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Abstract The generalized shallow water wave equation is an important mathematical model that is

used to elaborate ocean engineering, weather simulations, tsunami prediction and tidal currents. In

this work, the generalized (3 + 1)-dimensional fractal-fractional shallow water wave equation

(FFSWWE) is investigated where fractal-fractional derivative is taken in the conformable derivative

sense. Some new fractal soliton solutions of FFSWWE are successfully derived by the fractal-

fractional variational wave method (FFVWM), which is a new mathematical technology. This

new method has the advantages of being simple, efficient, and direct. The 3D graphics that describe

these new fractal soliton solutions that were obtained are tremendously important for improving

our understanding of physical oceanography.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
MSC: 26A33;
34A08
1. Introduction

Fractal is a very common phenomenon in the real worlds [1].
Since the birth of human beings, people have begun to use
fractal structures in their daily life. More than 2,000 years

ago, during the Spring and Autumn Period and the Warring
States Period, the Chinese people built the ”Yun Wen Tong
Jin” which was used by nobles to furnish wine vessels at cere-
monies or feasts. The Yun Wen Tong Jin is a structure of

ancient fractal geometry. In recent decades, fractal theory
has been applied to modern technology and engineering tech-
niques, such as ocean engineering, space science, material
science, biological engineering and so on [2–4].

In this paper, we mainly investigate the generalized (3 + 1)-
dimensional fractal-fractional shallow water wave equation
(FFSWWE) as follows
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where d is called fractal dimension, @/=@xd; @/=@yd and

@/=@td are conformable operators (CO) [5–7]. Eq. (1.1) is an

important physical equation in ocean science that is used to
describe ocean currents, tsunami motions with irregular
boundaries or in fractal media. Therefore, it is very meaningful
and necessary for us to study of the fractal soliton solutions of
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Eq. (1.1). These obtained new fractal solition solutions are

very helpful to study the physical oceanography.

1.1. Literature

When d ¼ 1, Eq. (1.1) is the classical (3 + 1)-dimensional shal-
low water wave equation (CSWWE) is presented as follows
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where a; b; c are constants. In [8], Kumar et al. studied the ana-
lytical soliton solution of Eq. (1.2) by using exponential
rational function method (ERFM) with parameters

a ¼ 3; b ¼ �3; c ¼ 1. In [9], Abdul-Majid Wazwaz gained the
different types of soliton solutions of the CSWWE via three
distinct methods, such as tanh-coth method (TCM), Exp-

function method (EFM) and Hirota bilinear method (HBM).
In [10], D.Kumar and S.Kumar obtained the periodic solitary
wave solutions of the CSWWE by using the Lie symmetry

technology (LST). In [11], Zhang et al. obtained the lump solu-
tions and rational solutions of the CSWWE by employing the
bilinear operator method (BOM) with different constants. In
addition, the approximate analytical solution of CSWWE

can also be obtained by using other powerful analytical tech-
nologies [12–15].

1.2. Main contributions

Fractional derivatives have many different types of definitions,
among which the most popular are Riemann–Liouville frac-

tional derivative [16–18], Caputo fractional derivative [19–
24], Yang-Abdel-Aty-Cattani fractional derivative [25], Yang’s
local fractional derivative [26–28], Atangana-Baleanu frac-

tional derivative [29,30], fractal derivative [31], Atangana-
Baleanu-Riemann derivative [32], He’s fractal derivative [33],
Hilfer derivative [34–36] and so on [37–41]. However, the con-
formable fractional derivative is one of the most important

definitions. In this work, the generalized (3 + 1)-dimensional
fractal-fractional shallow water wave equation (FFSWWE) is
described by the conformable operator [42] for the first time.

The FFSWWE is studied by fractal variational perspective,
and a new and efficient mathematical scheme is established
to gain its different types of fractal soliton solutions, which

is called fractal-fractional variational wave method
(FFVWM). The advantage of this new method is that it is sim-
ple, easy to operate, takes only three steps, and then gets good

results. The main structure of the article is summarized as fol-
lows: The definition and properties of conformable fractional
derivative are introduced in Section 2; In Section 3, The
fractal-fractional variational wave method (FFVWM) is

described; In Section 4, we gain the fractal soliton solutions
of FFSWWE by employing the FFVWM; These properties
of fractal soliton solutions are discussed in Section 5; Conclu-

sion is given in Section 6.

2. Conformable fractional derivative

In this section, we review some concepts on the conformable
operator.
Definition 2.1. Suppose a function / : 0;1½ Þ ! R. The con-

formable fractional derivative of / of order d is given as [43]
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for all g > 0, fractal dimension d 2 0; 1ð Þ.

Theorem 2.1. Let d 2 0; 1ð � and M;N be d-differentiable at a

point xd > 0. We have the following relations
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Theorem 2.2. Suppose 0 < d < 1 and n 2 1; 2; 3; . . .f g then we
have
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3. Novel methodology

Consider the following (3 + 1)-dimensional fractal-fractional
wave equation as follows
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where @/=@xd; @/=@yd; @/=@zd and @/=@td are conformable
fractional derivatives. Step.1. The fractal-fractional wave
transformation (FFWT) is given as
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Apply the chain rule of conformable operator, and get
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Integral Eq. (3.4) once, we gain

! dhgh
@U
@xd

; dded
@U
@xd

; ddgd
@U
@xd

; d2ded
@U
@x2d

; d3ded
@U
@x3d

� �
¼ 0:

ð3:5Þ
Step.2. We assume

F ¼ @/
@xd

: ð3:6Þ

In the view of Eq. (3.5)and Eq. (3.6), we get following form
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! dhgh; dded; ddgd
� �
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The fractal variational principle (FVP) of Eq. (3.7) is con-
structed as

H xð Þ ¼
Z 1d

0d
Kdxd; ð3:8Þ

where K is a fractal trail function. Suppose the fractal soliton
solutions of Eq. (3.7) are the following forms
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. . . . . . ;

where Ad and Bd are fractal constants on fractal space. Substi-
tuting above equations into Eq. (3.8), have

@H

@Ad ¼ 0 ð3:13Þ

and

@H

@Bd ¼ 0: ð3:14Þ

In view of Eq. (3.13) and Eq. (3.14), Ah and Bh are successfully
constructed. Step.3. Thus, the fractal soliton solution of Eq.

(3.1) is obtained as

/ ¼
Z
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� �

dxd: ð3:15Þ
4. Fractal soliton solutions of FFSWWE

The generalized (3 + 1)-dimensional fractal-fractional shallow
water wave equation (FFSWWE) is given as
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Use the FFWT as follows
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and
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Eq. (4.1) is written into its partner by using Eq. (4.2) and Eq.
(4.3) as
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Eq. (4.4) can be changed into the following form by integration
d3ded
@U
@x3d

þ bdd2ded � add2ded

2

@U
@xd

� �2

þ cdedgd � ddfd
� � @U

@xd
¼ 0:

ð4:5Þ

We assume
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Thus, Eq. (4.5) is further simplified into the following form
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The FVP of Eq. (4.7) is successfully gained as
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Type.I. Let
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Combining Eq. (4.8) and Eq. (4.9), we have the following
relationship
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By Eq. (4.11), the parameter Ad is easily found as
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Hence, the first type of fractal soliton solution of Eq. (4.1) is
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When d ! 1, we have
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Type.II. Suppose the second type of fractal soliton solution
of Eq. (4.1) is the below form
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When d ! 1, get
Fig. 1 3D graph of Eq. (4.14) with fract
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5. Results and discussion

The fractal soliton solutions of generalized (3 + 1)-

dimensional fractal-fractional shallow water wave equation
(FFSWWE) are obtained by the fractal-fractional variational
method (FFVM). These characteristics of obtained fractal soli-

ton solutions are illustrated in the following 3D graphs. In
Fig. 1, the corresponding 3D graph of Eq. (4.14) with param-

eters ah ¼ 1; bh ¼ 2; ch ¼ 2; dh ¼ 1; eh ¼ 2; fh ¼ 1; gh ¼ 1 for

different fractal dimensional d ¼ ln2=ln3 and d ¼ 0:8 at

yd ¼ 0; zd ¼ 0.

Remark 5.1. By observing figure.1, we conclude that when we
determine the values of fractal parameters, the shape of the
fractal solitary wave depends on the fractal dimension d.
Therefore, we can control the shape of solitary waves by
changing the fractal dimension.

In Fig. 2, we plot the fractal soliton at td ¼ 0:1 and td ¼ 0:3

with ad ¼ 2; bd ¼ 3; cd ¼ 4; dd ¼ 2; ed ¼ 3; fd ¼ 5; gd ¼ 1; d ¼
0:9.

Remark 5.2. By observing Fig. 2, we can find the motion law

of the fractal solitary wave. The fractal solitary wave propa-
gates along the negative direction of the x-axis with time
variation. It is very useful for studying the dynamics of fractal
solitary waves.

In Fig. 3, the corresponding 3D graph of Eq. (4.21) with

different parameters ah ¼ 2; bh ¼ 1; ch ¼ 3; dh ¼ 2; eh ¼ 1;

fh ¼ 4; gh ¼ 1 and ah ¼ 3; bh ¼ 2; ch ¼ 1; dh ¼ 3; eh ¼ 2; fh ¼ 5;

gh ¼ 1 for fractal dimensional d ¼ ln2=ln3.

In Fig. 4, we present the fractal soliton at td ¼ 1 and td ¼ 2

with ad ¼ 3; bd ¼ 2; cd ¼ 1; dd ¼ 3; ed ¼ 2; fd ¼ 5; gd ¼ 1;
d ¼ 0:8.
al dimension d ¼ ln2=ln3 and d ¼ 0:8.



Fig. 2 3D graph of Eq. (4.14) with fractal dimension d ¼ 0:9 at td ¼ 0:1 and td ¼ 0:3.

Fig. 3 3D graph of Eq. (4.21) with different parameters at fractal dimension d ¼ ln2=ln3.

Fig. 4 3D graph of Eq. (4.21) with fractal dimension d ¼ 0:8 at td ¼ 1 and td ¼ 2.
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In summary, the shape of the fractal soliton wave depends
on the fractal dimension, and the peak value is related to the
selected parameters. When the fractal dimension and parame-

ters are determined, the solitary wave propagates along the
negative x-axis with increasing time.

6. Conclusion

In this work, we suggested fractal-fractional variational wave
method to obtain the fractal soliton solutions of (3 + 1)-

dimensional fractal-fractional shallow water wave equation.
These obtained fractal solitary wave solutions are new types
and have not appeared in other literature. The FFVWM is

very simple, straightforward, and easy to implement. In addi-
tion, the characteristics of the fractal soliton solutions were
observed by some 3D and 2D graphs. These obtained results

are very helpful for ocean engineering, weather simulations
with special conditions. The forthcoming work will be directed
to the study the fractal soliton solutions of other types of frac-
tional evolution equations involving different types of frac-

tional derivatives.
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