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a b s t r a c t

This paper presents a novel eye gaze tracking method with allowable head movement

based on a local pattern model (LPM) and support vector regressor (SVR). The LPM, a

combination of improved pixel-pattern-based texture feature (PPBTF) and local-binary-

pattern texture feature (LBP), is employed to calculate texture features from the

characteristics of the eyes and a new binocular vision scheme is adopted to detect the

spatial coordinates of the eyes. The texture features from LPM and the spatial

coordinates together are fed into support vector regressor (SVR) to match a gaze

mapping function, and subsequently to track gaze direction under allowable head

movement. The experimental results show that the proposed approach results in better

accuracy in estimating the gaze direction than the state-of-the-art pupil center corneal

reflection (PCCR) method.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Eye gaze, referring to the direction of line of sight,
reveals a person’s focus of attention and interest. The
majority of existing gaze tracking techniques are vision
based, i.e., cameras are used to capture images of the eyes.
Some of these camera-based techniques are intrusive
since special equipments such as chin rests, electrodes
[25], and head-mounted cameras [26] are required on
users. The scheme proposed in this paper is non-intrusive,
that is, users are not equipped with any devices.

Yu and Eizenman [1] developed a head-mounted
methodology by using features extracted from a video
sequence to determine the position of a head relative to
objects in a scene. Since the relative eye positions to the
position of the head are also provided, the data of eye and
head positions can be integrated to determine the fixation
behavior of objects in the scene. An appearance-based eye
ll rights reserved.
gaze estimation scheme was developed by Tan et al. [2]
and an artificial neural network (ANN)-based gaze direc-
tion tracking approach was proposed in [3]. Zhu et al. [4]
used pupil center corneal reflection (PCCR) to determine
the gaze track direction and geometric relationships to
compensate for the effects of head movement. Although
all these schemes described above have made significant
contributions to the eye gaze tracking technology, their
accuracy and reliability need to be further improved.

In this paper, we propose a new method for eye gaze
tracking under allowable head movement of 75 cm
forward/backward, 72 cm on horizon, and 72 cm along
vertical direction. This method first calculates the spatial
coordinates of the eyes and the LPM texture features,
which will then be fed into support vector regressor (SVR)
[19,20,27] to predict the gaze direction. The adopted
binocular vision method has less complexity in terms of
camera calibration process and lower cost than traditional
methods, without regard to the evaluation of accuracy. In
order to calculate target coordinates accurately, the
binocular vision method only requires the spatial
coordinates of three points, while the camera calibration

www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2009.10.014
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Fig. 1. Binocular vision method for eye’s spatial coordinates x–z plane

diagram.
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methods [22–24] require multiple views of a checker-
board to estimate the inner and outer parameters of the
camera.

Oftentimes, traditional infrared gaze tracking methods
calculate the pupil-glint vector using basic image proces-
sing algorithms [6]. However, the traditional approaches
suffer from the fact that pupil fuzzy borders and shape
changes may cause the pupil center to drift. In addition,
the reflection point sometimes can be large enough to
offset the actual position. Factors such as relatively large
size of reflection point, pupil fuzzy borders and shape
changes, may cause an inaccurate calculation of pupil-
glint vector, and hence adversely affect experimental
results. The two-dimensional PCCR vector has the
advantages of simple calculation and short operation
time, but it neglects the global characteristics of the eyes
when a person frequently changes the direction of sight.
Our study indicates that the LPM features of the captured
eye images contain both the pupil-glint vector informa-
tion and texture changes information. Therefore, there is
no need to calculate the pupil-glint vector separately
because the proposed method allows us to estimate the
gaze direction more accurately by making use of the
global features.

The rest of the paper is organized as follows.
Section 2 introduces the adopted binocular vision
method. Section 3 describes LPM, original and improved
PPBTF algorithms. Section 4 presents the experimental
results, and Section 5 concludes the paper with future
work.
2. Binocular vision method

The main purpose of the binocular vision method is to
determinate the spatial coordinates of the eyes. Before
calculating the coordinates of the eyes, the location of
eyes in the two camera images should be obtained
(i.e., eye detection).

In this paper, the eye detection is carried out by using
the method proposed in [15], which is the evolvement of a
face detection method proposed by Viola and Jones [7]. Lu
and Zhang [15] used some geometric characteristics of the
eyes to reduce the rate of false detection. The left eye’s
center coordinates in image are used as the input
parameters to calculate spatial coordinates of the left
eye. Assuming that there is no distortion of camera, the
spatial coordinates of the eye can be calculated by the
following method.

The optical axes alignment is carried out after setting
up two cameras. The coordinates of two cameras can
be measured, respectively, which are defined as C1 ¼

ðx1; y1; z1Þ and C2 ¼ ðx2; y2; z2Þ. There is a reference point
O ¼ ðx0; y0; z0Þ which can be any spatial point in the two
cameras’ field of vision. As shown in Fig. 1, a is the
horizontal angle of C1 and O, b is the horizontal angle of C2

and O, g is the vertical angle of C1 and O, and y is the
vertical angle of C2 and O. C1

0 , C2
0 and O0 are projections of

C1, C2 and O in the x2z plane. Point B is the target point,
whose coordinates should be determined. B0 is the
projection of B in the x2z plane.
The relationships between above-mentioned para-
meters can be expressed as

a ¼ arctanððz0 � z1Þ=ðx0 � x1ÞÞ ð1Þ

b ¼ arctanððz0 � z2Þ=ðx0 � x2ÞÞ ð2Þ

g ¼ arctanððy0 � y1Þ=ðz0 � z1ÞÞ ð3Þ

y ¼ arctanððy0 � y2Þ=ðz0 � z2ÞÞ ð4Þ

Let us assume that point B is the center of the left eye.
The spatial coordinates of point B can be calculated as
follows.

Before calculating the coordinates of point B, we should
measure the horizontal and vertical angles of two cameras
C1 and C2 (the cameras’ foci are fixed). These two are inner
parameters, and should be measured before setting up the
cameras. There is a simple method to obtain the horizontal
and vertical angles of the cameras. To begin with, lay a
checkerboard on the ground level. Then, adjust the position
of the camera to ensure that a defined rectangular region,
consisting of several connected grids on the checkerboard,
cover neither more nor less than the sight of the camera. At
this moment, the camera is perpendicular to the checker-
board and the perpendicular foot lies at the center of the
rectangular region, as shown in Fig. 2. The horizontal and
vertical visual angles can be determined as e1 ¼ arctan
ðW1=hÞ � 2 and m1 ¼ arctanðH1=hÞ � 2, respectively, where
h is measured by plumb line. Parameters e2 and m2 of C2 can
be obtained in a similar way.

The horizontal and vertical angles of the vector BC 1 are
a1 and g1, respectively. The horizontal angle of the vector
BC2 is b1, and the vertical angle is y1 (Fig. 1). The
coordinates of point O in the image captured by camera C1

are O1 ¼ ðxo1; yo1Þ. The coordinates of B in the image
captured by C1 are B1 ¼ ðxb1; yb1Þ. Define Dx1 ¼ xo1 � xb1,
and Dy1 ¼ yo1 � yb1. Similarly, the coordinates of point O

in the image captured by C2 are O2 ¼ ðxo2; yo2Þ, and the
coordinates of point B are B2 ¼ ðxb2; yb2Þ. Define
Dx2 ¼ xo2 � xb2, and Dy2 ¼ yo2 � yb2. If the size of the
image captured by C1 is w1 � h1, and the image captured
by C2 is w2 � h2, then a1, g1, b1 and y1 can be expressed as

a1 ¼ a� arctan
Dx1 tan 0:5e1

0:5w1
ð5Þ
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Fig. 2. Camera angle measurement diagram.

Fig. 3. Eye image with glint.
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g1 ¼ g� arctan
Dy1 tan 0:5m1

0:5h1
ð6Þ

b1 ¼ b� arctan
Dx2 tan 0:5e2

0:5w2
ð7Þ

y1 ¼ y� arctan
Dy2 tan 0:5m2

0:5h2
ð8Þ

The formulas to determine the coordinates of point B are
as follows:

x ¼
ðx1 tana1 � x2 tanb1 þ z2 � z1Þ

tana1 � tanb1

ð9Þ

z ¼
ðx1 � x2Þtana1 tanb1 þ z2 tana1 � z1 tanb1

tana1 � tanb1

ð10Þ

y ¼ 1
2½y1 þ ðz� z1Þtan g1 þ y2 þ ðz� z2Þtany1� ð11Þ

It is critical that the images captured from the two
cameras must be synchronous; otherwise, computational
errors will increase because of the discrepancy. For this
purpose, our application uses the cvcam class of OpenCV
[9], which can obtain a pair of images simultaneously
through its callback function.

3. Features of eyes

As shown in Fig. 3, corneal reflection (CR) can be easily
observed in the dark pupil effect eye image. The center of
the pupil and the CR defines a vector in the image. This
vector can be mapped to screen coordinates on a
computer monitor after a calibration procedure. In
general, during the calibration procedure, the user
should look at several different points on the computer
screen, one point at a time, and presses a button to
capture images. In Morimoto et al. [8], the authors used
nine points to calibrate the parameters of a second order
polynomial function. Duchowski [21] included more
details about corneal reflection tracker and the mapping
screen coordinates to the 2D image.

A major assumption in the classical algorithms [16–18]
is that the user cannot change the position of the head,
but this is not quite feasible in real world applications. In
order to accommodate head movement, researchers have
put forward various methods. For example, Zhu and Ji [4]
took advantage of simple geometrical relationships. Later,
these authors combined the spatial coordinates of the eye
and pupil-glint vector to achieve the tracking process [10].
In [11], Zhu and Ji estimated the 3D gaze direction of the
users. Methods proposed in [4,10,11] are all based on
PCCR. The accuracy of calculating the vector in methods
proposed by Zhu and Ji is negatively affected by the
factors such as pupil fuzzy borders and shape changes.
These factors cause the pupil center migration, thereby
reducing the accuracy of calculation. Moreover, the
reflection point sometimes can become large enough to
offset its actual position. This factor may also cause
inaccurate calculation of the pupil-glint vector and
therefore affects experimental results.

The local pattern model (LPM) features of the eye
images contain the ‘‘pupil-glint’’ vector information by
obtaining the texture information. Taking into account
this fact, calculation of the pupil-glint vector becomes
redundant, while LPM improves accuracy of estimation
the gaze under allowable head movement.
3.1. Improved PPBTF algorithm

PPBTF is a type of texture feature extraction algorithm,
which was first proposed in [5]. This algorithm can be
effectively applied to expression recognition [12], and is
briefly described as follows.
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3.1.1. PPBTF

PPBTF is constructed from one pattern map. A gray
scale image is transformed into a pattern map in which
edge and background pixels are classified by pattern
matching with a given set of M pattern templates {Wi}
that reflects the spatial features of images. For each pixel
(x, y) in a gray scale image I, let zi be the inner product of
its S� S neighbor block b with the ith pattern templates

zi ¼ jb �Wij ð12Þ

The pixel (x, y) in the pattern map P is assigned a number
k such that zk=max (z1, z2,y,zM). Therefore, the pixel
values in a pattern map represent the pattern classes of
pixels in the original gray scale image.

The feature model comes as follows. Let us assume
that the number of patterns is M, and then the pixel value
P(x, y) in the pattern map P is in a range of [1, M]. For each
pixel (i, j), the features in a window S1� S1 can be
generated by

flði; jÞ ¼
XiþðS1�1Þ=2

x¼i�ðS1�1Þ=2

XjþðS1�1Þ=2

y¼j�ðS1�1Þ=2

hlðx; yÞ; l ¼ 1; . . . ;M ð13Þ

where h is a binary function defined as

hlðx; yÞ ¼
1 if Pðx; yÞ ¼ l

0 otherwise

�
ð14Þ

Thus, the feature fl gives the number of the pixels
belonging to the lth pattern, and the feature vector can
be constructed with fl as components.

FPPBTF ¼ ðf1; f2; . . . ; fMÞ ð15Þ

3.1.2. Principal component analysis (PCA) templates

Pattern templates represent the spatial features in an
image and reflect how the value of each pixel relates to its
neighbors. The process of obtaining the PCA templates is
as follows:
�
 Denote an S� S image block as a neighbor vector.

�
 Randomly create N S� S image blocks on each given

image.

�
 Suppose there are K images, then matrix A with the

size of (S� S)� (K�N) is composed of all neighbor
vectors.

�
 Calculate PCA using matrix A.

�
 Select some eigenvectors from the PCA analysis as the

PCA templates.

For instance, let us assume the block-size is 5�5. We
randomly generate on each eye image 100 block samples
by the size of 5�5. Use 811 eye images of the size
64�120 as template training samples. Analyze a matrix
of 25�81 100 using PCA. Sort the basis functions in
decreasing order of their eigenvalues and select the first
25 basis functions. The first basis function, corresponding
to the largest eigenvalue is a Gaussian low-pass filter, and
the others are derivative filters. With the exception of the
first basis function, the rest can be used as gradient filters
for pattern matching. In this paper, excluding the first
basis function, the subsequent eight basis functions are
chosen as pattern templates.

3.1.3. Improved PPBTF features

Like Gabor features, the number of original PPBTF
features is larger than the number of pixels. To be specific,
it generates eight features for every pixel under the
condition of eight existing PCA templates. The number of
features is too large to fit for gaze tracking. This calls for
methods to reduce the dimension. We employ a method
as follows. The pattern map of an image is divided into a
few regions of equal size to form a histogram directly
rather than calculate the feature for every pixel. Then the
numbers of all patterns are counted for each region. It is
easy to see that using this method the number of
extracted features is reduced from 8�m, where m is the
size of the image, to 8�N, where N is the number of
regions in an image.

However, there are two drawbacks of this method:
�
 The dimension of the features is too small.

�
 For every pixel of the pattern map, the quantitative

level is 8, which is not enough to represent the texture
pattern.

For the first one, we can overcome it by increasing the
number of regions and refining the divisions. Therefore,
the essence of improved PPBTF is an application of higher
quantitative level to represent the value in a pattern map.
Specifically, it can be described as follows:
�
 In the pattern map, we define max_index=max
(z1, z2,y,zM) and min_index=min (z1, z2,y,zM). There-
fore, there are P2

8 ¼ 56 pattern permutations for
different max_index and min_index. If we assign each
permutation a number ranging from one to 56, the
quantitative level will increase from eight to 56, and
this is the reason for changing the original pattern
map, while the number of PCA templates is still eight
(Fig. 4).

�
 This improvement is effective, because, although

max_index represents the major pattern of the
region around the pixel, min_index also represents
the major pattern of the region in the opposite
direction. Hence, the combination pattern of
max_index and min_index outperforms the single
max_index pattern in a pattern map.

�
 The same as 8�N, the number of extracted features is

56�N, where N is the number of regions.

The top left corner of Fig. 4 represents the original
pattern map with its inner data matrix underneath. From
the matrix, we can see that many blocks have the same
value. For instance, numbers in the left red rectangle are
of the same value 2, which means pattern 2 is the major
pattern of the neighbor region around the pixels.

The top right corner of Fig. 4 is the improved pattern
map with its inner data matrix underneath. The blocks
that have the same value in original pattern map now
may have different values in the improved pattern map.
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Fig. 4. The original pattern map and the improved pattern map.

Fig. 5. The dimensional histogram statistic of the original pattern map and the improved pattern map.
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For example, in the right red rectangle, that data have
changed from 8 to 9 confirms our hypothesis. Fig. 5 also
shows that the values of the improved pattern map have
been dispersed from eight to 56 bins.

Experiment in Section 4 shows that the fitting error of
SVR is greatly reduced due to the improvement. On the
other hand, the improvement does not increase the
computing time significantly.
3.2. Local pattern model

The local pattern model comes from the feature fusion
strategy proposed in [13]. Given two different kinds of
features, there are two strategies to integrate them into a
single feature. One strategy is called the serial strategy,
which combines two kinds of features in serial mode, thus
the dimension of the new features is the sum of the two.
The other strategy is called the parallel strategy, which
combines two kinds of features into a complex vector.
Obviously, the dimension stays constant. Yang and Yang
[13] showed that the parallel strategy usually outper-
forms the serial strategy.

The algorithm for the local pattern model is described
as follows:
�
 Given one gray image of the captured eyes, use the
improved PPBTF algorithm to calculate the features
based on six equal blocks. This operation generates
6�56=336 features for the image.

�
 Given the same gray image, use uniform LBP algorithm

[14] to calculate the features in the same division. The
number of generated features is 6�59=354.

�
 Suppose a is the improved PPBTF features of the image

and b is the uniform LBP features of the image. Add
three zero numbers to the a of each block, because it is
three digits shorter than b.
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�

Fig
obs

LPM
The local pattern model of an image is ðaþ ibÞ. The
sequence of a and b should be meticulous. Experi-
mental results in Section 4 show that the fitting effect
of a are better than the fitting effect of b.

�
 Results in Section 4 show that the complex features

generated by local pattern model are well applicable
for SVR. The advanced version of SVR was named as
generalized support vector regression (GSVR). GSVR is
a reasonably extension of SVR in complex-number
fields.
4. Experimental results

4.1. Experimental setup

Our system consists of two CCD cameras, as shown in
Fig. 6. To reduce the errors in z plane, camera C1 should be
close to camera C2, while the horizontal axis of the two
cameras should be parallel to the ground. The spatial
coordinates of the eye (x, y, and z) can be calculated by
using the binocular vision method proposed in Section 2.
The 640�480 images captured by C2 are used to detect
the raw eyes (Fig. 7) by using the eye detection method
proposed in [7]. All detected eye images are normalized to
64�120. Then, the LPM algorithm is used to extract
features from the eye images.

Finally, the LPM features combined with the spatial
coordinates are fed into SVR [19,20,27], which is a
generalized support vector regressor (GSVR). GSVR uses
complex vectors as its input parameters. In our experi-
. 6. Cameras C1, C2 are used to measure the spatial coordinates of the

erver’s eyes; the image captured by C2 is also used to compute the

features. The screen dimensions are 1024�786.

Fig. 7. Some of the ra
ments, because of high nonlinearity of the gaze mapping
function we use the kernel of Gaussian radial basis
function (RBF) for SVR. The flow chart of the gaze-tracking
algorithm is shown in Fig. 8.

In the training procedure, we asked five users to gaze
at a blue point moving on the screen over nine different
positions (Fig. 9). Each picture was taken by C1 and C2

simultaneously. During the task, each camera took 1014
pictures. From 1014 raw eyes (left eye), detected from the
pictures, 811 raw eyes were used to build up the training
set, while the other 203 for testing. In fact, two SVRs were
chosen for training and testing in horizontal and vertical
directions, respectively. During the training procedure, we
tried to simulate allowable head movements, meaning
that users could move their heads 75 cm forward/
backward, 72 cm along horizontal direction, and 72 cm
along vertical direction.
4.2. Parameters analysis

There are three main parameters, which affect the final
performance: the block-size, the number of regions on
extracting PPBTF features, and the parameter of RBF
kernel on SVR.

In order to optimize the block-size, which could lead to
the best performance, we assume that all images are
divided into 2�3=6 regions, each with a size of 32�40. In
our experiment, we find that the results become more and
more accurate with the increasing of the block-size.
However, when computing PCA templates, with the
increasing of block-size, the correlation among different
blocks increases too. As a result, the number of eigenvec-
tors could be insufficient to generate eight PCA templates.
This indicates that the increase of block-size is confined.
We have adopted the foursquare blocks, as presented in
Table 1. For foursquare blocks, 15�15 is the largest
block-size that we can choose under the restriction to
compute the PCA templates. In other words, when the
foursquare block-size becomes bigger than 15�15, the
PCA templates cannot be obtained. Subsequently, we
extend the foursquare blocks to quadrate blocks in order
to obtain the largest block-size under the restriction. The
results of extension are presented in Table 2. For quadrate
blocks, for a similar reason, 11�23 is the largest block-
size we can choose to compute the PCA templates.

In the following tables, ‘‘horizontal kernel’’ represents
the best RBF kernel parameter of SVR, which is used to
predict the position on horizon, similar to ‘‘vertical
kernel’’. ‘‘Horizontal ðm7sÞ’’ represents the horizontal
average accuracy and the standard deviation of horizontal
w eye images.
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accuracy, similar to ‘‘Vertical ðm7sÞ’’, where m is the
average of the estimation errors, while s is the standard
deviation.

The results in Tables 1 and 2 present that the largest
quadrate block 11�23 generates the best performance.
These results are generated on the condition that each
Fig. 8. Flow chart of the gaze-tracking algorithm.

Fig. 9. The subject is asked to look at nine positions on the screen

following the blue point. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this

article.)

Table 1
Tracking results using LPM on foursquare blocks using SVR.

Block size 3�3 7�7

Horizontal (m7s) 3.6373.11 mm 2.8272.3

Horizontal kernel 1000 1200

Vertical (m7s) 3.5072.96 mm 2.6772.2

Vertical kernel 700 800

Table 2
Tracking results using LPM on quadrate blocks using SVR.

Block size 5�11 7�15

Horizontal (m7s) 2.2572.20 mm 1.9071.8

Horizontal kernel 400 700

Vertical (m7s) 2.2971.87 mm 2.2471.7

Vertical kernel 600 300
pattern map of PPBTF and each eye image of LBP are
divided into 2�3 regions. Actually, even with other
division scheme (for example 2�4, 4�3, 4�4), the best
performance still comes from the block-size 11�23.

Table 3 presents the results based on different division
schemes with the same block-size 11�23. In Table 3,
division 2�3 means to divide each pattern map of PPBTF
and each eye image of LBP into six regions. Therefore, the
size of each region is 32�40, and the number of features
is 6�59=354. The meaning of other division scheme is
similar. The results show that the performance is barely
improved with increasing number of regions, while the
training procedure becomes time consuming with larger
number of features. Considering this, the division 2�3 is
optimal to obtain the expected result in our experiments.

In our experiments, the RBF kernel parameter is
adjusted to obtain the best average accuracy. The
horizontal and vertical kernels in all tables are the kernel
parameters, which result in the best average accuracy.
Fig. 10 is the plot of adjusted kernel parameters when
the condition that the division is 2�3 and the block-size
is 11�23.

4.3. Comparative experiments

To verify the advantage of our proposed method,
some comparative experiments conducted and results
are shown in the following tables.

Table 4 compares four different algorithms based
on SVR. First, the division 2�3 and the block-size
11�23 are adopted. The results show that improved
PPBTF outperforms PPBTF and LBP with 1.8671.59 mm in
horizontal accuracy and 2.2371.99 mm in vertical
accuracy. As we can see from the table, the LPM features
present the best accuracy.

The results from comparative experiments in Table 4
can be concluded as:
�

2 m

7 m

3 m

9 m
First, the experiment shows that the improvement of
PPBTF can be justified by the histogram of block
statistics, because it enriches the texture information
11�11 15�15

m 1.9671.83 mm 1.7371.84 mm

1200 1600

m 2.4872.10 mm 2.0371.68 mm

900 1200

9�19 11�23

m 1.4471.39 mm 1.3071.21 mm

600 800

m 1.9271.60 mm 1.5071.49 mm

700 400
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Table 3
Tracking results using LPM on different divisions using SVR.

Division 2�3 2�4 4�3 4�4

Features number 354 472 708 944

Horizontal (m7s) 1.3071.21 mm 1.5271.31 mm 1.3471.57 mm 1.6171.50 mm

Horizontal kernel 800 1000 1700 2300

Vertical (m7s) 1.5071.49 mm 1.5571.59 mm 1.6071.45 mm 1.6571.63 mm

Vertical kernel 400 700 1200 1400

0 500 1000 1500
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m
)
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Fig. 10. The plot of adjusted RBF kernel parameters.

Table 4
Tracking results on different algorithms of feature algorithms using SVR.

Algorithm LBP PPBTF Improved PPBTF LPM

Horizontal (m7s) 6.4475.28 mm 5.4874.56 mm 1.8671.59 mm 1.3071.21 mm

Horizontal kernel 14 800 13 500 6500 800

Vertical (m7s) 5.4974.29 mm 4.3773.48 mm 2.2371.99 mm 1.5071.49 mm

Vertical kernel 30 800 23 800 5500 400

Table 5
Comparison with other system.

Algorithm Horizontal accuracy (m7s) Vertical accuracy (m7s)

LPMþSVR 1.3071.21 mm 1.5071.49 mm

[11] 5.0272.03 mm 6.4072.35 mm

H.-C. Lu et al. / Signal Processing 90 (2010) 1290–1299 1297
represented by the neighbor region around each pixel
in the pattern map, which enhances the fitting effect.

�
 Second, the experimental results prove that the

construction of local pattern model is meaningful.
LBP features and the improved PPBTF features,
although representing different kinds of texture in-
formation of the eye image, can be combined to form
LPM features in order to achieve high-precision results.
We believe that LPM will influence the direction of our
further researches.

Table 5 presents that the method based on LPM
features with the use of SVR can approximate the gaze
mapping function more precisely than the method used
by Zhu and Ji [11]. As presented in the table, the average
horizontal and vertical errors of LPMþSVR algorithm are
approximately 1.30 and 1.50 mm, respectively, while the
horizontal and vertical errors of algorithm presented in
[11] are 5.02 and 6.40 mm, respectively.
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Fig. 11. The plot of the estimated and the actual gaze points, where ‘‘þ’’ represents the estimated gaze point and ‘‘*’’ represents the actual gaze point.
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Fig. 11 illustrates errors between the estimated and
actual gaze points. The average horizontal error in the
screen is around 1.30 mm. The average vertical error is
around 1.50 mm.
5. Conclusion

This paper presents a novel eye gaze-tracking scheme
based on local pattern model and support vector regres-
sor. The binocular vision method is adopted to calculate
the spatial coordinates of the eyes and the LPM algorithm
is utilized to describe the features of the captured eyes.
With the combination of the spatial coordinates and LPM
features as the input to SVR, the mapping function of gaze
direction and screen coordinates can be predicted. The
experimental results demonstrate the effectiveness of the
proposed eye gaze tracking approach when compared
with the state-of-the-art schemes. As part of future work,
the proposed scheme will be extended to research such as
increasing the number of estimated points and the range
of the allowable head movement, and will be applied to
human–computer interaction.
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