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We develop an economic production quantity (EPQ) model with random defective items
and failure in repair. The existence of only one machine results with limited production
capacity and shortages. The aim of this research is to derive the optimal cycle length, the
optimal production quantity and the optimal back ordered quantity for each product so
as to minimize the total expected cost (holding, shortage, production, setup, defective items
and repair costs). The convexity of the model is derived and the objective function is proved
convex. Two numerical examples illustrate the practical usage of the proposed method.
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1. Introduction

One of the critical factors in any production process is material. The management of material concerns the regulation of
the flow of materials to, within, and from the organization. The efficiency of the material flow can substantially influence
costs as well as revenue generation capabilities [1]. The management of material involves a balance between the shortages
and excesses of stock in an uncertain environment. With the globalization of business in recent years, firms are sourcing and
distributing raw materials, components, and finished goods across the globe. Customers want to receive their quality prod-
ucts quickly. As a result, efficient inventory management, production planning and scheduling to achieve flexibility and
quick response has become a core competitive advantage. To achieve operation strategies goals, the company must be able
to effectively utilize resources and minimize costs. In manufacturing companies, when items are internally produced instead
of being obtained from an outside supplier, the economic production quantity (EPQ) model is often employed to determine
the optimal production lot size that minimizes the overall production/inventory costs. The classic EPQ model assumes that
during a production run a manufacturing facility functions perfectly. However, due to process deterioration or some other
factors, imperfect quality items are inevitable. Some examples of the rework processes are: printed circuit board assembly
in the PCBA manufacturing, metal components, and plastic injection molding. A considerable amount of research has been
carried out by Cheng [2], Chiu et al. [3], Chung [4], Lee and Rosenblatt [5], and Rosenblatt and Lee [6] to address the imperfect
quality EPQ problem. They assumed that at some random time, the process might shift from an in-control to an out-of-
control state. Hayek and Salameh [7] derived an optimal operating policy for finite production (EPQ) model with rework
and imperfect quality items. They assumed that all defective items were repairable and that backorders were allowed.
Numerous studies have been carried out to address the problems of imperfect quality EPQ model with rework (see, for
. All rights reserved.
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example, [7–12]). Chan et al. [13] presented a new EPQ model with increasing lower pricing, rework and reject situations.
Teng et al. [14] studied optimal ordering decisions with returns and excess inventory. Islam and Roy [15] formulated an
EPQ model considering flexible and reliable production process and with fuzzy demand-dependent-unit production cost.
Bayindir et al. [16] considered the EPQ model with general inventory cost rate function and piecewise linear concave pro-
duction costs, and proposed an effective solution procedure for deriving the economic order quantity. Hou [17] studied
an EPQ model with setup cost and process quality as a function of capital expenditure and developed an efficient procedure
to derive the optimal production run time, setup cost, and process quality. Chiu et al. [10] investigated an EPQ model with
scrap, rework, and stochastic machine breakdowns to determine the optimal run time and production quantity. Chiu [18]
later showed that the same problem can be derived without derivatives. Li et al. [19] developed an EPQ-based model with
planned backorders to evaluate the impact of the postponement strategy on a manufacturer in a supply chain. Pentico et al.
[20] extended the EPQ model with partial back ordering where the decision variables were production quantity and period
length. Teng and Chung [21] considered the EPQ model under two levels of trade credit policy to optimize the production
quantity and period length. Chiu et al. [22] considered the effects of random defective rate and imperfect rework process
on economic production quantity model. Wee et al. [23] developed an inventory model for items with imperfect quality
and shortage backordering. Taleizadeh et al. [24] developed an EPQ model under limited production capacity and scraped
items production. Taleizadeh et al. [25] developed an EPQ model with stochastic scraped production rate, partial back order-
ing and service level constraint. From our literature search, none of the above has so far developed an economic production
quantity (EPQ) model with random defective items and failure in repair with capacity constraint. In the case of multi prod-
uct-single machine systems, Haji et al. [26] studied an imperfect manufacturing process with rework where several products
are manufactured on a unique machine. Recently, Widyadana and Wee [27] studied the optimal deteriorating items produc-
tion inventory models with random machine breakdown and stochastic repair time.

2. Modeling and formulation

The imperfect quality EPQ model by Chiu et al. [14] considered a manufacturing process with a constant production rate P
larger than the demand rate D. This process randomly generates x percent of defective items at a rate k. All items produced are
screened and the inspection cost per item is included in the unit production cost CP. All defective items produced can be re-
worked at a rate of P1, and rework starts when the regular production process ends. A random portion h of the reworked items
is assumed to be scrap. Let k denote production rate of defective items during regular manufacturing process, and k can be ex-
pressed as the product of production rate P and the defective percentage x. Therefore, k ¼ Px. Let k1 denote production rate of
scrap items during rework, and k1 can be expressed as the product of reworking rate times the percentage of scrap items pro-
duced during rework process. Hence, k1 ¼ P1h. A real constant production capacity limitation on a single machine on which all
products are produced and that the setup cost is considered nonzero. Since all products are manufactured on a single machine
with a limited capacity, the cycle length for all of them are equal (T1 ¼ T2 ¼ � � � ¼ Tn ¼ T). From Table 1, the main differences
between this research and others are as follows: Firstly, our model investigates multi-product single-machine. Secondly, we
consider capacity limitation. Moreover, during the regular production time, defective items may be produced randomly. The
random fraction of defective items is reworked during the rework process and complete backordering is allowed.

Since the problem at hand is of multiproduct with products i = 1,2, ... ,n, the following notations are used in this research:

Qi: production lot size of ith product for each cycle;
Bi: allowable backorder level of ith product, in units for each cycle;
Ai: setup cost for each production run of ith product;
CR

i : repair cost for each imperfect quality item reworked of ith product, $/item;
CS

i : disposal cost per scrap item produced of ith product during the rework process, $/scrap item;
Ch

i : holding cost of ith product per item per unit time, $/item/unit time;
Ch1

i : holding cost for each imperfect quality items of ith product being reworked per unit time;
CB

i : shortage cost of ith product per item per unit time, $/item/unit time;
Ii: maximum level of on-hand inventory of ith product when regular production process stops;
IMax
i : maximum level of on-hand inventory of ith product in units, when the reworking ends;

Si: setup time of machine to produce the ith product;
N: number of cycles per year;
TC(Q,B): total inventory costs per year;
E(.): denotes the expected value.

2.1. Formulation

Initially the problem is modeled as a single product case and then it is modified as a multi product case. The basic
assumption of EPQ model with imperfect quality items produced is that Pi must always be greater than or equal to the
sum of demand rate Di and the production rate of defective items is ki. One has:
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Pi
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Pi
P 0: ð1Þ
The production cycle length (see Fig. 1) is the summation of the production uptime, the reworking time, the production
downtime, and the shortage permitted time:
T ¼
X5

j¼1

tj
i; ð2Þ
where the production uptime is t1
i and t5

i ; reworking time is t2
i , production downtime is t3

i and t4
i . Also t4

i is the time shortage
permitted, t5

i is the time needed to satisfy all the backorders by the next production.
To model the problem, a part of the modeling procedure is adopted from Hayek and Salameh [7]. Since all products are

manufactured on a single machine with a limited capacity, the cycle length for all of them are equal ðT1 ¼ T2 ¼ � � � ¼ Tn ¼ TÞ
[24,25,32]. Then, based on Fig. 1, for i ¼ 1;2; . . . ;n, we have:
t1
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; ð3Þ
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Fig. 1. On hand inventory of perfect quality items.
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Ii ¼ ðPi � ki � DiÞ
Q i

Pi
� Bi; ð8Þ

IMax
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i � DiÞt2

i ¼ Q i 1� Di
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i ki
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i Pi

� kiDi
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During rework process, the production rate of scrap items can be written as in Eqs. (10) and (11):
k1
i ¼ P1

i E½hi�; where 0 6 hi 6 1; ð10Þ

k1
i t2

i ¼ ðP
1
i E½hi�Þ

kiQ i

P1
i Pi

 !
¼ E½hi�

PiE½Xi�Q i

Pi
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¼ E½hi�E½Xi�Q i: ð11Þ
Hence, the cycle length for a single product state is:
T ¼ Q iE½1� hiXi�
Di

; where 0 6 hi 6 1 ð12Þ
or
Qi ¼
DiT

E½1� hiXi�
; where 0 6 hi 6 1: ð13Þ
During the imperfect rework process, the random defective rate has a range of [0,1], and the scrap rate has a range of
½0;Q iE½hi�E½xi��. The total inventory cost per year TCðQ ;BÞ is:
CðQ ;BÞ ¼ NCP
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The joint production policy (Multi-Product Single-Machine) from Eq. (14) becomes:
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2.2. The constraint

Since t1
i þ t2

i þ t5
i are the production and rework times and Si is the setup time for ith product, the summation of the total

production, rework and setup time (for all products) will be
Pn

i¼1ðt1
i þ t2

i þ t5
i Þ þ

Pn
i¼1Si, and it should be smaller or equal to

the period length (T). So the constraint of the model is:
Xn
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Then, based on the Eqs. (3)–(5) and (8), we have:
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2.3. Final model

From Eqs. (3)–(9) and Eq. (13), TCðQ ;BÞ in Eq. (14) and constraint in Eq. (16), one can formulate the problem as:
Min : TCðQ ;BÞ ¼
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where,
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3. Solution method

In order to derive the optimal solution of the final model, a proof of the convexity of the objective function is provided. A
classical optimization technique using partial derivatives is performed to derive the optimal solutions [24,25].

Theorem 1. The objective function TCðQ ;BÞ in (18) is convex.
Proof. To proof the convexity of TCðQ ;BÞ ¼ Z, the following Hessian matrix is developed:
½T;1;B2; . . . ;Bn� �
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T
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..

.
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¼ 2
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T
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From Appendix 1, the objective function for all nonzero TandBj is shown to be strictly convex. T and Bj are solved by letting
the partial derivatives equal to zero [24,25]. One has:
Table 2
Genera

P

1
2
3
4
5

Table 3
Specific

Item

1
2
3
4
5

@Z
@T
¼ 0! T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1AiPn

i¼1C3
i �

Pn
i¼1
ðC2

i Þ
2

4C1
i

vuuut ; ð25Þ
@Z
@Bi
¼ 0! Bi ¼

C2
i

2C1
i

T: ð26Þ
Then

Qi ¼

Di

E½1� hiXi�
T: ð27Þ
The constraint below must be satisfied, otherwise the minimum value of T will be considered as the optimal point.P

TMin ¼

n
i¼1Si

1�
Pn

i¼1
DiðP1

i þkiÞ
PiP

1
i E½1�hiXi �

� � : ð28Þ
To ensure feasibility, the following solution procedure must be performed. h
4. Solution procedure

Step 1: Check for feasibility.

If
Pn

i¼1
DiðP1

i þkiÞ
PiP

1
i E½1�hiXi �

< 1, go to step 2, else the problem will be infeasible.

Step 2: Calculate T by Eq. (25).
Step 3: Calculate TMin by Eq. (28).
Step 4: If T P TMin then T� ¼ T else T� ¼ TMin.
Step 5: Calculate B�i by Eq. (26).
Step 6: Calculate Q �i by Eq. (27).
Step 7: Terminate procedure.
5. Numerical example

Consider a multi-product inventory control problem with five products where the general and specific data are given in
Tables 2–4, respectively. We consider two numerical examples with uniform and normal probability distributions for Xi and
hi. Tables 5 and 6 show the optimal results for the two numerical examples.
l data for the examples.

Di Pi P1
i

Si Ai CP
i Ch

i Ch1
i CS

i CB
i CR

i

300 3000 2000 0.003 500 15 5 2 3 10 1
400 3500 2500 0.004 450 12 4 2 3 8 2
500 4000 3000 0.005 400 10 3 2 3 6 3
600 4500 3500 0.006 350 8 2 2 3 4 4
700 5000 4000 0.007 300 6 1 2 3 2 5

data for example 1.

s Xi � U½ai; bi� hi � U½ai; bi�

ai bi E[Xi] ki ¼ PiE½Xi� ai bi E[hi] k1
i ¼ P1

i E½hi�

0 0.05 0.025 75 0 0.15 0.075 150
0 0.1 0.05 175 0 0.2 0.1 250
0 0.15 0.075 300 0 0.25 0.125 375
0 0.2 0.1 450 0 0.3 0.15 525
0 0.25 0.125 625 0 0.35 0.175 700



Table 6
The best results for example 2 (normal distribution).

Items Normal

TMin T T⁄ Bi Qi Z

1 1.0822 0.9060 1.0822 91.85 8 327.11 34,656
2 119.92 440.81
3 147.36 558.69
4 174.02 682.05
5 199.78 812.37

Table 4
Specific data for example 2.

Items Xi � N½li;r2
i � hi � N½li;r2

i �

li = E[Xi] r2
i

ki ¼ PiE½Xi� li = E[hi] r2
i k1

i ¼ P1
i E½hi�

1 0.1 0.01 150 0.15 0.01 300
2 0.15 0.02 350 0.18 0.02 450
3 0.2 0.03 600 0.21 0.03 630
4 0.25 0.04 900 0.24 0.04 840
5 0.3 0.05 1250 0.27 0.05 1080

Table 5
The best results for example 1 (uniform distribution).

Items Uniform

TMin T T⁄ Bi Qi Z

1 0.7909 0.9183 0.9183 77.72 276 32,129
2 101.31 369.16
3 124.49 463.49
4 147.34 559.36
5 169.91 657.17

Table 7
Effects of parameter changes for the uniform distribution case.

% Changes in parameters and their values % Changes in

TMin T T⁄ Z

Pi +50 �39.52 +0.69 +0.69 +0.79
+20 �24.63 +0.31 +0.31 +0.39
�20 +96.14 �0.32 +68.93 +8.16
�50 Infeasible – – –

Ai +50 0 +22.47 +22.47 +5.38
+20 0 +9.54 +9.54 +2.29
�20 0 �10.56 �10.56 �2.53
�50 0 �29.29 �13.87 �5.22

E[hi] +50 1.32 �0.04 �0.04 +0.62
+20 +0.52 �0.02 �0.02 +0.25
�20 �0.51 +0.01 +0.01 �0.25
�50 �1.26 +0.03 +0.03 �0.62

E[Xi] +50 +13.03 �0.60 �0.60 +1.96
+20 +4.8 �0.24 �0.24 +0.78
�20 �4.36 +0.23 +0.23 �0.78
�50 �10.20 +0.57 +0.57 �1.94

Sj +50 +50 0 +29.19 +3.48
+20 +20 0 +3.35 +0.36
�20 �20 0 0 0
�50 �50 0 0 0
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Table 8
Effects of parameter changes for the normal distribution case.

% Changes in parameters and their values % Changes in

TMin T T⁄ Z

Pi +50 �47.87 +0.61 �15.77 �1.27
+20 �31.47 +0.26 �16.06 �1.69
�20 +221.22 �0.24 +221.22 +36.76
�50 Infeasible – – –

Ai +50 0 +22.47 +2.53 +2.96
+20 0 +9.54 0 +1.07
�20 0 �10.56 0 �1.07
�50 0 �29.29 0 �2.66

E[hi] +50 +57.24 �1.48 +57.24 +14.25
+20 +16.74 �0.57 +16.74 +4.43
�20 �12.33 +0.54 �12.33 �3.50
�50 �25.73 +1.31 �15.19 �6.58

E[Xi] +50 +7.52 �0.16 +7.52 +3.23
+20 +2.83 �0.06 +2.83 +1.25
�20 �2.62 +0.06 �2.62 �1.19
�50 �6.21 +0.14 �6.21 �2.88

Sj +50 +50 0 +50 +7.85
+20 +20 0 +20 +2.96
�20 �20 0 �16.28 �2.1
�50 �50 0 �16.28 �2.1
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6. Sensitivity analysis

To study the effects of parameter changes on the optimal result derived by the proposed method, this investigation per-
forms a sensitivity analysis by increasing or decreasing the parameters, one at a time, by 20% and 50%. Section 4 gives two
numerical examples, and section 5 gives the sensitivity analyses. Tables 7 and 8 show the results of the sensitivity analysis
for uniform and normal distribution cases, respectively.

The following conclusions can be drawn from Table 7:

� T and Z are slightly sensitive to the changes in the values of parameter Pi. Tmin and T� are highly sensitive to the changes in
the values of parameter Pi. By increasing Pi by 50%, the problem becomes infeasible.
� Tmin and Z are insensitive and slightly sensitive to the changes of parameter Ai respectively. T and T� are moderately sen-

sitive to the changes of parameter Ai.
� T; Tmin; T

�and Z are very lightly sensitive to the changes of parameter E½hi�.
� T and T� are very lightly sensitive to the changes of parameter E½Xi�. Tmin and Z are moderately and slightly sensitive to the

changes of parameter E[Xi] respectively.
� Tmin and T are highly sensitive and insensitive to the changes of parameter Si respectively. T� and Z are highly and slightly

sensitive in the increasing changes of parameter Si respectively, and both of them are insensitive to the decreasing
changes of parameter Si .

The following conclusions can be drawn from Table 8:

� TMin, T⁄ and Z are highly sensitive to the changes of parameter Pi and T is very lightly sensitive to the changes of parameter
Pi. By increasing Pi by 50%, the problem becomes infeasible.
� Tmin and Z are insensitive and slightly sensitive to the changes of parameter Ai respectively. T and T� are highly and

slightly sensitive to the changes of parameter Ai.
� Tmin and T⁄ are highly sensitive, T is slightly sensitive and Z is moderately sensitive to the changes of parameter E½hi�.
� T and T⁄ are very slightly sensitive to the changes of parameter E[Xi]. Tmin and Z are moderately and slightly sensitive to

the changes of parameter E[Xi] respectively.
� Tmin and T⁄ are highly sensitive, T is insensitive and Z is slightly sensitive to the changes of parameter Si.

7. Conclusion

This study develops an EPQ model with production capacity limitation and random defective production rate and failure
during repair. Our objective is to determine the optimal period lengths, backordered quantities, and order quantities. The
objective function of the proposed numerical model is proved to be convex. Two numerical examples and sensitivity analysis
using uniform and normal distribution functions for Xj and hi are used to illustrate the practical applications of the proposed
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methodology. The study provides managerial insights for practitioners in designing an EPQ model with random defective
items and failure in repair. Future research should focus on multi-product multi-constraint problems in an uncertain
environment.
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