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A B S T R A C T   

The asymmetric demands of metro lines in megacities can cause high passenger wait times and substantial 
underutilization of vehicle capacity. The problem is difficult to address because of passenger flow uncertainties 
and random delays. We propose a modular transit system (MTS) that allows a metro fleet to be dynamically 
dissembled and assembled in identical modules (or carriages) on metro terminals. A formal formulation of this 
issue is provided with a nonlinear programming (NLP) model that considers train power, greenhouse gas 
emissions, wind resistance, and operational economics. Then, a linearization of the NLP further facilitates its fast 
solution. By utilizing numerical experiments based on Shenzhen Metro data, we illustrate the mathematical 
model’s viability and confirm the model’s usefulness in terms of the economic, low-carbon, and ecological 
consequences. Then, the robustness of the proposed model and the sensitivity analysis with various parameter 
values are reported.   

1. Introduction 

In contrast to private transport, public transport (such as buses, 
trams, light trains, and metros) is a mode of transportation for passen
gers employing group travel systems accessible to the general public 
(Wu et al., 2021). Most public transportation services follow pre
determined routes with predetermined points of boarding and alighting. 
With set routes and predetermined timetables, they often charge a fixed 
cost for each trip (Guo et al., 2017). However, the asymmetric distri
bution of passenger demand across different periods is considered a 
tough and persistent transit operational problem in megacities, which 
causes either large passenger wait time costs or considerable vehicle 
capacity waste (Shi et al., 2020). Therefore, passenger flow uncertainty 
and random delays vie to make these problems harder to address (Wang 
et al., 2020). 

The conflict between spatially and temporally shifting passenger 
demand and fixed capacity to deliver transportation is a challenge that 
has persisted for a long time in metro transportation in megacities. These 
tough and persistent metro operational problems cause massive pas
senger wait time costs or considerable vehicle capacity waste (Pei et al., 
2021). As shown in Fig. 1, taking the Shenzhen Metro system as an 
example, the passenger arrival demand rates on a typical day of oper
ation for a metro transport system exhibit substantial temporal changes. 

Some MT operators suggest providing peak- and off-peak-based sched
ules to fit the asymmetric distribution of passenger demand across 
different periods. However, although this technique enhances MT sys
tem service quality to some level, there are still unresolved issues (Niu 
and Zhou, 2013). During peak hours, the passenger arrival rate is so high 
that passengers may be required to wait for many trains before boarding. 
During off-peak hours, the number of passengers on the subway is 
sometimes small. This means that there is a low load percentage and 
wasted energy for fixed-capacity carriages. (Chen et al., 2019). This 
research proposes an effective operational strategy to solve the identi
fied problems that concurrently optimize dispatch headways and car
riage capacities. The study is based on metro terminal data and can be 
easily extended to other urban public transit systems. 

NEXT Future Transport is attempting to revolutionize the method of 
transporting people and objects (Aleksandar et al., 2012; Ali-Eldin and 
Elmroth, 2021; Casadó et al., 2020; Qu et al., 2022; K. Zhu et al., 2022). 
This innovative smart transportation system is built on swarms of 
modular electric vehicles according to the modular vehicle concept 
advanced by the NEXT Future transport company (Next Future Trans
port, 2022). As seen in Fig. 2, each module may compose or decom
pose from other modules. Because of this adaptability, in-route transfers 
are possible, which improves the system capacity rate, reduces costs and 
traffic, and promotes passenger ubiquity while simultaneously 
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improving passenger comfort. 
Then, more new intelligent transit companies focused on these fields, 

as shown in Fig. 3. Ohmio, for example, is the modular transit system 
innovator from New Zealand, as shown in Fig. 2, which presented safe 
and effectively modular vehicles to eliminate human error, safely 
negotiating and avoiding obstacles. Ohmio vehicles have been designed 
and tested on many use-cases, including airports, hospitals, and schools 
in New Zealand, Australia, China, and South Korea. 

This study assumes that the carriages in the MT system can be 
quickly decomposed from one subway train and composed to another. 
This feature enables the dynamic modification of vehicle capacity while 
the system is in operation (Hannoun and Menéndez, 2022). In this 
technique, not only can the service quality be enhanced significantly, 
but the energy efficiency may also be raised. The waiting costs for 
passengers may be reduced by increasing the frequency of dispatches 
while decreasing the total number of vehicle units and increasing load 
percentages while maintaining suitable capacity can reduce wasteful 
energy use. 

In the beginning of studying this research topic, several studies 
attempted to solve asymmetric passenger demands and implemented 
combinations of efficiency, time cost savings, and congestion relief into 
flexible transit system design (Frei et al., 2017; Kim and Schonfeld, 
2014, 2015; Koffman, 2004; Li and Quadrifoglio, 2010; Nourbakhsh and 
Ouyang, 2012). This work either has a limited type of bus capacity (e.g., 
large bus and small bus) or flexible schedule (e.g., demand response 
transit system) (Errico et al., 2013; Kim and Schonfeld, 2015; Koffman, 
2004; Malucelli et al., 1999; Nourbakhsh and Ouyang, 2012; Qu et al., 
2022). 

In recent years, the rapid development of new developing modular 
transportation systems has inspired a growing number of studies, which 
has increased the overall number of research projects (Chen et al., 2020; 
Hannoun and Menéndez, 2022; Olovsson et al., 2022; Pei et al., 2021; 
Tian et al., 2022; Wu et al., 2021). In the context of public transit, 
modular transit is a highly automated development of flexible transit, 
where individual carriages are arranged according to demand. (Zhang 
et al., 2020). Guo et al., 2018 proposed an analytical model to calculate 
and compare the cost difference between flexible and fixed transit. This 
model also decides when combining two modular vehicles into one is 
more cost-effective. Furthermore, Chen et al., 2020, 2019 proposed both 
a continuous modeling method and a discrete model to solve joint design 
modular vehicle problems, and these works proved that it is possible for 
a modular public transportation system to be useful in shuttle systems in 
both heavily and less traveled areas. The modular transit system is 
further extended to a Y-shaped route with shared corridors in unsatu
rated traffic (Shi et al., 2020). Next, a bilevel optimization method is 

developed for minimizing passenger transfers during in-route transfers, 
and potential implementations and practices are discussed extensively. 
(Wu et al., 2021). In addition to passenger route assignment and fleet 
modularization, a transfer-based, individualized model for the bus 
network was designed (Gong et al., 2021). By optimizing passenger 
routes and improving transfer operations, this design helps tailor bus 
networks. Furthermore, an ideal operational strategy for vehicle for
mation at terminals over a multiperiod service time horizon is provided 
to offer insight into the design of transit services using modular cars 
(Tian et al., 2022). 

To date, various modular transit system models have been adopted to 
improve public transit systems, e.g., bus systems and metro systems, and 
these methods have achieved good results (Caros and Chow, 2021; Chen 
et al., 2020, 2019, 2018; Guo et al., 2018; Pei et al., 2021; Shi et al., 
2020; Zhang et al., 2020). However, two issues in existing studies need 
to be addressed. 

• First, few research studies have considered passenger flow uncer
tainty and its random delays in modular transit systems. Most pre
vious modular transit-related studies (Chen et al., 2019; Shi et al., 
2020; Shi and Li, 2021) considered a deterministic number of pas
sengers without random departure time delays.  

• Second, previous studies have focused more on the waiting time cost 
or system operating cost (Pei et al., 2021; Shi et al., 2020; Shi and Li, 
2021). However, the transit system’s timetable design and the 
modular vehicles’ scheduling also affect energy consumption, which 
has a more profound impact on the environment and economy. 
Established studies lack sufficient consideration of this aspect. 

Therefore, considering the limitations of existing research, this study 
aims to enrich the literature on modular transit systems and improve the 
effectiveness and applicability of programming methods, proposing an 
exact nonlinear integer programming method. The following is a 
condensed summary of the most important contributions and discov
eries of this study.  

• First, a modular transit system (MTS) that allows a metro fleet to be 
dynamically disassembled and assembled in identical modules (or 
carriages) on metro terminals is modeled as a nonlinear optimization 
model, which can be extended to public transportation systems in 
general. This nonlinear model is then reformed to become an exact 
equivalence linearized MILP model, which can be quickly and easily 
solved with a commercial solver. Then, a robust optimization is 
proposed to offer guaranteed performance and smooth operation in 
the presence of uncertainty. 

Fig. 1. Metro line passenger demand is asymmetrically distributed across different periods.  
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• Second, the passenger flow uncertainty and random delays are 
considered. Economical, low-carbon, and environmentally friendly 
effects are analyzed; more specifically, the train power energy, wind 
resistance, and operational economics are formulated. A sensitivity 
analysis is carried out to determine the primary elements that in
fluence the operational design. 

The rest of this work is organized as follows. The issue is broken 
down into its different parts in Section 2. Section 3 presents the problem 
formulation and the mathematical modeling using the linearization 
technique. In the fourth section of this paper, a case study of the 
Shenzhen Metro system and a discussion of the outcomes of the pro
posed model are presented. Section 5 discusses directions for future 
research. 

2. Problem formulation 

Table 1 provides a summary of the critical notation used throughout 
this study for the reader’s convenience. 

We consider a metro corridor with a total of I terminals in this study. 
Let set I : {1,2,⋯, i,⋯, I} represent the numbered terminals consecu
tively, in which I denotes the set of terminals and i is the terminal 
index. Then, the total research time horizons are divided into T slots, 
which have an equal length of δ. Let T : {1,2,⋯, t⋯,T} denote the 
discrete time points. For the duration of the operating horizon, passen
gers will continually arrive at each terminal. Passengers who arrive at 
terminal i at any given time slot [t′ − 1, t′ ] traveling to terminal j are pijt′ , 
∀i ∈ I ,j ∈ I +

i ,t′ ∈ T , which is a random variable that follows a Poisson 
distribution. At every stop, the size of each train may be reselected from 
a carriage set S : [1,2,⋯S], indexed as s ∈ S , in which S represents the 
upper bound of the number of carriages that may be attached to a metro 
train. To provide service to these customers, the minimum headway that 
the trains are dispatched with is defined as H. Furthermore, the 
maximum number of passengers that may fit in one carriage is c. 

In this study, we aim to determine how metro systems can operate 
most efficiently under investigation, considering factors, such as the 
amount of time needed for each dispatch and the total number of car
riages present at each terminal reducing the system’s overall cost. In line 
with prior research, this study investigates two aspects of cost for metro 
systems. We consider the total cost incurred in dispatching trains. The 
total cost comprises operating costs and passenger waiting time costs. 
The operating cost includes the depreciation cost of the system, the cost 
of energy consumption to overcome air resistance, and the cost of 
environmental pollution from CO2 emissions. Some of these operating 
costs are not related to the number of carriages carried on the train; for 
example, the cost of employing drivers does not increase with the 
number of carriages. Some are related to the number of carriages, e.g., 
the longer the train is, the greater the energy required to overcome 
aerodynamic drag. 

The average vehicle operation cost that is unrelated to the number of 

carriages is denoted by the symbol Cop, whereas the operating cost per 
unit distance that depends on the number of carriages is denoted by the 
symbol Cs. The average passenger waiting time cost is the other 
component of the overall cost that we take into consideration. This 
metric is often used to assess the service level provided by metro sys
tems. 

Without the loss of generality, we believe that the system studied is 
consistent with the following assumptions. 

Assumption 1. We assume that each terminal i ∈ I is not allowed to 
be oversaturated. As soon as passengers arrive at a terminal, they 
should board the first arrived train. 
Assumption 2. There is a constant time staying at terminals and a 
constant speed between terminals. 
Assumption 3. We assume that all terminals have enough carriages. 
Consequently, we do not set a limit on the system’s overall capacity. 
The ideal number of carriages may be found after solving the opti
mization model. 

3. Methodology 

3.1. Original formulation 

3.1.1. Constraints on train operation 
In contrast to the operations of conventional transit systems, the 

proposed metro system would allow carriage composition and decom
position at each terminal. To formulate this system-wide operational 
procedure, we first introduce the following decision variables:  

• xtis: binary variable, which equals 1 if the metro fleet with departure 
timed index t (departure time from the first terminal at time t) is 
dispatched from metro terminal i with s vehicles; otherwise, it equals 
0.  

• yt: binary variable, which equals 1 if a vehicle departs from the first 
metro terminal at time t; otherwise, it equals 0. 

The following are the operational limitations for the vehicle based on 
these two variables: 

Uniform carriage number constraint 
∑

s∈S

xtis = 1, i ∈ I , t ∈ T (1) 

Minimal headway constraint 

∑t′ +h

t=t′
yt ≤ 1, 1 ≤ t′ ≤ T − h (2) 

Constraint (1) ensures that the number of carriages is unique be
tween any two terminals, and Constraint (2) states that the minimum 
dispatch headway (i.e., h) cannot be less than the train-designed safety 
headway between two consecutive trains. Both of these constraints are 
in place to ensure that the metro system operates as safely as possible. 

Fig. 2. Concept of a modular vehicle.  
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3.1.2. Constraints on travel demands 
Passengers’ actions on the proposed metro system have been 

considered. The following set of decision variables are included to 
capture passenger behavior. 

uijt′ t: integer variable, the number of passengers arriving at metro 

terminal i and alighting to terminal j at time slot [t′ − 1, t′ ] and waiting for 
the subway train dispatched at time t. 

zijt′ t: integer variable, the number of passengers boarding metro 
terminal i and alighting to terminal j at time slot [t′ − 1, t′ ] and waiting for 
the train dispatched at time t. 

vti: Number of passengers leaving terminal i on the train dispatched 
at time t. 

The following is a formulation of the passenger behavior utilizing 
these three factors. 

Passenger transit service constraints 

uijt′ t = zijt′ tyt,

1 ≤ i < I,
i < j ≤ I,

1 ≤ t′ ≤ T,
1 ≤ t ≤ T,

t + ΔTi > t′

(3)  

zijt′ t = pijt′ −
∑t− 1

t′′=max{1,t′ − ΔTi}
uijt′ t′′ ,

1 ≤ i < I,
i < j ≤ I,

1 ≤ t
′

≤ T,
1 ≤ t ≤ T,

t + ΔTi > t′

(4)  

∑

1≤t≤T
uijt′ t = pijt′ , i, j ∈ I , 1 ≤ t

′

≤ T (5)  

vti = vt,i− 1+
∑

j> i, t+ΔTi > t′
uijt′ t −

∑

j< i, t+ΔTi > t′
ujit′ t, t∈T , i∈I (6)  

vti ≤
∑

s∈S

xtisytcs, t ∈ T , i ∈ I (7) 

Constraint (3) is imposed because overcrowding is not allowed, so all 
waiting passengers must be able to board the first train. According to 
Constraint (4), those who are waiting to board (i.e., zijt′ t) and those who 
have boarded (i.e., uijt′ t′′ ) are all linked to each other by passenger de
mand (i.e., pijt′ ). Constraint (5) requires all the waiting passengers to 
finally be served within the operational horizon. 

The behavior of passengers boarding and alighting the vehicle is the 
focus of Constraints (6) and (7). According to Constraint (6), the number 
of on-boarding passengers after a specific terminal is equal to the 
number of people who boarded at each previous terminal minus the 
number of people who left at each previous terminal. Vehicle compo
sition and decomposition vary the calculation of available capacity 
across all terminals. Hence, we use Constraint (7) to determine the total 
capacity at each terminal. 

3.1.3. Variable domains 
The constraints listed below establish a feasible domain for each 

decision variable. 

xtis, yt ∈ B, t ∈ T , i ∈ I , s ∈ S (8)  

uijt′ t, zijt′ t, vti ∈ N, ∀i ∈ I , j ∈ I
+

i , t′ ≤ t+ΔTi ∈ T , t ∈ T (9) 

A set of domain constraints connected to operating are specified in 
Constraint (8). Constraint (9) is used to ensure that the decision vari
ables uijt′ t , zijt′ t and vti are nonnegative integer numbers. 

Fig. 3. Overview of the existing modular transit vehicles. (a) NEXT Future Transport (source: http://www.next-future-mobility.com/); (b) Ohmio LIFT (source: 
https://ohmio.com); (c) Future Road Infrastructure for DART (Source: https://www.tum-create.edu.sg/); (d) Keolis (source: https://www. https://www.keol 
iscs.com/). 
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3.1.4. Objective function 

min
xtis ,yt ,zijt′ t

,u
ijt′ t

,vti

∑

i∈I ,t∈T ,s∈S

(
Cop +Cs wind +Cs GHG

)
di,i+1xtisyt +

∑

i,j,t′ ,t

Ctimeuijt′ t(t

+ Δti − t′)δ
(13) 

The objective function proposes to reduce the overall cost and pro
vide the most efficient way to operate the metro system, considering 
factors, such as the amount of time needed for each dispatch and the 
total number of carriages present at each terminal. The total cost has two 
main components: the costs consumed by metro trains and the costs 
incurred by waiting passengers. The costs consumed by metro trains, the 
operating cost, are calculated based on the distance the metro carriage 
travels with a specific carriage number. It combines the basic metro 
vehicle operation cost, metro vehicle energy consumption cost to over
come wind resistance and the monetary global warming impact for the 
vehicle fleet. The costs incurred by waiting passengers, the waiting cost, 
are proportional to the passenger waiting time. 

3.2. Revised formulation 

The original formulation assumes that the function (13) and all the 
constraints, except for Constraints (3) and (7), are linear. In Constraint 
(3), there is a bilinear term that involves multiplying two choice vari
ables together. We linearize Constraint (3) with an equivalence mathe
matical transformation, which can reach an exact result without any 
approximation gap. Then, the revised formulation can make the model 
more straightforward and make it possible to find a solution using one of 
the many available commercial solvers. More specifically, Constraint 
(3) is linearized as (14)–(16), which are as follows: 

uijt′ t ≤ Myt, i < j ∈ I , 1 ≤ t
′

≤ T (14)  

uijt′ t ≤ zijt′ t, i < j ∈ I , 1 ≤ t′ ≤ T (15)  

uijt′ t ≥ zijt′ t − M(1 − yt), i < j ∈ I , 1 ≤ t
′

≤ T (16)  

where M is a large positive given number in this inequality. 
Similarly, the bilinear term xtisyt in both Constraint (7) and in 

function (13) should also be linearized. For ease of expression, wtis =

xtisyt is introduced as an auxiliary variable. Considering that both xtis and 
yt are binary variables, wtis can be linearized by Constraints (17)–(19). 

wtis ≤ xtis, t ∈ T, i ∈ I, s ∈ S (17)  

wtis ≤ yt, t ∈ T, i ∈ I, s ∈ S (18)  

wtis ≥ xtis + yt − 1, t ∈ T, i ∈ I, s ∈ S (19) 

Thus, we replace Constraint (7) with the following Constraint (20). 

vti ≤
∑

s∈S

wtiscs, t ∈ T , i ∈ I (20) 

pijt′ in Constraints (4) and (5) is a random variable subject to a 
Poisson distribution. To ensure that Constraints (4) and (5) are not 
violated in most uncertainty scenarios, we introduce the auxiliary var
iable pijt′ , which satisfies the chance constraint (21). 

Pr
{

pijt′ − pijt′ < 0
}
≥ 1 − ε, t ∈ T , i, j ∈ I (21) 

where ε denotes the acceptable error. 
Then, Constraints (4) and (5) can be replaced by Constraints (22) and 

(23). 

zijt′ t = pijt′ −
∑t− 1

t′′=max{1,t′ − ΔTi}
uijt′ t′′ ,

1 ≤ i < I,
i < j ≤ I,

1 ≤ t′ ≤ T,
1 ≤ t ≤ T,

t + ΔTi > t′

(22)  

∑

1≤t≤T
uijt′ t = pijt′ , i, j ∈ I , 1 ≤ t′ ≤ T (23) 

Clearly, the objective function can only take on a minimum value if 
pijt′ takes on a minimum value. When the distribution of pijt′ and the 
value of ε are known, pijt′ can be treated as a constant. See Section 3.3 for 
the calculation of pijt′ . Consequently, the researched problem is recast as 
a linear problem, as shown in the following function (24).   

Table 1 
Notation.  

Sets  

I Set of metro terminals,I : {i|1 ≤ i ≤ I|i ∈ Z}
S Set of the number of carriages,S : {s|1 ≤ s ≤ S|s ∈ Z}
T Set of time slots,T : {t|1 ≤ t ≤ T|t ∈ Z}
I +

i Set of metro terminals,I +
i : {j|i+ 1 ≤ j ≤ I|j ∈ Z},∀i ∈ I \{I}

I −
i Set of metro terminals,I −

i : {j|1 ≤ j ≤ i − 1|j ∈ Z},∀i ∈ I \{1}
Parameters  
i, j Index of metro terminals,i, j ∈ I 

s Index of the number of units for a metro fleet,s ∈ S 

c Capacity of one single unit 
δ Length of one-time slot 
h Minimum design headway for safe operation 
pAve

ijt Passengers on an average boarding from terminal i and heading to 
terminal j with departure time t, which are designed to arrive at time 
[t − 1, t], i, j ∈ I , t ∈ T 

pijt Actual passengers boarding from terminal i and alighting to terminal j 
with departure time t, which are designed to arrive at time [t − 1, t], i,
j ∈ I , t ∈ T 

di Distance from terminal 0 to terminal i, i ∈ I 

v Average vehicle speed, km/min 
Cop Average metro vehicle operation cost per vehicle 
Cs wind Average metro vehicle resistance cost for vehicle fleet with s carriages 

per km 
Cs GHG Monetary global warming impact for vehicle fleet with s carriages, $ 
Ctime Average passenger time cost, $/min 
ΔTi Travel time from the first terminal to terminal i, i ∈ I 

Variables  
xtis Binary variables, xtis = 1 if the metro fleet with departure timed index 

t (departure time from first terminal at time t) is dispatched from 
metro terminal i with s vehicles, xnit = 0 otherwise, t ∈ T , i ∈ I , s ∈
S 

yt Binary variables, t = 1 if there is a vehicle departure from the first 
metro terminal at time t, otherwise t = 0, t ∈ T . 

wtis Binary variables, wtis = 1 if xtisyt = 1 
zijt′ t Integer variable, the number of passengers boarding at metro 

terminal i and alighting to terminal j at time slot [t′ − 1, t′ ] and waiting 
for the train dispatched at time t, t, t′ ∈ T , i, j ∈ I . 

uijt′ t Integer variable, the number of passengers arriving at metro terminal 
i and alighting to terminal j at time slot [t′ − 1, t′ ], and waiting for the 
subway train dispatched at time t, t, t′ ∈ T , i, j ∈ I . 

vti Integer variable, passenger volume leaving from terminal i by the 
subway train departing at time t. t ∈ T , i ∈ I .  

min
xtis ,yt ,zijt′ t

,wtis ,uijt′ t
,vti

∑

i∈I ,t∈T ,s∈S

(
Cop + Cs wind + Cs GHG

)
di,i+1wtis +

∑

i,j,t′ ,t

Ctimeuijt′ t(t + Δti − t′)δ

s.t.(1), (2), (6), (14) − (23)
(24)   
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3.3. Probability distribution of the number of passengers 

For any passengers with a given origin and destination, terminals i 
and j, respectively, there is a departure time t, and p′

ijt can be formulated 
by a random variable with a Poisson distribution as follows. 

Pr
{

pijt′ = k
}
=

(
pAve

ijt

)k

k!
epAve

ijt , k = 1, 2,⋯,∞, t ∈ T, i, j ∈ I (25)  

where pAve
ijt denotes the average number of passengers who board metro 

terminal i that would head toward metro terminal j with departure time t 
and are designed to arrive at time [t − 1, t], which can be obtained from 
historical data. 

In this case, we can find the minimum pijt′ subjected to Constraint 
(21) by solving problem (26): 

mink
s.t.

∑

h=[0,k]

Pr
{

pijt′ = k
}
≥ 1 − ε (26) 

For a given pAve
ijt , the optimum solution of (26) is a fixed value. In this 

case, pijt′ can be regarded as a constant while solving (24). 

4. Case study 

4.1. Parameterization and implementation 

To demonstrate the efficiency of the proposed model and the effec
tiveness of the proposed metro scheduling strategy, this section includes 
study cases utilizing actual passenger data. To resolve the problem posed 
by the proposed model, we use the most recent version of the Gurobi 

solver in this section. We conducted the simulation experiments on a 
laptop computer. This computer comes with an Intel Core i7-10130 
processor operating at 2.7 GHz with 16.00 gigabytes of memory. We 
used the Win11 operating system. The simulation software chosen is 
MATLAB 2022a. 

The data obtained from Shenzhen Metro Line No. 4 were chosen for 
numerical tests, as shown in Fig. 4, to simulate the effect of the proposed 
method in real world operation. Shenzhen Metro Line 4 is 31.3 km long, 
with 15 terminals, including 12 underground terminals, 1 above-ground 
terminal and 3 elevated terminals. The trains are designed to run at 1.33 
km/min and use 6 carriages of A-type metro trains. The data are based 
on the passenger flows from the Shenzhen metro system smart card data 
on Oct. 9, 2020. 

15 metro terminals were chosen from the current metro line to 
accommodate the passenger flow requirement in October 2020 based on 
the data collected from smart cards. The data on passenger demand that 
were utilized in the case study were collected on October 9, 2020. Fig. 5 
shows the average passenger demand at each terminal. Passenger de
mand for service varies noticeably throughout a variety of time periods; 
hence, this metro line is an excellent candidate for serving as a testbed 
for the proposed operational paradigm. 

The default parameter values are listed in Table 2. Some parameter 
values vary due to temporal and geographical factors; thus, we selected 
the values of the parameters according to the operation characteristics 
based on Shenzhen Metro Line 4. 

4.2. Cost comparisons 

Using the aforementioned data and parameter settings as input, we 
employed Gurobi to solve the proposed model, as shown in Table 2. The 
average CPU running time of this model was 3.33 min. We compared the 

Fig. 4. Shenzhen Metro Line 4 in 2020.  
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MT system with the system that was already in place so that we could 
determine whether the proposed method was useful. The capacity of the 
benchmark system is determined to be six carriages based on the 
currently operating Line 4 of the Shenzhen Metro. 

With the optimal configuration, the cost of both types totals 
18186.03 dollars, whereas that of the existing system is 24602.71 dol
lars, as shown in Table 3. This means that the optimized MT system saves 
26.08 % of the total cost. The cost reduction is modest since we set the 
99 % chance constraints with a high level of safety threshold. These 
chance-constrained robust optimization results will be discussed in 
Section 4.3. 

The MT system has a nearly 70 % reduction in cost and decreased 
GHG emissions, which profoundly verifies the outstanding performance 
of the MT system in providing environmentally friendly operation 
strategies. Additionally, the cost for overcoming wind resistance has a 
sharp decrease of 38.55 %, which further proves the economical savings 
in the MT system. Similarly, the wait time cost decreased as well. Since 
an increasing number of passengers focus on their trip experience, re
searchers have found that the most important way to increase passenger 
satisfaction is to decrease their travel time (Bliemer et al., 2017; Ezaki 
et al., 2022; Sánchez et al., 2021). In the proposed system, we found a 

23.22 % reduction in wait time cost, which can provide better service 
than the existing system. The average number of carriages and average 
headway were reduced by 79.76 % and 35.71 %, respectively. The 
operation cost, which includes the metro carriage depreciation cost and 
operational economic cost, is linearly related to the number of carriages 
used as well as their service distance. The operational cost of the opti
mized MT system is increased because the MT system uses a larger 
number of carriages over the entire service time horizon than the 
existing system. 

4.3. Monte Carlo analysis 

The chance-constrained method of optimization programming used 
in this study is a process for working with random parameters within a 
problem while guaranteeing a certain performance (Margellos et al., 
2014). The constraint is considered to satisfy the system standby 
constraint at a certain confidence level (i.e., 99 % in this study) to ensure 
the reliability of system operation. To satisfy all constraints in most 
scenarios, the optimization results appear relatively conservative. Spe
cifically, the optimization results are not optimal in the scenarios that 
are less extreme. (Küçükyavuz and Jiang, 2022). Monte Carlo 

Fig. 5. Illustrative example.  

Table 2 
Parameter settings.  

Parameter Value Unit Parameter Value Unit 

I 15 (Section 4.2&4.3) and 10 (section 4.4) – Cs wind [1,1.9,2.3.2.7,2.9,3] $ 
S 6 – CGHG 4.17 $ 
c 350–700* people Ctime 0.33 $/min 
δ 1 min di [0 2 1.3 1.6 2.8 3.8 2.6 4.8 5.3 3.3 3 1.3 2.7 1.4] km 
h 1 min v 1.33 km/min 
Cop 2 $ ΔTi Distance/v km 

Note: Shenzhen Metro Line No. 4 has a seating capacity of 54, and according to its report, it can accommodate 6 to 12 times the number of standing people during peak 
hours, that is, approximately 350–700 people. Data source: MTR Shenzhen, http://www.mtrsz.com.cn/chi/. 

Table 3 
Result of the proposed MT system compared to the benchmark system.   

Total cost Operation 
cost 

Cost for overcoming wind 
resistance 

GHG cost Waiting time cost Average number of 
carriages 

Average 
headway 

MT system  18186.03  2979.20  1765.44  1294.09  12147.30  1.21  2.07 
Benchmark 

system  
24602.71  1915.20  2872.80  3993.19  15821.52  6.00  3.22 

Saving percentage  26.08 %  − 55.56 %  38.55 %  67.59 %  23.22 %  79.76 %  35.71 % 

Note: The benchmark system is established according to the existing Shenzhen Metro Line 4 with a capacity of 6 carriages. 
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Fig. 6. Monte Carlo analysis result. (a) frequency distribution for total cost; (b) frequency distribution for MT carriage capacity.  

Fig. 7. Performance of the three costs with varying parameter inputs.  
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simulations were performed to verify the effect of the optimization re
sults under different scenarios. A total of 100,000 scenarios are gener
ated to approximate the distribution with a set of outcomes, i.e., the total 
cost and carriage capacity rate, as shown in Fig. 6(a) and (b), respec
tively. Thus, the capacity rate is approximately half of the designed 
capacity, and the total cost reduction is not considerably high in Table 3. 
The capacity rates in 100,000 scenarios are shown in Fig. 6(b), which 
indicates that the MT system can reduce the severity of constraint vio
lations effectively under different scenarios with passenger arrival time 
uncertainties. 

4.4. Sensitivity analysis 

A sensitivity analysis is carried out on the various input parameters 
to determine whether the proposed method is still capable of achieving 
the required performance level, thus helping to further investigate the 
performance and applicability of the proposed model. Here, we selected 
the operation cost rate, wind cost rate, GHG emission cost rate and wait 
time cost rate. To further explore the optimization performance with 
varying parameter values, we propose a more typical ten-terminal nu
merical example in this section. 

Fig. 7 shows the sensitivity analysis with different input parameter 
values. In Fig. 7(a), the three lines show the trends for the operation cost 
(blue line), time cost (orange line) and total cost (gray line). The total 
cost increased with an increasing operation cost. Both the wait time cost 
and operation cost share the same trend. Fig. 7(b) shows the perfor
mance of the wind cost, and this cost component is most closely related 
to the vehicle motion techniques. It slightly affects the value of the total 
cost compared with the other cost components, e.g., wait time cost and 
operation cost. Fig. 7(c) shows the performance of the three costs with 
varying GHG cost rates. This cost rate reflects the environmental value 
of society, which can become increasingly important with increasing 
attention to environmental protection. Fig. 7(d) compares the three 
costs with the wait time cost rate. The wait time cost rate reflects the 
time value of passengers, which can be an important part of total cost 
competitiveness. 

5. Conclusion 

This paper focused on the challenging asymmetric distribution of the 
passenger demand problem of metro systems and proposed a modular 
transit technology-based nonlinear programming model to weight the 
value of train power energy, greenhouse gas emissions, wind resistance, 
and operational economics to optimize the total system cost. In the 
model, the MT system allows the metro fleet to be disassembled and 
assembled in identical carriages dynamically at metro terminals, 
bringing new perspectives to the problem. Since nonlinear programming 
fails to provide an exact solution, we rigorously formulated the problem 
based on a series of linearization operations. 

We illustrate the practicability of the mathematical model by study 
cases. We gather real world data from the Shenzhen Metro and validate 
the efficiency of the proposed model in terms of its economical, low- 
carbon, and environmental effects. The result shows that the total cost 
of the MT system can be 26.08 % lower than that of the existing system. 
The resiliency of the proposed model under a variety of parameter 
configurations is examined to test an additional parameter value trend. 

The metro system is a perfect public transport system for modular 
transit. The carriages are easier to operate, composing and decomposing 
under the organization of the modular operation concept. However, this 
organization process will also encounter many challenges. Since the 
length of metro platform is fixed, the passenger travel guidance on the 
platform must be adjustable with the change of the metro train car
riages, which will be very interesting research in future modular trans
portation system modeling, which will bring more new opportunities 
and challenges to the future research work. Moreover, this work can be 
extended in additional directions in the future. First, transportation 

electrification can provide more choices in public transit systems, which 
can bring additional challenges, e.g., vehicle charging and parking 
(Eliasson, 2021; Kopplin et al., 2021; Yagcitekin and Uzunoglu, 2016), 
battery degradation and replacement (Pelletier et al., 2017; Yang et al., 
2018; Zhang et al., 2021), and charging facility options and locations 
(Agrawal et al., 2016; Erdelic et al., 2019; Jang, 2018). Second, con
nected and autonomous technologies in transportation will create a 
complete industrial revolution (Li et al., 2022; Peng et al., 2021; J. Zhu 
et al., 2022), which can be a good opportunity for modular vehicles to be 
used based on a connected and autonomous environment, leading to 
more joint optimization problems. 
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