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a b s t r a c t

The paper addresses feedback control of actuated prostheses based on the Stewart platform parallel
mechanism. In such a problem it is essential to apply a feasible numerical method to determine in real
time the solution of the forward kinematics, which is highly nonlinear and characterized by analytical
indetermination. In this paper, the forward kinematics problem for a human elbow hydraulic prosthesis
developed by the research group of Polytechnic of Bari is solved using artificial neural networks as an
effective and simple method to obtain in real time the solution of the problem while limiting the
computational effort. We show the effectiveness of the technique by designing a PID controller that
governs the arm motion thanks to the provided neural computation of the forward kinematics.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The topic of actuated prostheses for human use is nowadays
one of the most important branches of bio-robotics. The goal of
giving back to amputees the possibility to carry out daily activities
on their own represents a fascinating challenge for both medical
and engineering researchers. The first studies about this topic
started with the so-called “Utah Arm” (Late 70's, University of
Utah), that was the first artificial limb able to decode myoelectric
signals coming from nerves and still represents, in its latest
version, one of the most diffused and commercially available
architectures [27].

Nowadays, several solutions are available in the related litera-
ture to model and simulate the work of articulations in limb
prostheses: the choices of research groups from all over the world
concern both the mechanisms typology and energy supply. Two
useful examples are the serial gas-actuated arm by Fite et al. [5]
and the parallel architecture by Mendoza-Vázquez et al. [26],
equipped with linear electrical actuators. The research group of
the Polytechnic of Bari (Italy) developed a parallel simplified
“Stewart platform like” mechanism [6], with a wire transmission

that links the floating platform to three hydraulic cylinders. The
device uses two cylindrical elementary hinges to connect forearm
and arm, and three hydraulic actuators placed on the upper arm to
reduce moving masses. These actuators are classified into two
main ones (frontally placed) and a secondary one (placed in the
rear of the prosthesis). Each frontal actuator is linked with two
wires, one towards the front forearm and the other towards the
rear part of the forearm. These two actuators are in charge of
the positioning of the floating platform, connected to the forearm.
The rear piston brings a pulley that forces another wire connected
with the forearm.

This particular parallel geometry is characterized by the analy-
tical indetermination of the forward kinematics problem, in spite
of the solution of the inverse one. Indeed, the configuration
required to the linear actuators for each position of the floating
platform, and consequently their law of motion, is easily obtained
analytically using rotation matrices with the required orientation
angles. However, it is not possible to univocally determine the
configuration of the mobile platform starting from the actuators'
elongations. In fact, the forward kinematics problem of the Stewart
platform consists in finding the position of the moving platform
for a given set of limbs (connecting wires) lengths. The problem is
to find the angular coordinates of the elbow prosthesis know-
ing the elongations of the rods of the hydraulic cylinders. The
formulation of closure relations generates highly non-linear
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equations with multiple solutions [17]. Hence, in the literature
different numerical methods have been studied to determine in
real time the solution of the forward kinematics problem for
parallel mechanisms such as the Stewart platform. Many contribu-
tions provide a solution to the forward kinematics problem based
on numerical iterative schemes, such as the Newton–Raphson
method, closed-form solutions, or approaches based on predictors.
Innocenti and Parenti Castelli [21] proposed the formulation of a
“closure equation” to solve the problem iteratively. This approach
was further employed in [8,20,22,28,24,25,29,18,30] with different
approximations and iterations. Moreover, Wen and Liang [31]
provided the closed-form solutions for the general planar Stewart
platform. Further contributions in this direction may be found in
[4,19]. However, these methods are numerical, not strict closed-
form methods.

In this paper, the problem is solved using artificial neural
networks as an effective and simple method to obtain in real time
the solution of the forward kinematics problem while limiting
the computational effort. The proposed approach is applied to the
hydraulic prosthesis developed by the research group of the
Polytechnic of Bari [6] and we show the effectiveness of the
method by designing a PID closed loop controller that effectively
governs the arm motion thanks to the provided neural computa-
tion of the forward kinematics.

In the context of neural approaches, the first contribution was
proposed by Lee and Han [23] who developed a technique based
on linear predictors, where gains of each predictor are calculated
by a neural network. Moreover, Geng and Haynes [7] used an
innovative approach with neural networks with a relative error of
few percents. In this paper we improve this result, achieving a
better performance. More specifically, dealing with a particular
Stewart-like parallel platform, we take a general way to solve the
problem that can be extended to more general cases of multi-
input–multi-output systems. In particular, the specificity of our
system, featuring a joint in the center that is the prosthesis elbow,
leads us to search for a suitable method to solve the forward
kinematics problem. In fact, the system topology specificity lies in
the fact that two hydraulic linear actuators govern, by some
connecting rods, both the elbow motion (that is obtained by
imposing suitable identical elongations to the pistons) and the
wrist motion (that is obtained by imposing opposite motions to
the pistons). Thus, the system features a complexity due to the
simultaneous motion of elbow and wrist. Hence, we adopted a
parallel mechanical structure that leads to equally partitioning the
actuator effort between the two pistons, which operate concur-
rently. Such an energetic optimization, obtained by means of the
Stewart platform, leads to a complex kinematics of the component.
Using a modified platform also led to a simple determination of
the component inverse kinematics, thus leading to a straightfor-
ward neural networks training. In fact, a neural approach was also
proposed by Dehghani et al. [3] using a three layers network,
while we employ a single layer one, with optimal performance and
without unnecessary complications.

Summing up, the proposed solution leads to several advan-
tages, namely:

1. the use of identical actuators working in parallel and not in
series (which would lead to different actuators because of the
different ranges of the kinematics variables);

2. a prosthesis behavior that is similar to that of the human limbs
thanks to the double effect pistons, which can be assimilated to
the bicep-quadricep group;

3. a suitable system robustness in the employment of oleo dynamics
pistons (thus theoretically immovable after being elongated);

4. a limited computational complexity thanks to the artificial
neural network use;

5. a more rapid response in simulation with respect to a numer-
ical algorithm for determining the inverse kinematics, at the
cost of a longer network training phase, which may however be
carried out offline, disregarding time constraints; and

6. the ability to reconfigure the system according to the changes
in its structure with a low computational effort (namely, by
simply re-training the neural network on a new example set).

The remainder of the paper is organized as follows. Section 2
positions the paper in the related literature, discussing its con-
tribution. In addition, Section 3 describes in detail the innovative
elbow prosthetic device. Hence, the subsequent section describes
the model of such a device and Section 4 addresses the solution of
the forward kinematics problem by artificial neural networks. In
addition, Section 4 develops a closed loop controller of the device.
The paper ends with a concluding section and an up to date
reference list.

2. The elbow prosthetic device

The architecture of the hydraulic prosthesis developed by the
research group of Polytechnic of Bari is schematized in Fig. 1.
The prosthesis concept is based on the replica of human articula-
tions: the mechanism implements a cable transmission in order to
mimic human body tendons and is based on a parallel mechanism,
with the aim of maintaining coupled movements of flexion/
extension and pronation/supination, so as to optimize the actua-
tors' power consumption. In Fig. 1 a 3D kinematics scheme of the
mechanism is shown: the upper and lower hinges allow respec-
tively the flexion/extension and the pronation/supination move-
ments. The two wished forearm Degrees Of Freedom (DOFs) are
directly actuated by the coordinated motion of two hydraulic
double effect cylinders. One more (rear) cylinder is equipped, as
shown in Fig. 1, with a collaborative function during flexion
movements. In this paper the device is considered actuated just
by the two principal cylinders. A tendon-based transmission is set,
to transmit the motion to the platform, to give stiffness to the
mechanism in all directions during motion, and to take advantage
of the third cylinder, as described in [6] in more detail.

The device is based on a parallel mechanism, in which the
motion along the required DOF is obtained acting on the lengths of
the links L1 and L2, that connect points B1–P1 and B2–P2 (see Fig. 2).

Fig. 1. 3D Scheme of the elbow prosthesis developed by the research group of
Polytechnic of Bari (front and rear view).
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These points B1/2 are connected to the fixed base that is the
terminal part of the humerus of the arm, whereas points P1/2 are a
part of the floating platform that is connected to the forearm. The
orientation of the floating platform toward the fixed frame is ruled
by the 3�3 rotation matrix:

Rφ;θ ¼
cos ½θ� � sin ½θ� 0

sin ½θ� cos ½ϕ� cos ½θ� cos ½ϕ� � sin ½ϕ�
sin ½θ� sin ½ϕ� cos ½θ� sin ½ϕ� cos ½ϕ�

2
64

3
75 ð1Þ

where the range of motion of the two DOFs is θA[�701,701],
corresponding to the pronation/supination, and φA[01,901], for
the flexion/extension.

The inverse kinematics of the device is described by the
relations

l1 ¼ f 1ðφ; θÞ; l2 ¼ f 2ðφ; θÞ ð2Þ
and may be analytically obtained by the matrix equation:

Links¼ Rφ;θPlat�Base: ð3Þ
In Eq. (3) the 3�2 matrix Links represents the components of

l1 and l2, i.e., the cylinders rods elongations variables that rule the
motion of the floating platform along the two DOFs. Moreover, the
3�2 Plat and Base matrices respectively represent the coordi-
nates of the mobile platform and of the fixed upper base. So, the
nonlinear equations coming out from Eq. (3) represent the rela-
tions between the anterior cylinders rods elongations and the two
forearm rotations are plotted in Fig. 3a and b. As already stated, it
is not possible to analytically determine the forward kinematic
problem, which consists in the inversion of the relations (2) in
order to get the relations:

φ¼ f 3ðl1; l2Þ; θ¼ f 4ðl1; l2Þ: ð4Þ
The implemented neural network, subject of the present work,

is suited to overcome this indetermination, in order to simulate
the dynamics of the prosthetic device.

In order to design a controller able to handle the prosthesis, a
correct model of the device is essential. Moreover, such a model
must provide quick results in simulation in order to be useful to

appreciate in real time the dynamical behavior of the entire
system. Hence, the next section addresses the issue of modeling
the prosthesis described in this section.

3. The controlled elbow prosthetic device model

The controlled prosthetic device model is composed of three
fundamental blocks (see Fig. 4a): the references block, the control
system block, and the plant block. Feedback is used to compare the
output values of the two forearm rotations with the current input
values and use the resulting error to define the control action.

In particular, the reference block provides the target values θ*

and φ* that the closed loop system has to reach. In this block the
signal containing the current value of the angles in output of the
system is fed back. Since the actuation is provided by managing
the elongations of the hydraulic pistons, the control system block
in Fig. 4a performs a conversion of variables so as to produce in
output the error relative to the elongations, evaluated as the
difference between the reference signal and the feedback:

errorl1 ¼ l1� l1
n and errorl2 ¼ l2� l2

n ð5Þ
where l1 and l2 are the two elongations calculated from the value
of the angles taken out of the system while l1

n and l2
n represent

their reference values. This block produces as output the error
signals called errorl1 and errorl2 which constitute the inputs of the
control system block.

The control block includes two PID controllers, each associated
to an error signal, i.e., to a hydraulic piston. This block controls the
duty cycle of two electronic PWM (Pulse Width Modulation)

Fig. 2. The 3D kinematics scheme of the parallel mechanism of the actuated
hydraulic prosthesis.

Fig. 3. The nonlinear relations between the two front cylinders rods elongations
(left (a) and right (b)) and the forearm rotations of the hydraulic prosthetic device.
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valves controlling the oil flow rates of the two hydraulic pistons, so
as to govern their elongations. Hence, the input variables of the
plant of the physical model are the duty cycles f1 and f2 of two
PWM valves. The control system block in Fig. 4a is represented in
an extended form in Fig. 4b. So, to complete the mechanical
model, in addition to the relations relative to the inverse kine-
matics, it is necessary to introduce the equations relative to the oil
flow rate and its effect on the dynamic behavior through the
hydraulic cylinders. For what concerns the valves, the usual
relationship between flow rate and pressure losses is considered

Qn ¼ f Kv
ffiffiffiffiffiffiffi
Δp

p
ð6Þ

where Qn is the flow rate filling a cylinder, partialized by fA[0,1],
that corresponds here to the duty cycle of a PWM valve, and Kv

represents the flow coefficient of the valve. The same flow rate
moves the rod of a hydraulic cylinder, so it can be expressed also as

Qn ¼ Av ð7Þ
being A the rod surface on which the fluid is acting and v the
velocity of the rod.

Implementing a double PWM valve, one for each cylinder, the
duty cycle value may be positive or negative in our formulation,
depending on which chamber of the cylinder is being filled. With
this approach, we can directly link the rod velocity sign (so, the
direction of the movement) with the action on the valve. Hence,
the considered rod surface depends on the direction of the
movement, i.e., on the sign given to the variable associated to
duty cycle. As a consequence, in the controlled prosthesis model
the vector representing the stem velocities (v1,v2) is proportional
to the instantaneous maximum available volumetric flow rate
(Q1,Q2), suitably weighted by the duty cycle (f1,f2), by means of
the piston area (Ainf and Asup):

v1
v2

" #
¼ 1

A

f 1Q1

f 2Q2

" #
with A¼

Ainf f o0
Asup f 40

(
ð8Þ

Thanks to our formulation, which uses the same equation for
each cylinder regardless of the chamber that is currently being
filled, we can consider just one filling flow rate value for both
movement directions of each piston. The two available volumetric
flow rates may be expressed as a function of the pressure in the
cylinder chamber that is filled (supposed the one with the highest

pressure value) and the external pressure (pext) as follows:

Q1

Q2

" #
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pext� maxðpinf1;psup1Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pext� maxðpinf2;psup2Þ

p
" #

ð9Þ

It is noteworthy that the dynamic balance of the rods of the
two cylinders may be expressed as follows:

psup1 Asup�pinf1 Ainf �cv1þF1
psup2 Asup�pinf2 Ainf �cv2þF2

" #
¼ 0

0

� �
ð10Þ

where the two forces F1 and F2 are the resultant forces of the
system inertia and the applied load expressed as a function of the
two arm rotations and their velocity and acceleration.

The presented model is implemented in the MATLAB Simulink
environment. However, as previously discussed, the inversion of
the forward kinematics problem leads to complex and nonlinear
equations defining elongations (2). Hence, in the subsequent
section we show how to design an artificial neural network in
order to effectively and efficiently compute such an inversion,
while keeping a good precision in order to avoid errors propagat-
ing through the feedback loop that would worsen the control
action.

4. Solving the kinematics problem by neural networks

4.1. The ANN solution to the forward kinematics calculation

An Artificial Neural Network (ANN) is an information proces-
sing paradigm that is inspired by the way in which the biological
nervous system processes information: ANN have been exten-
sively used to model complex input/output relations for diverse
aims, such as classification, control, optimization, estimation,
in numerous applications fields, such as the medical, robotic,
manufacturing, transportation, financial sectors and many more
[1,2,9,11–16]. The key element of the ANN paradigm is the
structure of the information processing system, which is com-
posed of a large number of highly interconnected processing
elements (neurons) that cooperate to solve specific problems. All
connections among neurons are characterized by numerical values
(weights) that are updated during the training.

Fig. 4. A scheme of the controlled hydraulic prosthesis system (a) and of the control system block configuration with the errors and duty cycle signals (b).
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The computation performed by the ith neuron can be expressed
as a nonlinear function of the weighted sum of the neuron outputs
connected to the ith neuron.

The ANN is trained by a supervised learning process: in the
training phase the network processes all the input–output pairs
presented by the user, learning how to associate a particular input
to a specific output and trying to extend the acquired information
also to cases that do not belong to the training set spectrum.
Typically, the ANN input dataset is subject to preprocessing. One
such method is the normalization of variables so as to have a
uniform distribution, with data that are normalized in the [0–1]
range. Another type of preprocessing is the Gaussian distribution
with zero mean and unit variance. Both methodologies are
equivalent for the study presented in this paper.

In this paper ANN are used to invert the two non-linear
algebraic functions that represent the elongations of the two
pistons each as a function of the two forearm rotations by (2).
Using these two relations we obtain all the values of elongations l1
and l2 with respect to the angles θ and φ: as a result, the ANN is
used for solving the kinematics problem. Indeed, in the system
model the variation of the elongations of the pistons are contin-
uous, hence it is essential for the proper functioning of the
prosthesis model that the ANN features a good generalization
propriety, as well as the associative propriety. In other words, the
ANN purpose is to obtain the inverse relation, so as to have the
possibility of obtaining values of θ and φ from the network, by
entering as an input the values of the elongations of the pistons l1
and l2.

The ANN simulation block is integrated into the plant block as
shown in Fig. 5.

The first step for implementing the ANN is deciding which type
of network is suitable for solving the problem. Hence, the ANN
topology, layers number, neurons number in each layer, neurons
transfer function, and training algorithm have to be selected.

After testing different kinds of solutions, we picked a two-layer,
error back-propagation ANN. In particular, we chose error back-
propagation since it tends to provide good responses when
processing inputs that it has never processed before [9]. In fact,
a new input will lead to an output that is similar to the correct
input used in training similar to the one presented to the network.

Obviously, the network generalizes the solution, so we can train
it using a representative set of input and target pairs, still getting

good results without training the network with all possible input–
output pairs. We used a vector of inputs and outputs uniformly
distributed over the working range of the prosthesis, to have the
best generalization performance.

To design the network we use the MATLAB neural network
toolbox. The output layer contains 2 neurons, one for each DOF of
the prosthesis, and each neuron uses the purelin transfer function
of the neural network toolbox, because its output can be any value
in the range [�5, 69.98].

The hidden layer uses the tansig function of the neural network
toolbox, because after trying it in comparison with other functions,
it was shown that it achieves better performance.

For the training phase, we used an input data set of 12,831
elements, randomly divided into 3 subsets: the training set, contain-
ing 60% of the whole data-set, and the validation set and the test set,
each containing 20% of the whole data set in their turn.

The bias learning function is learngdm, and the performance
function is mse, the normalized mean squared error function
(where learngdm andmse refer to the used neural network toolbox).

We start testing two different topologies: the feed forward
back-propagation and the cascade forward back-propagation net-
work [9–11]. In the first topology (see Fig. 6) the first layer weights
the network input and each subsequent layer only weights the
output of the previous layer. On the contrary, in the cascade
forward topology (see Fig. 7) the first layer is the same as in the
feed forward back-propagation one, while each subsequent layer
weights both the network input and the output of all the previous
layers. This topology has been demonstrated to be faster than the
first type [9,15]. Both ANN topologies have the last layer as the
network output.

The ranges of the outputs θ and φ are respectively [�701, 701]
and [01,901]. Since the mechanical system has a low sensitivity, it
was possible to construct the input vectors in steps of 11 and
calculate the vector of the pistons elongations from the algebraic
relations. This vector is the input vector of the ANN while the
vector containing all possible combinations of the angles θ and φ is
the target vector. The size of these two vectors is two rows and
12,831 columns.

Together with the ANN topology, we test the effects of
preprocessing on the chosen topology and on the number of
neurons necessary in the hidden layer. In order to choose the best
topology and preprocessing combination, we consider 20 trainings

Fig. 5. A scheme of the controlled hydraulic prosthesis system with the ANN block integrated into the system plant.

Fig. 6. Feed forward back-propagation network.
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of the two types of ANN by considering three preprocessing
conditions in each case:

1. no preprocessing;
2. preprocessing such that the input vector is characterized by

zero average and unitary standard deviation (zscore); and
3. normalization in the [�1, 1] range of the input vector

(mapminmax).

Such data elaborations are correspondingly applied also to the
output vector (post-processing).

Table 1 shows the performance, measured in terms of mean
and variance of number of epochs and mean of the mean square
error (mse), of different 10 neurons ANN. The table shows that the
difference in preprocessing can be disregarded with respect to
precision (see the last row of the table, featuring similar values),
while it affects significantly the number of epochs necessary for
the training. Hence, while the ANN is robust from the precision
point of view, the considerable variation in the (high) number of
required epochs clearly indicates the necessity of preprocessing.

On the other hand, it is important to remark that the high value of
maximum number of epochs indicates that the number of neurons
in the hidden layer is too low.

Hence, Table 2 shows the ANN performance as in Table 1 but
with an enhanced number of neurons in the hidden layer, namely
30. The table shows on the one hand that the number of epochs is
reduced by an order of magnitude with comparable results in all
cases, showing the robustness of the approach. On the other hand,
the obtained precision (last row of the table) is also increased of an
order of magnitude on average with respect to the corresponding
results in Table 1.

As a consequence, we choose a cascade forward network with a
zscore preprocessing (second last column in Table 2) since this
combination provides good results both in terms of low number of
epochs necessary for the network training which indicates a good
convergence and a smallest mean square error (mse), thus leading
to a satisfactory compromise between performance and training
time. Indeed, it is preferred to maximize precision in this design
phase so as to be able to deal with uncertainty and the resulting
loss in performance typically arising in the real system construc-
tion phase. We also remark that a further increase in the number
of neurons does not correspond to a significant increase in
performance but rather to a tendency to the overfitting behavior,
which is a well known problem in ANN [9]. We do not report the
corresponding tests for the sake of brevity: in particular, as we
increase the epochs number, in such tests we observe a specializa-
tion of the ANN with respect to the training data, i.e., in the tests
the network outputs are optimal only when the corresponding
inputs are in the training set, otherwise outputs are affected by a
significant error.

Having chosen the ANN topology detailed in the second last
column of Table 2, we report in Table 3 the performance of the
chosen ANN, corresponding to 108 epochs and a mean squareFig. 7. Cascade forward back-propagation network.

Table 1
Performance of 20 tested ANN with 10 neurons in the hidden layer.

Type Feed forward Feed forward Cascade forward Cascade forward Feed forward

Output layer function purelin purelin purelin purelin purelin
Hidden layer function tansig tansig tansig tansig tansig
Neurons number 10 10 10 10 10
Preprocessing function zscore mapminmax mapminmax zscore –

Mean epochs number 638 703 601 761 908
Variance epochs 1.232eþ5 1.036eþ5 1.338eþ5 1.031eþ5 4.274eþ4
Mean mse error 1.428e�5 1.654e�5 1.282e�5 1.023e�5 1.53e�5

Table 2
Performance of 20 tested ANN with 30 neurons in the hidden layer.

Type Feed forward Feed forward Cascade forward Cascade forward Feed forward

Output layer function purelin purelin purelin purelin purelin
Hidden layer function tansig tansig tansig tansig tansig
Neurons number 30 30 30 30 30
Preprocessing function zscore mapminmax mapminmax zscore –

Mean epochs number 150 182 140 84 260
Variance epochs 3.859eþ3 1.303eþ4 1.622eþ4 1.501eþ3 6.262eþ3
Mean mse error 1.428e�6 1.306e�6 1.259e�6 1.288e�6 9.921e�7

Table 3
Parameters and performance of the selected neural network.

Type Training function Output layer
function

Hidden layer
function

Neurons
number

Epochs
number

Preprocessing
function

Mean square
error

Cascade
forward

Levenberg
Marquardt

purelin tansig 30 108 zscore 9.99e�7
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error performance equaling 9.99e�7. Figs. 8 and 9 respectively
report the mean square error variation with the number of epochs
and the ANN regression plot: the solid line represents the best fit
linear regression line between outputs and targets and the fact
that all data are practically aligned on this plot confirms the
extremely good fit of the training data.

4.2. The ANN test results

In this subsection we test the ANN effectiveness. In particular,
Fig. 10 compares the network outputs (indicated by θNN and φNN)
with the actual values of the two rotations obtained by using the
exact inverse kinematics formula: it is apparent that the error is
risible. Another important aspect is the ANN generalization
property. Fig. 11, shows the network results obtained considering
input values that were not used for training: the resulting
performance is satisfactory, since the correct values of outputs
are obtained. Moreover, we remark that, thanks to the recalled
satisfactory generalization propriety of the designed network,
even if we train the network with an input vector in steps equal
to 11, the error committed by the network is less than 11 (the
worst case equals 0.351). This can be shown comparing the ANN

results with those obtained solving the direct kinematics problem
by interpolation, i.e., using the so-called solve MATLAB function:
indeed, the average error obtained by the ANN equals 0.7% and is
much lower than the error obtained by such a function, equaling
9.4%, as shown in Tables 4 and 5.

4.3. Simulation results

After choosing the ANN, we design a classical PID controller in
order to govern in closed loop the arm motion, according to Fig. 4a.
Some simulation tests are carried out considering trapezoidal
references for both arm rotations θ* and φ*. This type of input
models simultaneously most of the possible motions of a human
arm, namely, pronosupination and flexion. Moreover, such an
input models simultaneously the arm and wrist movement and
therefore justifies the use of a parallel architecture rather than a
serial one. The controlled arm evolution is represented in Fig. 12: it
is characterized by a satisfactory performance and a minimum
error at the steady state. The figure represents the references θ*

and φ* with the θrif and φrif labels and the controlled rotations θ
and φ. It is apparent that the resulting errors are minimal.

Comparing the proposed approach with the recalled work [7]
we remark that we take a general way to solve the problem that

Fig. 8. Performance plot of the selected ANN: mean square error versus number of
epochs.

Fig. 9. Regression plot of the selected ANN target and outputs.

Fig. 10. Comparison of the ANN outputs with the exact inversion values.

Fig. 11. Generalization test of the ANN.
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can be extended to more general cases of multi-input–multi-
output systems. Moreover, we note that we obtain an average
error of about 0.7% with a Stewart-like parallel platform while in
[7] the authors declare an error lower than 1%. In our case, the
employed numerical algorithm is the solve function of Matlab with
the errors shown in Tables 4 and 5.

5. Conclusion

We present a novel approach for calculating the forward
kinematics of a hydraulic prosthesis based on Artificial Neural
Networks (ANN). The process is highly nonlinear and as such
difficult to model and control, hence using an ANN allows solving
the problem in real time with sufficient precision and limited
computational effort. The procedure is innovative since it allows
designers to test, by means of a robust trial and error procedure,

the system behavior. In addition, it allows achieving good perfor-
mance closed-form solutions. Moreover, even if the procedure
requires time for training, after that the ANN response requires a
short computation time. The proposed technique leads to straight-
forwardly design the control scheme in real time. Future research
will be devoted to generalizing the procedure to different mechan-
ical structures with two degrees of freedom, if the inverse
kinematics of the system is well known. Moreover, further
investigation will address limiting the required energy to move
the prosthesis by employing genetic algorithms. Finally, an inter-
esting field of future research is comparing the proposed PID
linear control approach with nonlinear alternatives, e.g., using
fuzzy control.
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