?
http://portal.acm.org/citation.cfm?id=141975.142031?
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0135
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0135
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0135
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0140
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0140
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0145
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0145
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0145
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0150
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0150
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0150
http://doi.acm.org/10.1145/1835804.1835914
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0165
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0165
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0170
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0170
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0170
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0175
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0175
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0175
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0180
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0180
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0185
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0185
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0190
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0190
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0195
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0195
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0200
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0200
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0200
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0205
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0205
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0210
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0210
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0215
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0215
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0215
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0215
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0220
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0220
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0225
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0230
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0230
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0235
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0235
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0235
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0240
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0240
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0245
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0245
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0245
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0250
http://refhub.elsevier.com/S0957-4174(13)00895-6/h0250

	Applying Ant Colony Optimization to configuring stacking ensembles  for data mining
	1 Introduction
	2 Background
	2.1 Ensembles
	2.1.1 Bagging
	2.1.2 Boosting
	2.1.3 Stacking

	2.2 Ant Colony Optimizations (ACO)
	2.3 Application of ACO in data mining

	3 ACO-Stacking approach
	3.1 ACO-Stacking algorithm framework
	3.2 Local information
	3.3 Different versions of ACO-Stacking
	3.3.1 ACO-S1
	3.3.2 ACO-S2
	3.3.3 ACO-S3

	3.4 Differences between ACO-Stacking and GA-based approaches

	4 Experiments and results
	4.1 Learning algorithms and experiment settings
	4.2 Compared approaches
	4.3 Results and analysis
	4.3.1 Empirical analysis
	4.3.2 Statistical analysis
	4.3.3 Comparisons of different versions of ACO-Stacking


	5 A real-world cost-sensitive data mining application
	5.1 The direct marketing database
	5.2 Evaluation methods for direct marketing models
	5.2.1 ACO-Stacking for direct marketing problem

	5.3 Experiments and results
	5.3.1 Compared methods
	5.3.2 Results and analysis


	6 Conclusions
	6.1 Findings
	6.2 Contributions and implications
	6.3 Future work

	Acknowledgments
	References


