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Abstract. This paper describes a computer vision system
based on active IR illumination for real-time gaze tracking for
interactive graphic display. Unlike most of the existing gaze
tracking techniques, which often require assuming a static
head to work well and require a cumbersome calibration pro-
cess for each person, our gaze tracker can perform robust and
accurate gaze estimation without calibration and under rather
significant head movement. This is made possible by a new
gaze calibration procedure that identifies the mapping from
pupil parameters to screen coordinates using generalized re-
gression neural networks (GRNNs). With GRNNs, the map-
ping does not have to be an analytical function and head move-
ment is explicitly accounted for by the gaze mapping function.
Furthermore, the mapping function can generalize to other in-
dividuals not used in the training. To further improve the gaze
estimation accuracy, we employ a hierarchical classification
scheme that deals with the classes that tend to be misclassified.
This leads to a 10% improvement in classification error. The
angular gaze accuracy is about 5◦ horizontally and 8◦ verti-
cally. The effectiveness of our gaze tracker is demonstrated by
experiments that involve gaze-contingent interactive graphic
display.

Keywords: Eye tracking – Gaze estimation – Human–
computer interaction – Interactive graphic display – Gener-
alized regression neural networks

1 Introduction

Gaze determines a person’s current line of sight or point of
fixation. The fixation point is defined as the intersection of
the line of sight with the surface of the object being viewed
(such as the screen). Gaze may be used to interpret the user’s
intention for noncommand interactions and to enable (fixation-
dependent) accommodation and dynamic depth of focus. The
potential benefits of incorporating eye movements into the
interaction between humans and computers are numerous. For
example, knowing the location of a user’s gaze may help a
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computer to interpret the user’s request and possibly enable a
computer to ascertain some cognitive states of the user, such
as confusion or fatigue.

Eye gaze direction can express the interests of a user; it is
a potential porthole into the current cognitive processes. Com-
munication through the direction of the eyes is faster than any
other mode of human communication. In addition, real-time
monitoring of gaze position permits the introduction of display
changes that are contingent on the spatial or temporal charac-
teristics of eye movements. Such methodology is referred to as
the gaze-contingent display paradigm. For example, gaze may
be used to determine one’s fixation on the screen, which can
in turn be used to infer the information the user is interested
in. Appropriate actions can then be taken such as increasing
the resolution or increasing the size of the region where the
user fixates. Another example is economizing on bandwidth
by putting high-resolution information only where the user is
currently looking.

Gaze tracking is therefore important for human–computer
interaction (HCI) and intelligent graphics. Numerous tech-
niques have been developed including some commercial eye
gaze trackers. Basically, these can be divided into video-
based techniques and non-video-based techniques. Usually,
non-video-based methods use some special contacting devices
attached to the skin or eye to catch the user’s gaze. So they
are intrusive and interfere with the user. For example, in [7],
electrodes are placed on a user’s skin around the eye socket to
measure changes in the orientation of the potential difference
between retina and cornea. This technique is too troublesome
to be used for everyday use because it requires the close con-
tact of electrodes to the user. Also in [3], a nonslipping contact
lens is attached to the front of a user’s eye. Although the direc-
tion of gaze can be obtained very accurately in this method,
it is so awkward and uncomfortable that it is impossible for
nonlaboratory tasks.

Recently, using a noncontacting video camera together
with a set of techniques, numerous video-based methods have
been presented. Compared with non-video-based gaze track-
ing methods, video-based gaze tracking methods have the ad-
vantage of unobtrusiveness and being comfortable during the
process of gaze estimation. We will concentrate on the video-
based approaches in this paper.
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The direction of a person’s gaze is determined by two
factors: face orientation (face pose) and eye orientation (eye
gaze). Face pose determines the global direction of the gaze,
while eye gaze determines the local direction of the gaze.
Global gaze and local gaze together determine the final gaze
of the person. According to these two aspects of gaze informa-
tion, video-based gaze estimation approaches can be divided
into a head-based approach, an ocular-based approach, and a
combined head- and eye-based approach.

The head-based approach determines a user’s gaze based
on head orientation. In [16], a set of Gabor filters is applied
locally to the image region that includes the face. This results
in a feature vector to train a neural network to predict the two
neck angles, pan and tilt, providing the desired information
about head orientation. Mukesh and Ji [14] introduced a ro-
bust method for discriminating 3D face pose (face orientation)
from a video sequence featuring views of a human head un-
der variable lighting and facial expression conditions. Wavelet
transform is used to decompose the image into multiresolu-
tion face images containing both spatial and spatial-frequency
information. Principal component analysis (PCA) is used to
project a midfrequency, low-resolution subband face pose onto
a pose eigenspace where the first three eigencoefficients are
found to be most sensitive to pose and follow a trajectory as
the pose changes. Any unknown pose of a query image can
then be estimated by finding the Euclidean distance of the
first three eigencoefficients of the query image from the es-
timated trajectory. An accuracy of 84% was obtained for test
images unseen during training under different environmental
conditions and facial expressions, and even for different hu-
man subjects. Gee et al. [6] estimated the user’s gaze direction
by head orientation from a single, monocular view of a face by
ignoring the eyeball’s rotation. Our recent efforts [11] in this
area led to the development a technique that classifies 3D face
poses based on some ocular parameters. Gaze estimation by
head orientation, however, only provides a global gaze since
one’s gaze can still vary considerably given the head orienta-
tion. By looking solely at the head movements, the accuracy
of the user’s gaze is traded for flexibility.

The ocular-based approach estimates gaze by establishing
the relationship between gaze and the geometric properties of
the iris or pupil. One of the problems in the ocular-based ap-
proach is that only local information, i.e., the images of the
eyes, is used for estimating the user’s gaze. Consequently, the
system relies on a relatively stable position of the user’s head
with respect to the camera, and the user should not rotate his
head. Iris and pupil, two prominent and reliable features within
the eye region, are often utilized in the gaze determination ap-
proach. The special character of the iris structure, namely, the
transition from white to dark then dark to white, makes it pos-
sible to segment iris from the eye region reliably. The special
bright pupil effect under IR illumination makes pupil segmen-
tation very robust and effective. Specifically, the iris-based
gaze estimation approach computes gaze by determining the
iris location from the iris’ shape distortions, while the pupil-
based approach determines gaze based on the relative spatial
positions between pupil and the glint (cornea reflection). For
example, neural networks have been used in the past for this
task [2,20]. The idea is to extract a small window containing
the eye and feed it, after proper intensity normalization, to
a neural network. The output of the network determines the

coordinates of the gaze. A large training set of eye images
needs to be collected for training, and the accuracy of it is not
as good as for other techniques. Zhu et al. [21] proposed an
eye gaze estimation method based on the vector from the eye
corner to the iris center. First, one inner eye corner and the
iris center are extracted from the eye image. Then a 2D lin-
ear mapping function from the vector between the eye corner
and iris center to the gaze point in the screen is obtained by
a simple calibration. But this simple linear mapping is only
valid for a static head position. When the face moves, it will
no longer work. Wang et al. [19] presented a new approach to
measuring human eye gaze via iris images. First, the edges of
the iris are located and the iris contour is fitted to an ellipse.
The eye gaze, defined in their paper as the unit surface nor-
mal to the supporting plane of the iris, can be estimated from
the projection of the iris contour ellipses. But in their method,
calibration is needed to obtain the radius of the iris contour for
different people. Also, a high-quality eye image is needed to
obtain the iris contour, and the user should keep the eye fully
open to avoid eyelid occlusion of the iris.

So far, the most common approach to ocular-based gaze
estimation is based on the relative position between pupil and
the glint (cornea reflection) on the cornea of the eye [4,8,
9,15,12,13,5,1]. Assuming a static head, methods based on
this idea use the glint as a reference point; thus the vector
from the glint to the center of the pupil is used to infer the
gaze direction, assuming the existence of a simple analytical
function that maps glint vector to gaze. While contact free
and nonintrusive, these methods work well only for a static
head, which is a rather restrictive constraint on the part of the
user. Even a chin rest [1] is used to keep the head still because
minor head movement can foil these techniques. This poses
a significant hurdle to natural human–computer interaction
(HCI).Another serious problem with the existing eye and gaze
tracking systems is the need to perform a rather cumbersome
calibration process for each individual. For example, in [13],
nine points are arranged in a 3 × 3 grid on a screen, and the
user is asked to fixate his/her gaze on a certain target point
one by one. On each fixation, the pupil-glint vector and the
corresponding screen coordinate are obtained, and a simple
second-order polynomial transformation is used to obtain the
mapping relationship between the pupil-glint vector and the
screen coordinates. In their system, only slight head motion
is allowed, and recalibration is needed whenever the head is
moved or a new user wants to use it.

The latest research efforts are aimed at overcoming this
limitation. Researchers from NTT in Japan proposed [15] a
new gaze tracking technique based on modeling the eyeball.
Their technique significantly simplifies the gaze calibration
procedure, requiring only two points to perform the necessary
calibration. The method, however, still requires a relatively
stationary head, and it is difficult to acquire an accurate geo-
metric eyeball model for each subject. Researchers from IBM
[12] are also studying the feasibility of completely eliminating
the need for a gaze calibration procedure by using two cameras
and by exploiting the geometry of eyes and their images. Also,
Shih et al. [17] proposed a novel method for estimating gaze
direction based on 3D computer vision techniques. Multiple
cameras and multiple point light sources are utilized in their
method. Computer simulation shows promising results, but it
seems too complicated for practical use. Other recent efforts
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[22,5] also focus on improving eye tracking robustness under
various lighting conditions.

In view of these limitations, in this paper we present a
gaze estimation approach that accounts for both the local gaze
computed from the ocular parameters and the global gaze com-
puted from the head pose. The global gaze (face pose) and local
gaze (eye gaze) are combined together to obtain the precise
gaze information of the user.A general approach that combines
head pose information with eye gaze information to perform
gaze estimation is proposed. Our approach allows natural head
movement while still estimating gaze accurately. Another ef-
fort is to make the gaze estimation calibration free. New or ex-
isting users who have moved need not undergo a personal gaze
calibration before using the gaze tracker. Therefore, compared
with the existing gaze tracking methods, our method, though
at a lower angular gaze resolution (about 5◦ horizontally and
8◦ vertically), can perform robustly and accurately without
calibration and with natural head movements.

An overview of our algorithm is given in Fig. 1. In Sect. 2,
we will briefly discuss our system setup and the eye detection
and tracking method. In Sect. 3, the technology for pupil and
glint detection and tracking is discussed. Also, the parameters
extracted from the detected pupil and glint for gaze calibra-
tion are covered. In Sect. 4, gaze calibration using GRNNs
is discussed. Section 5 discusses the experimental results and
the operational volumes for our gaze tracker. The paper ends
in Sect. 6 with a summary and a discussion of future work.

2 Eye tracking

Gaze tracking starts with eye tracking. For eye tracking, we
track pupils instead. We use IR LEDs that operate at a power of
32 mW in a wavelength band 40 nm wide at a nominal wave-
length of 880 nm. As in [10], we obtain a dark and a bright
pupil image by illuminating the eyes with IR LEDs located
off (outer IR ring) and on the optical axis (the inner IR ring),
respectively. To further improve the quality of the image and
to minimize interference from light sources other than the IR
illuminator, we use an optical bandpass filter that has a wave-
length pass band only 10 nm wide. The filter has increased
the signal-to-noise ratio significantly compared with the case

Fig. 2. Hardware setup: the camera with an active IR illuminator

without using the filter. Figure 2 illustrates the IR illuminator
consisting of two concentric IR rings and the bandpass filter.

Figure 3 summarizes our pupil detection and tracking al-
gorithm, which starts with pupil detection in the initial frames,
followed by tracking. Pupil detection is accomplished based
on both the intensity of the pupils (the bright and dark pupils
as shown in Fig. 4) and on the appearance of the eyes using the
support vector machine (SVM). The use of the SVM avoids
falsely identifying a bright region as a pupil. Specifically, can-
didates of pupils are first detected from the difference image
resulting from subtracting the dark pupil image from the bright
pupil image. The pupil candidates are then validated using the
SVM to remove spurious pupil candidates. Given the detected
pupils, pupils in the subsequent frames can be detected effi-
ciently via tracking. Kalman filtering is used since it allows
pupil positions in the previous frame to predict pupil positions
in the current frame, thereby greatly limiting the search space.
Kalman filtering tracking based on pupil intensity is therefore
implemented. To avoid Kalman filtering going awry due to the
use of intensity only, Kalman filtering is augmented by mean-
shift tracking, which tracks an object based on its intensity
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Bright Pupil Eye Tracker
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Eye Tracker
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Fig. 3. Flowchart of our pupil detection and tracking algorithm
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a

b

Fig. 4. Bright (a) and dark (b) pupil images with glints

distribution. Details on our eye detection and tracking may be
found in [22].

3 Gaze determination and tracking

Our gaze estimation algorithm consists of three parts: pupil-
glint detection and tracking, gaze calibration, and gaze map-
ping. In the following discussion, each part will be discussed
in detail.

3.1 Pupil and glint detection and tracking

Gaze estimation starts with pupil and glint detection and track-
ing. For gaze estimation, we continue using the IR illuminator
as shown in Fig. 2. To produce the desired pupil effects, the
two rings are turned on and off alternately via the video de-
coder we developed to produce the so-called bright and dark
pupil effect as shown in Fig. 4a and b.

Note that glint (the small brightest spot) appears on both
images. Given a bright pupil image, the pupil detection and
tracking technique described in Sect. 2 can be directly applied
to pupil detection and tracking. The location of a pupil at each
frame is characterized by its centroid. Algorithm-wise, glint is
detected from the dark image since the glint is much brighter
than the rest of the eye image, which makes glint detection
and tracking much easier. The pupil detection and tracking
technique can be used to detect and track glint from the dark
images. Figure 5c shows the detected glints and pupils.

3.2 Local gaze calibration

Given the detected glint and pupil, a mapping function is often
used to map the pupil–glint vector to gaze (screen coordinates).
Figure 5 shows the relationship between gaze and the relative
position between the glint and the pupil.

The mapping function is often determined via a calibration
procedure. The calibration process determines the parameters

a b c
Look left

a b c
Look frontal

a b c
Look up left

Fig. 5. Relative spatial relationship between glint and bright pupil
center used to determine eye gaze position. a Bright pupil images. b
Glint images. c Pupil–glint relationship generated by superimposing
glint to the thresholded bright pupil images

for the mapping function given a set of pupil–glint vectors
and the corresponding screen coordinates (gazes). The con-
ventional approach to gaze calibration suffers from two short-
comings. First, most of the mapping is assumed to be an an-
alytical function of either linear or second-order polynomial,
which may not be reasonable due to perspective projection
and the spherical surface of the eye. Second, only coordinate
displacements between the pupil center and glint position are
used for gaze estimation, which makes the calibration face
orientation dependent. Another calibration is needed if the
head has moved since the last calibration, even for minor head
movement. In practice, it is difficult to keep the head still, and
the existing gaze tracking methods will produce an incorrect
result if the head moves, even slightly.

Therefore, head movement must be incorporated into the
gaze estimation procedure.

3.3 Face pose by pupil properties

In our pupil tracking experiments, we had an interesting ob-
servation that the pupil appearances vary with different poses.
Figure 6 shows the appearance changes of pupil images under
different face orientations.

Our study shows that there exists a direct correlation be-
tween 3D face pose and properties such as pupil size, inter-
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a Look right

b Look left

c Look front

Fig. 6. Changes of pupil images under different face orientations

pupil distance, pupil shape, and pupil ellipse orientation. It is
apparent from these images that:

1. The interpupil distance decreases as the face rotates away
from the frontal orientation.

2. The ratio between the average intensity of the two pupils
either increases to over one or decreases to less than one
as the face rotates away.

3. The shapes of the two pupils become more elliptical as the
face rotates away or rotates up/down.

4. The sizes of the pupils also decrease as the face rotates
away or rotates up/down.

5. The orientation of the pupil ellipse will change as the face
rotates around the camera optical axis.

Based on the above observations, we can develop a face
pose classification algorithm by exploiting the relationships
between face orientation and these pupil parameters. We build
a so-called pupil feature space (PFS) that is constructed by
nine pupil features: interpupil distance, sizes of left and right
pupils, intensities of left and right pupils, ellipse angles of
left and right pupils, and ellipse ratios of left and right pupils.
To make those features scale invariant, we further normalize
those parameters by dividing by corresponding values of the
front view. Figure 7 shows sample data projections in 3D PFS,
from which we see clearly that there are five distinctive clus-
ters corresponding to five face orientations (five yaw angles).
Note that, although we can only plot 3D space here, PFS is
constructed by nine features in which the clusters will be more
distinctive. So a pose can be determined by the projection of
pupil properties in PFS. Details on the face pose estimation
based on pupil parameters may be found in [11].

3.4 Parameters for gaze calibration

PFS can capture relationships between 3D face pose and the
geometric properties of the pupils, which proves that there

Fig. 7. Face pose clusters in pupil feature space

exists a direct correlation between 3D face pose and the geo-
metric properties of the pupils.

To incorporate the face pose information into the gaze
tracker, the factors accounting for the head movements and
those affecting the local gaze should be combined to produce
the final gaze. Hence, six factors are chosen for the gaze cal-
ibration to get the mapping function: ∆x, ∆y, r, θ, gx, and
gy . ∆x and ∆y are the pupil–glint displacement. r is the ratio
of the major to minor axes of the ellipse that fits the pupil.
θ is the pupil ellipse orientation, and gx and gy are the glint
image coordinates. The choice of these factors is based on
the following rationale. ∆x and ∆y account for the relative
movement between the glint and the pupil, representing the
local gaze. The magnitude of the pupil–glint vector can also
relate to the distance of the subject to the camera. r is used
to account for out-of-plane face rotation. The ratio should be
close to 1 when the face is frontal. The ratio becomes larger
or less than 1 when the face turns either up/down or left/right.
Angle θ is used to account for in-plane face rotation around
the camera optical axis. Finally, (gx, gy) is used to account for
the in-plane head translation.

The use of these parameters accounts for both head and
pupil movement since their movements will introduce cor-
responding changes to these parameters. This effectively re-
duces the head movement influence. Furthermore, the input
parameters are chosen such that they remain relatively con-
stant for different people. For example, these parameters are
independent of the size of the pupils, which often vary among
people. The determined gaze mapping function, therefore, will
be able to generalize. This effectively eliminates the need to
recalibrate for another person.

4 Gaze calibration via generalized regression neural
networks (GRNNs)

Given the six parameters affecting gaze, we now need to de-
termine the mapping function that maps the parameters to the
actual gaze. In this study, one’s gaze is quantized into eight
regions on the screen (4 × 2), as shown in Fig. 8.

The reason for using neural networks to determine the
mapping function is because of the difficulty in analytically
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Fig. 8. Quantized eye gaze regions on a computer screen

deriving the mapping function that relates pupil and glint pa-
rameters to gaze under different face poses and for different
persons. Given sufficient pupil and glint parameters, we be-
lieve there exists a unique function that relates gaze to different
pupil and glint parameters.

Introduced in 1991 by Specht [18] as a generalization of
both radial basis function networks (RBFNs) and probabilistic
neural networks (PNNs), GRNNs have been successfully used
in function approximation applications. GRNNs are memory-
based feedforward networks based on the estimation of prob-
ability density functions. GRNNs feature fast training times,
can model nonlinear functions, and have been shown to per-
form well in noisy environments given enough data. Our ex-
periments with different types of neural networks also reveal
superior performance of GRNN over the conventional feed-
forward backpropagation neural network.

The GRNN topology consists of four layers: input layer,
hidden layer, summation layer, and output layer. The input
layer has six inputs, representing the six parameters, while
the output layer has one node. The number of hidden nodes
is equal to the number of training samples, with one hidden
node added for each set of the training sample. The number of
nodes in the summation layer is equal to the number of output
nodes plus 1. Figure 9 shows the GRNN architecture we use.

output layer

summation layer

hidden layer

input layer

inputs

Fig. 9. GRNN architecture used for gaze calibration

Due to a significant difference in horizontal and verti-
cal spatial gaze resolution, two identical GRNNs were con-
structed, with the output node representing the horizontal and
vertical gaze coordinates sx and sy , respectively.

The parameters to use for the input layer must vary with
different face distances and orientations to the camera. Specif-
ically, the input vector to the GRNN is

g =
[
∆x ∆y r θ gx gy

]
.

Before supplying to the GRNN, the input vector is normal-
ized appropriately. The normalization ensures that all input
features are in the same range.

A large amount of training data under different head posi-
tions is collected to train the GRNN. During the training data
acquisition, the user is asked to fixate his/her gaze on each
gaze region. On each fixation, ten sets of input parameters are
collected so that outliers can be identified subsequently. Fur-
thermore, to collect representative data, we use one subject
from each race including an Asian subject and a Caucasian
subject. In the future, we will extend the training to additional
races. The subjects’ ages range from 25 to 65. The acquired
training data, after appropriate preprocessing (e.g., nonlinear
filtering to remove outliers) and normalization, are then used
to train the NN to obtain the weights of the GRNN. GRNNs are
trained using a one-pass learning algorithm and are therefore
very fast.

4.1 Gaze mapping and classification

After training, given an input vector the GRNN can then clas-
sify it into one of the eight screen regions. Figure 10 shows
that there are distinctive clusters of different gazes in the three-
parameter space. In this figure, we only plot 3D space. The
clusters would be more distinctive if they were plotted by six
features.

Although the clusters of different gazes in the gaze pa-
rameters are distinctive, the clusters sometimes overlap. This
is especially a problem for gaze regions that are spatially ad-
jacent to each other. Our experiment shows it is not always
possible to map an input vector to a correct gaze class. Gaze
misclassifications may occur. Our experiments confirmed this
as shown by the confusion matrix shown in Table 1. An av-
erage of gaze classification accuracy of (85% accuracy) was

Fig. 10. Gaze clusters in feature space
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Table 1. Gaze classification results for the one-level GRNN classifier.
An average of gaze classification accuracy of 85% was achieved for
480 testing data not included in the training data for the one-level
gaze classifier

Ground Estimated result (mapping target #) Correct-

truth ness

(target #) 1 2 3 4 5 6 7 8 rate (%)

1 49 11 0 0 0 0 0 0 82

2 0 52 8 0 0 0 0 0 87

3 0 0 46 14 0 0 0 0 77

4 0 0 0 59 1 0 0 0 98

5 0 0 0 0 60 0 0 0 100

6 0 0 0 6 8 46 0 0 77

7 0 0 2 0 0 5 53 0 88

8 4 0 0 0 0 0 6 50 84

achieved for 480 testing data not included in the training data.
Further analysis of this result shows significant misclassifica-
tion occur between neighboring gaze regions. For example,
about 18% of the gaze in region 1 are misclassified to gaze re-
gion 2 while about 24% gazes for region 3 are misclassified as
gaze region 4. We therefore conclude misclassification almost
exclusively occur among neighboring gaze regions.

4.2 Hierarchical gaze classifier

To reduce misclassification among neighboring gaze classes,
we design a hierarchical classifier to perform additional clas-
sification. The idea is to focus on the gaze regions that tend
to get misclassified and perform reclassification for these re-
gions. Therefore, we design a classifier for each gaze region
to perform the neighboring classification again. According to
the regions defined in Fig. 8, we first identify the neighbors
for each gaze region and then only use the training data for
the gaze region and its neighbors to train the classifier. Specif-
ically, each gaze region and its neighbors are identified as
follows:

1. Region 1: neighbors: 2,8
2. Region 2: neighbors: 1,3,7
3. Region 3: neighbors: 2,4,6
4. Region 4: neighbors: 3,5
5. Region 5: neighbors: 4,6
6. Region 6: neighbors: 3,5,7
7. Region 7: neighbors: 2,6,8
8. Region 8: neighbors: 1,7

These subclassifiers are then trained using the training data
consisting of the neighbors’ regions only. The subclassifiers
are subsequently combined with the whole classifier to con-
struct a hierarchical gaze classifier as shown in Fig. 11.

Given an input vector, the hierarchical gaze classifier
works as follows. First, the whole classifier classifies the input
vector into one of the eight gaze regions; then, according to the
classified region, the corresponding subclassifier is activated
to reclassify the input vector to the gaze regions covered by the
subclassifier. The result obtained from the subclassifier will be
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Fig. 11. Structure of hierarchical gaze classifier

considered as the final classified result. Our expectation is that
the final classification results will improve or remain the same,
or at least will not get worse. Our experiments prove this.

5 Experimental results and analysis

To validate the performance of our gaze tracker, we perform
a series of experiments that involves the use of gaze to inter-
actively determine what to display on the screen.

The first experiment involves visual evaluation of our
eye tracking system. A laser pointer is used to point at
the different regions of the computer screen. As expected,
the user gaze is able to accurately follow the movement
of the laser pointer that moves randomly from one gaze
region to another gaze region, even under natural head
movement. A video demo of this experiment is available at
http://www.ecse.rpi.edu/∼cvrl/Demo/demo.
html.

To quantitatively characterize the accuracy of our system,
the second experiment studies the performance of our system
under different face orientations and distances to the cameras
and with different subjects. Table 2 summarizes the classifi-
cation results. Compared with Table 1, which was produced
based on the same data, we can see that the hierarchical gaze
classifier can achieve an average of around 95% accuracy for a
different subject, which improves the accuracy by around 10%
over the existing one-level gaze classifier method. Specifically,
the misclassification rate between neighbors 1 and 2 has de-
creased from 18% to about 8%, while the misclassification
rate between gaze regions 3 and 4 has decreased to about 5%
from the previous 24%. The classification errors for other gaze
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Table 2. An average of gaze classification results (95% accuracy)
was achieved for 480 testing data not included in the training data
for the hierarchical gaze classifier

Ground Estimated result (mapping target #) Correct-

truth ness

(target #) 1 2 3 4 5 6 7 8 rate (%)

1 55 5 0 0 0 0 0 0 92

2 0 58 2 0 0 0 0 0 97

3 0 0 57 3 0 0 0 0 95

4 0 0 0 59 1 0 0 0 98

5 0 0 0 0 60 0 0 0 100

6 0 0 1 5 5 49 0 0 82

7 0 0 2 0 0 5 53 0 88

8 3 0 0 0 0 0 2 55 92

regions have also improved or remained unchanged. The hi-
erarchical classification therefore meets our expectation.

Our study, however, shows that the system has some diffi-
culty with older people, especially for those who suffer from
some vision problem such as farsightedness or nearsighted-
ness.

Our experiments show that our system, working in near
real-time (20 Hz) with an image resolution of 640×480 pixels
on a Pentium III, allows about 15 cm. left/right and up/down
head translational movement and allows ±20◦ left/right head
rotation as well as ±15◦ up/down rotation. The distance to the
camera ranges from 1 to 1.5 m. The spatial gaze resolution is
about 5◦ horizontally and 8◦ vertically, which corresponds to
about 10 cm. horizontally and 13 cm. vertically at a distance
of about 1.25 m. from the screen.

Finally, we apply our gaze tracker to control graphic dis-
play on the screen interactively. This experiment involves user
gazes at a region of the computer screen and then blinks
three times, and the region being gazed at is then magni-
fied to fill the screen. This repeats until the user can ob-
tain enough details for the region of interest. One application

Fig. 12. Map of the United States, with the gaze-selected region as
marked by the shaded circle and the associated rectangle around it

may be a gaze-controlled map display as shown in Figs. 12,
13, and 14, which show a gaze-controlled map display at
different levels of detail. We also applied our gaze track-
ing software to a gaze-controlled car-sale kiosk, where the
user of the kiosk remotely (about 1.25 m. from the screen)
controls what types of cars and how much detail to display
on the screen using his/her gaze. Figures 15, 16, and 17
show sample images of the gaze-controlled kiosk. For a real-
time demonstration of the gaze tracking software, please
refer to http://www.ecse.rpi.edu/∼cvrl/Demo/
demo.html.

During our study we found that the vertical pupil move-
ment range is much smaller than that of the horizontal range,
causing the vertical pupil–glint vector measurement to be
much more susceptible to external perturbation such as head
movement. This leads to much lower SNR for the vertical data
than that of the horizontal data, thereby leading to lower gaze
vertical resolution. This explains why we used two separate
neural networks for the vertical and horizontal gaze estima-

Fig. 13. Blown-up area for selected region in Fig. 12. Another se-
lection is made by gazing on this image as indicated by the shaded
circle and the associated rectangle around it

Fig. 14. Blown-up area for selected region in Fig. 13. Another se-
lection is made by gazing on this image as indicated by the shaded
circle and the associated rectangle around it
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Fig. 15. Main menu of gaze-controlled car-sale kiosk, with gaze-
selected car option as marked by the shaded circle to indicate the
“exotic” cars that the user wants to check

Fig. 16. Cars for the selected car option in Fig. 15. Another selection
is made by gazing on this image as indicated by the shaded circle
to indicate the specific car that the user has an interest in. The user
can view other “exotic” cars’ information by looking at the “Next”
button or browse other types of cars by looking at the “Back” button

tion. The current 4 × 2 gaze regions can be further refined to
4 × 3 or even 5 × 4. But this will lead to a decrease in track-
ing accuracy. This problem, however, can be overcome if we
increase the image resolution.

6 Conclusions

In this paper, we present a new approach for gaze track-
ing. Compared with the existing gaze tracking methods, our
method, though at a lower spatial gaze resolution (about 5◦),
has the following benefits: no calibration is necessary, it al-
lows natural head movement, and it is completely nonintru-
sive and unobtrusive while still producing relatively robust
and accurate gaze tracking. The improvement is a result of us-
ing a new gaze calibration procedure based on GRNNs. With
GRNNs, we do not need to assume an analytical gaze map-
ping function; therefore, we can account for head movement

Fig. 17. Detailed information for the selected car in Fig. 16. The
user can print the car information by looking at the “Print” button as
indicated by the shaded circle or browse other cars by looking at the
“Back” button

in the mapping. The use of hierarchical classification schemes
further improves the gaze classification accuracy.

While our gaze tracker may not be as accurate as some
commercial gaze trackers, it achieves sufficient accuracy even
under large head movements and, more importantly, is calibra-
tion free. It has significantly relaxed the constraints imposed
by most existing commercial eye trackers. We believe that,
after further improvement, our system will find many applica-
tions including smart graphics, human computer interaction,
nonverbal communication via gaze, and assistance for people
with disabilities.
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