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Abstract

The advent of network functions virtualization (NFV) has revolutionized numerous network-based applications due to its several
benefits such as flexibility, manageability, scalability, and security. By the software-based virtualization of network functions on
a single infrastructure, NFV provides users with a framework that dynamically provisions various network services in a flexible
manner. However, NFV faces several security challenges (e.g., multi-tenancy and live migration) which make it vulnerable to some
cybersecurity attacks (e.g., side-channel attacks and shared resource misuse attacks). In this paper, we provide an overview of NFV,
discuss potentially serious security threats on NFV and introduce effective countermeasures to mitigate those threats. Finally, we
suggest some practical solutions to provide a trustworthy platform for NFV.
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1. Introduction

Nowadays, the impressive effects of network functions vir-
tualization (NFV) are evident in the wide range of applications
from IP node implementations (e.g., future Internet architec-
ture) to mobile core networks [1]. NFV allows network func-
tions (e.g., packet forwarding and dropping) to be performed in
virtual machines (VMs) in a cloud infrastructure rather than in
dedicated devices [2]. NFV as an agile and automated network
is desirable for network operators due to the ability of easily de-
veloping new services and the capabilities of self-management
and network programmability via software-defined networking
(SDN) [3]. Furthermore, co-existence with current networks
and services leads to improve customer experience, and reduces
the complexity, capital expenditure (CAPEX), and operational
expenditure (OPEX).

In theory, virtualization broadly describes the separation of
resources or requests for a service from the underlying physical
delivery of that service [4]. In this view, NFV involves the im-
plementation of network functions in software that can run on
a range of hardware, which can be moved without the need for
installation of new equipment. Therefore, all low-level physical
network details are hidden and the users are provided with the
dynamic configuration of network tasks [5].

Despite many advantages, NFV introduces new security
challenges. Since all software-based virtual functions in NFV
can be configured or controlled by an external entity (e.g., third-
party provider or user), the whole network could be potentially
compromised or destroyed. For example, in order to properly
reduce hosts’ heavy workloads, a hypervisor in NFV can dy-
namically try to achieve the load-balance of assigned loads for
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multiple VMs through a flexible and programmable networking
layer which is known as virtual switch; however, if the hyper-
visor is compromised, all network functions can be disabled
completely.

Also, NFV’s attack surface is considerably increased, com-
pared with traditional network systems. Besides network re-
sources (e.g., routers, switches, etc.) in the traditional networks,
virtualization environments, live migration, and multi-tenant
common infrastructure could also be attacked in NFV. For ex-
ample, an attacker can snare a dedicated virtualized network
function (VNF) and then spread out its bots in a victim’s whole
network using the migration and multicast ability of NFV [6].
To make matters worse, the access to a common infrastructure
for a multi-tenant network based on NFV inherently allows for
other security risks due to the shared resources between VMs.
For example, in a data center network (DCN), side-channels
(e.g., cache-based side channel) attacks and/or operational in-
terference could be introduced unless the shared resources be-
tween VMs is securely controlled with proper security policies.
In practice, it is not easy to provide a complete isolation of
VNFs in DCNs [7].

Although NFV is in the initial development stage, several
previous studies have introduced NFV and its challenging is-
sues. For example, Han et al. [8] discussed its challenges and
opportunities in terms of the performance requirement and ar-
chitecture. Veitch et al. [9] investigated the practical chal-
lenges of real-world NFV development for both performance
optimization and diagnostic purposes. The relationship of NFV
with SDN and cloud computing was presented in [10] and [11]
which categorized the SDN hypervisors and compared their
features of network attribute abstraction and isolation. Further-
more, the state-of-the-art in NFV and its standardization efforts
were discussed in [12]. To assure the reliability of the common
infrastructure of NFV, Cotroneo et al. discussed the possible
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reliability challenges of infrastructure in [13].
In this paper, we identify security risks in NFV and analyze

their potential impacts from a variety of different angles. The
main contributions of this paper are summarized as follows:

• We explore potential security threats in NFV and give the
detailed list of the identified threats corresponding to our
threats categories. Our categorization will be helpful for
network operators and security engineers who look for-
ward to deploying NFV-based services.

• We suggest reasonable countermeasures to cope with those
security threats. Based on the recent technologies for trust-
worthy platform, we particularly present a secure virtu-
alization environment to mitigate the security threats in
NFV.

The rest paper is organized as follows. In Section 2, we
briefly present an overview of NFV and its structure. In Section
3, we present the main security threats of NFV into two cate-
gories and discuss their corresponding solutions. In Section 4,
we provide our recommendations to build a secure virtualiza-
tion environment. Finally, we conclude the paper along with
future work in Section 5.

2. Overview of NFV

In general, for deploying a new network service or platform,
it is required to add some variety of hardware appliances which
necessarily increase the cost of purchasing new network re-
sources and hiring new engineers to manage those resources.
However, rapid changes in technology have led to shorter prod-
uct life cycles in the network industry [14]. NFV is a key en-
abling technology for avoiding substantial changes in the ac-
tual physical components of network systems by providing net-
work functions through pure software implementation rather
than hardware resources. In the virtualized environment, hard-
ware can be emulated, and multiple virtual functions can share
available resources and run simultaneously on an infrastructure
through virtualization [15].

In NFV, traditional network appliances, which are mainly
deployed as physical hardware components, can be virtualized
and run on a common infrastructure [1, 8], as shown in Fig. 1.
That is, virtual appliances (e.g., firewall, WAN acceleration,
VPN, router, content delivery network (CDN)) can be moved
to, or instantiated in various locations in the network on de-
mand, without the installation of new pieces of equipment.

Based on the framework introduced by the European
Telecommunications Standards Institute (ETSI) [16], NFV is
built on three main domains: (1) VNF, (2) NFV infrastructure,
and (3) NFV management and orchestration (MANO). VNF
can be considered as a container of network services provi-
sioned by software, very similar to a VM operational model.
The infrastructure part of NFV includes all physical resources
(e.g., CPU, memory, and I/O) required for storage, computing
and networking to prepare the execution of VNFs. The man-
agement of all virtualization-specific tasks in NFV framework

Figure 1: The main concept of Network Functions Virtualization (NFV)

is performed by NFV management and orchestration domain.
For instance, this domain orchestrates and manages the life-
cycle of resources and VNFs, and also controls the automatic
remote installation of VNFs.

Since hardware and software for NFV are generally devel-
oped by different vendors, interoperability remains a major
challenge to deploy NFV services. For example, MANO could
be effectively implemented only if VNFs and network appli-
ances can be accessed and managed through standard inter-
faces that hide as much of their heterogeneity in physical re-
sources as possible. To provide open and standard interfaces
toward the physical resources, as depicted in Fig. 1, NFV in-
frastructure includes a virtualization layer. This layer logically
partitions physical resources and provides the anchor between
VNF and the underlying layer of virtualized infrastructure [16].
Hypervisors are primary tools to implement this layer. A hy-
pervisor provides a host with a virtualization environment that
is functionally equivalent to the original machine environment
[17]. Practically, the hypervisor monitors VMs’ operations and
manages the access to resources and provides failure recovery
for required QoS [15]. In the view of security, the hypervisor
should provide an isolated space for serving VMs and proper
access control mechanisms to prevent unauthorized access to
the shared resources between VMs. In practice, however, it is
not easy secure isolation between them. We discuss this issue
in Section 3.2.2.

3. Security threats

Theoretically, NFV is an ideal solution for deploying new
network equipment and services because network functions can
be dynamically updated via software downloads and updates
instead of replacing physical hardware. However, some secu-
rity and robustness issues still need to be addressed to fully at-
tain the benefits of using NFV. We will particularly face two
significant security challenges: (1) Network function-specific
security issues and (2) Generic virtualization-related security
issues [14], as shown in Fig. 2.
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Figure 2: Two significant security challenges on NFV

Since NFV is working on a network infrastructure, it is im-
portant to achieve the desired performance levels for enabling
NFV. Unfortunately, most existing IP based networks are vul-
nerable to network traffic attacks such as distributed denial of
service (DDoS). In theory, NFV controllers are potentially seen
as a risk of single point of failure. The chance of such attacks
is heavily dependent on the network topology and selection of
NFV controllers [14].

Interestingly, virtualization can be an effective tool to pre-
vent malicious network traffic by providing several useful ca-
pabilities such as isolation and live migration. For example, a
centralized security management service can efficiently man-
age and control malicious network traffic within a pre-defined
set of isolated VNFs; however, on the other hand, attackers can
exploit the weakness of such virtualization technologies. In the
next sections, we will discuss those issues in more detail.

3.1. Network function-specific threats

Network function-specific threats refer to attacks on network
functions and/or resources (e.g., spoofing, sniffing and denial
of service). Unsurprisingly, this type of threats is related to the
attacker’s capabilities and the target network topology.

In the private deployment of NFV where any attacker has
no remote access to the network using NFV, the main network
function-specific threats are only limited to the malicious in-
siders. In this case, sophisticated security protection solutions
(e.g., firewall) focusing on outsider attacks are not effective any-
more against an insider (e.g., malicious administrator) who has
specific access rights to the infrastructure. In theory, identity
and access management mechanisms (e.g., role-based access
control) could be properly applied to mitigate the impact of in-
sider attacks. Also, the analysis of access logs can detect sus-
picious insider attack activities [14]. Note that a configuration
error can often expose a network function to the public Inter-
net in practice [14]. Therefore, it is very hard to assume that
there is no need to consider external attackers even when NFV
is originally deployed in a private manner.

As illustrated in Fig. 3, in the public deployment of NFV,
the network can be accessible by remote clients through pub-
lic networks and/or by the third-party networks to control the
specific VNFs. Due to the appearance of VNFs controlled by
the entities in the third-party networks, NFV generally faces a
wide range of network security challenges. If the remote clients
or third-party network entities are malicious, the infrastructure
can be disabled or compromised by using network attacks (e.g.,
DDoS) as well as software attacks that exploit specific vulnera-
bilities in the deployed virtualization software.

Figure 3: Public deployment of NFV, accessible by clients through public net-
work and third-party network (adapted from [14])

At the first glance, it seems that those network attacks can
be simply prevented by using existing security solutions such
as firewall and intrusion detection systems, but it is not easy to
mitigate those attacks in some situations for NFV. For example,
an attacker can create botnets running on the cloud service pro-
viding NFV [18]. In this case, since the attacker performs net-
work attacks from inside the network via the botnets, the effec-
tiveness of conventional security solutions may be limited [6].
Therefore, NFV providers should carefully consider mitigating
sophisticated DDoS attacks such as Xmas-tree and TCP SYN
flood from inside the network [18, 19]. Furthermore, intelligent
important data allocation [20] may be helpful to avoid unwill-
ing access by allocating the appropriate parts to the decision-
making groups at various management levels.

Finally, the applicability of software interfaces or APIs in
cloud services, which are utilized by customers to interact with
the cloud services, gets involved in NFV. Inherently, the secu-
rity and availability of services offered by cloud nodes depends
upon the security of these interfaces [21]. Based on this, the
APIs in cloud services are open to considerable security issues
on NFVs. Surely, the threats related to network functions of
NFV are not new, but are still more investigated to build a se-
cure NFV environment for service providers.

3.2. General virtualization threats

The foundation of NFV is set on network virtualization. In
this NFV environment, a single physical infrastructure is log-
ically shared by multiple VNFs. For these VNFs, providing a
shared, hosted network infrastructure introduces new security
vulnerabilities. As illustrated in Fig. 4, the general platform of
network virtualization consists of three entities; the providers
of the network infrastructure, VNF providers, and users. Since
the system consists of different operators, undoubtedly, their
cooperation cannot be perfect and each entity may behave in a
non-cooperative or greedy way to gain benefits [22].
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Figure 4: Participating entities of NFV; User, network infrastructure, and VNF
provider

The virtualization threats of NFV can be originated by each
entity and may target the whole or part of the system. In this
view, we need to consider the threats, such as side-channel or
flooding attacks as common attacks, and hypervisor, malware
injection or VM migration related attacks as the virtualization
and cloud specific attacks. In the following subsections, we try
to categorize these threats, according to their origination.

3.2.1. Infrastructure-target threats
Operational interference. Due to the common accessibility of
the infrastructure, a malicious user or a compromised provider
of VNF can interfere with the operations of the infrastructure by
inserting malware or manipulating network traffic. The increas-
ing network processing power and the programmability of the
network interface cards (NICs) and exploiting new routers with
the programmable packet processors [7, 23] make it possible
for a malicious entity to violate a network’s operations. For in-
stance, to achieve a scalable VM networking, Luo et al. [7] pro-
posed to offload virtual switching from hosts to programmable
NICs (PNICs). Although PNIC-based virtual switching im-
proves the network performance and reduces the overhead and
complexity by isolating computing and packet switching, it in-
troduces vulnerabilities threatening network infrastructure. In-
corporating NICs with programmable packet processors in the
network switching makes it feasible for an attacker to modify
the operations of the packet processor by injecting the specially
purposed data packets. In the proposed model of [7], to handle
the traffic congestion of a VM, another virtual switch connected
to the VM can buffer the packets inside itself and forward them
to the destination. The code vulnerability of the hosted virtual
switch allows for the chance for an attacker to trap the packets
of a victim host or generate the packets which lead to network
congestion or packet retransmission.

The same security threat can be considered for other pro-
grammable network interface nodes. Despite the benefits of
FPGA- and software-based programmable routers or routers
with programmable packet processors to improve the network
performance and flexibility [23, 24, 25, 26], it leads to new vul-
nerabilities of the infrastructure. To get some insight, Switch-

Blade [27] can be mentioned as a FPGA programmable and
customizable data plan for a virtual router. The DoS attack for
this SwitchBlade is mostly predictable if an attacker takes the
control of the operations of the packet processor of a router
[22].

Cooperating chance for malicious provider. Having access to
the resources of the network infrastructure, VNF providers can
take participation in network operations. Network-as-a-Service
(NaaS) [28] is a good example, which VNF providers use in
order to support customized forwarding decisions based on
each application’s needs in the cloud computing. Although this
model makes it possible to offer efficient in-network services,
such as data aggregation, stream processing, caching, and re-
dundancy elimination protocols, it lets VNF providers to take
sabotage activities against their competitors or the network in-
frastructure. The opportunity to detect the vulnerabilities of the
network infrastructure and launch a flooding attack (e.g., DoS)
to bring down the entire infrastructure and moreover extract
secret information [22], is conceivable for a malicious VNF
provider in competition with a co-hosted VNF. By detecting
excessive resource consumption by a virtual network, the hy-
pervisor can prevent this problem from happening. As the cost
for reasonable prevention of DoS, Shafieian et al. [6] suggest
restarting a malicious virtual network instead of restarting the
entire physical system.

Misuse of shared resources. Some cloud-specific attacks like
resource freeing attacks (RFAs) [29] or fraudulent resource
consumption attacks (FRC) [30] are possibly executable over
NFVs. Generally, the misuse of the shared resources of the
infrastructure, such that the victim can have no benefit of the
shared or dedicated resources, is the basement of these threats.
Creating dedicated instances for users and verifying malicious
requests according to a blacklist of IP addresses can be men-
tioned as solutions for these threats [6].

3.2.2. VNF-target threats
Outsourcing challenges. To support the characteristic of NFV,
it is possible to permit the hosting of different virtual functions
in a common infrastructure or the cloud computing. Further-
more, NFV allows for outsourcing the core computing and soft-
ware capabilities to the third-parties’ networks. A significant
security issue of NFV may be caused by releasing the resources
of the cloud and transferring the workload to an off-device net-
work in order to manage the workload potentially [31]. Offer-
ing security services in the cloud for mobile devices is a good
example for this kind of threat. Oberheide et al. [31] propose
a solution to avoid the complexity and intensiveness of secu-
rity functions which are heavy in both computation and power
for mobile devices. In this solution, the security functions are
moved to an off-device network employing multiple virtualized
malware detection engines. However, it allows for a good op-
portunity for an attacker in the shared network infrastructure to
take the control of the services or to compromise the confiden-
tiality.
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Despite the benefits of the outsourcing, these conditions in-
crease the probability of security problems related to virtual
networks which are targeted by other entities of NFV, such
as network infrastructure operator, co-hosted VNFs and users.
Each entity, which is based on its relation to the virtual net-
work, can create a risk on the function or secure information
of the virtual networks. For instance, malware injection is a
feasible attacks to eavesdrop or violate the functionality of the
virtual networks. To prevent this threat, it is necessary to con-
trol and regulate the malicious entity not to make malware be
public in NFV [6].

Side-channel attacks. Logical isolation, as a required property
of NFV [15, 22], improves the control and manageability of a
shared infrastructure system. The isolation can be performed
in different levels, such as address spaces or SDN virtualiza-
tion system [5]. A variety of mechanisms (e.g., virtual LAN or
programming isolated slices) provide a way to establish traffic,
physical, and control isolation [32]. Relying only on the tradi-
tional access-control mechanisms to perform logical VMs’ iso-
lation is not sufficient for modern virtualization systems [33].
Based on this insufficiency, some cross virtual network side-
channel attacks may threaten co-hosted VNFs in the shared
infrastructure [22, 34]. As a practical side-channel attack, a
covert channel attack bypasses mandatory auditing and access
controls to violate resource isolation. Wu et al. [35] showed
the insufficiency of cache channel techniques in a virtualized
environment due to addressing uncertainty, scheduling uncer-
tainty, and cache physical limitations. Wu et al. also suggested
a scheme of timing-based data transmission and bus locking
mechanism to address these obstacles. As another example,
Zhang et al. [33] showed an access-driven side-channel attack
on a virtualized symmetric multiprocessing system, such that
an attacker alternates execution to observe the behavior of a
victim. In this attack, the attacker frequently alternates execu-
tion on the same core with the victim so that it can measure
side-effects of the victim’s execution.

In software environments, Osvik et al. in [36] described how
a process in a side-channel attacks can threat other processes
running on the same processor, despite partitioning methods
such as memory protection, sandboxing and virtualization. As a
key point for an attacker, it is important to know where the vic-
tim’s access tables reside in the common resources (e.g., mem-
ory). In a public cloud infrastructure, checking the assigned IP
address, round-trip time (RTT), and clock-skews can help to de-
termine VM co-residency [37]. The placement vulnerabilities
in the multi-tenancy infrastructure make an adversary be able to
launch its VM co-resident with a victim VM on the same physi-
cal host. Varadarajan et al. in [38] investigated these vulnerabil-
ities in three major infrastructure providers (e.g., Amazon EC2)
and showed in spite of enhancement against past co-location
verifying techniques, insufficient performance isolation in hard-
ware still allows for such co-residency. Therefore, hiding the
access management from NFV is important to make a secure
environment for virtual networks.

Live migration. The live migration of VM is regarded as an
advantageous feature of virtualization, because it makes it pos-
sible to relocate VMs without any service interruption in NFV
[4, 39, 6]. The benefit of migration is significantly evident in
the workload balancing and system management. However, it
might be vulnerable under some threats, such as a replay attack,
Man-in-the-Middle (MitM) attack risen by sniffing the traffic
and DDoS flooding attack [4, 22] if the protection for the mi-
gration is not carefully designed. Normally, the VM migration
is performed by copying its memory pages from a source hyper-
visor to a destination hypervisor while a VM is running within
the source hypervisor [39]. Initiating unauthorized migration to
the attacker’s network, which leads to taking control over a vic-
tim’s VM or initiating the migration of a large number of VMs
to a victim’s network in order to break down it are the possible
results of these threats.

To prepare a safe environment for the live migration, some
protection solutions rely on cryptographic methods. In this re-
gard, the virtual trusted platform module (vTPM) can use TLS
protocol to provide confidentiality and authentication [40]. By
virtualization, all cryptographic operations of hardware-based
TPM (will be discussed later), e.g., key generation, hashing
and migration are implemented in software and are available
to VMs. As another example, a security-preserving live migra-
tion protocol [41] can provide integrity and privacy protection
during and after a live migration on a hypervisor-based pro-
cess protection systems by encrypting and hashing. Basically,
these solutions lead to the computational overhead of encryp-
tion which is not desirable to have an agile NFV. To avoid this
computational overhead, solutions like live migration defense
framework (LMDF) or Intel’s trusted execution technology (In-
tel’s TxT) define non cryptographic methods for safe migration.
The LMDF tries to preserve confidentiality with no encryption
by detecting a live migration in the early phase and also ex-
ecuting integrity and confidentiality measurements before the
migration [42]. In the Intel’s TxT solution, the live migration is
only possible between some pools of trusted hosts, with Intel’s
TxT enabled and such that the platform launch integrity has
been verified [43]. Despite avoiding the computational over-
head, the mentioned solutions have their own limitations. For
instance, creating and updating the trusted pools lead to some
considerations in the Intel’s TxT. Furthermore, all trusted hosts
in the pool should be Intel’s TxT enabled. This condition espe-
cially limits the live migration in the multi-vendor platforms.

Non-neutral infrastructure provider. Potentially, the provider
of network infrastructure can make threats over its hosted
VNFs. Due to the responsibility of the network infrastructure
as the basement of NFV, it should prepare the resources and in-
terconnections required by the hosted VNFs. To this end, the
infrastructure provider has the authority to monitor a network’s
activities and intervene them (if needed) to control the conges-
tion and accessibility of the network. Obviously, the malicious
or non-neutrality behavior of the provider [22, 34] can threat
the operations or privileged information of virtual networks.
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3.2.3. User targeted threats
User’s privacy and confidentiality. A user as an end-point of
the network is the easiest target to other malicious entities of
NFV. The user’s traffic is under monitoring and sniffing of a
VNF provider for proper service quality (QoS). Offering vir-
tualized network services, such as firewall, intrusion detection,
DDoS detection, SSL gateway, and media cache [26], gives ser-
vice providers a complete dominance over the user’s informa-
tion. It leads to a new trust relationship such that users must
trust their VNF providers with respect to the privacy of the
users’ data and the integrity of the computations [34].

On the other hand, the privacy and confidentiality of the users
are open to a network infrastructure provider. In order to control
the access and network congestion, the network traffic is under
monitoring of the infrastructure provider. Disturbing peer-to-
peer (P2P) connections and sniffing protocol headers in the pre-
text of traffic shaping are examples relevant to this vulnerability
[22]. The infrastructure can also introduce non-obvious threats
to other users due to the subtlety of how physical resources can
be transparently shared between VMs [34].

Malicious instances. Obviously, the user of NFV can be tar-
geted by attacks originated by other malicious users who utilize
the flaws of VNFs or the infrastructure. For instance, as cloud
malware injection attack on Amazon EC2 public IaaS Cloud,
a malicious user by editing the permission of the image of its
VM (Amazon Machine Image called AMI) can make this im-
age be public in the cloud. This malicious image will be visible
to other users, so they can launch VM instances based on this
image, which causes some threats such as the leakage of the
victim users’ information [6]. As a consequence, to provide a
safe environment for users, it is necessary for the infrastructure
to detect and prevent any malicious instance. For this purpose,
it should not be possible for an attacker to determine where an
instance is located or is co-located with its own instance in the
infrastructure.

4. Secure virtualization environments

As stated earlier, security threats of NFV are categorized
as network function-specific threats and virtualization-related
threats. Generally, the first group of threats is limited to net-
working function issues and does not occur from the virtual-
ization. On the other hand, as mentioned in the Section 3.2,
the virtualization threats of NFV include a wide range of is-
sues from resource management to logical isolation and cloud
computing. To resolve those issues, in the following parts, we
suggest the recommended protection in regard to virtualization
threats and depict the suggested platform for secure virtualiza-
tion environments.

4.1. Security protection for virtualization environments
Trustworthy assurance. Cooperation among the entities of
NFV requires a trust management to ensure the integrity pro-
vision. The privacy and confidentiality of a user’s information
should be respected by both providers of VNF and infrastruc-
ture. While the cryptographic techniques, as basic solutions

(e.g., message stream encryption (MSE) [44]), are efficient to
guarantee the confidentiality of the data, the key management
and access control policies can be compromised when the hy-
pervisor is accessible by any third-party. In this view, Intels
single root I/O virtualization (SR-IOV) [45] technology with
the enhancement of VANFC [46] can be a safe solution for a
user’s instance in the presence of untrusted providers.

In the view of a VNF provider, a neutral and trusted infras-
tructure provider is expected for a multi-tenant network. To
this end, by traffic validation and monitoring mechanisms (e.g.,
DynaFL [47] for fault localization in the network with no re-
quirements on path durability or the source node knowing the
outgoing paths), the irregularity and malicious behaviors of the
infrastructure provider should be detected. Furthermore, the
accountability and trust management can be utilized by VNF
provider to know whether its software is running without any
modification in the infrastructure provider’s network. In this
case, dynamic trust management protocols, such as a protocol
suggested by [48], make it feasible to provide a secure routing
optimization in the presence of untrustworthy network. Remote
attestation service (e.g., Intel’s OAT [49]) and trusted network
access control [50] are other feasible validation mechanisms for
this goal.

Logical and physical isolation. In the view of network infras-
tructure, which includes physical resources, the complete and
agile isolation of resources accessible for co-hosted VNFs is
necessary. Despite logical and physical isolation in NFV, an
adversary might penetrate the isolation between VNFs due to
some vulnerabilities which escape from hypervisor [34] or al-
low for data breach [21]. To reduce the possibility of side-
channel attacks, some preparations, such as hiding the access
management, utilizing secure database interfaces, dedicating
resource instances, and obfuscating service structures, are nec-
essary. Essentially, it should not be possible for an attacker to
detect other co-hosted VNFs or a user’s instance in the same
physical resource. As a practical solution, STEALTHMEM,
which is introduced in [51], manages a set of locked cache lines
per core and multiplexes them. In this model, each VM can
load its own sensitive data into the locked cache lines which are
never evicted. To detect undesired co-residency, Zhang et al.
[52] introduced HomeAlone, which allows a VNF provider to
remotely verify that its VMs are physically isolated. To detect
any unexpected activity, HomeAlone measures cash usage in a
period of time while its VMs have no activity in a selected cache
region. The virtualization technologies based on trusted plat-
form module (TPM), such as Intel’s VT-d and Intel’s TxT tech-
nologies, which are discussed as practical models at the next
section, prepare the conditions to protect against side-channel
attacks.

Although an infrastructure provider should not interfere with
the activity of a hosted VNF, monitoring a VNF’s behavior,
such as extensive resource consumption or instance controlling,
is necessary to detect any malicious treatment like shared re-
source misuse which leads to FRC or RFAs attacks.
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Table 1: Security threats of network infrastructure and recommended solutions

Security Threats Countermeasures

Incorporating Programmable de-
vices:
DoS, Network congestion

Over-encryption connection,
Traffic validation:
MSE [44], DynaFL [47], Intel’s
OAT [55]

Resources controlled by VNF
provider:
Flooding attacks, Information
leakage

Detecting excessive resource
consumption, Resource isola-
tion:
Intel’s VT-d [56], SR-IOV [45],
VANFC [46], and Remote attes-
tation (e.g., Intel’s OAT)

Misuse of shared resources (by
user or VNF):
Resource misuse attacks e.g.,
RFA and FRC attacks

Dedicated instance, Behavior
monitoring, Recovery capabil-
ity:
Trusted Network Access Control
[50], and Intel’s OAT

Secure outsourcing and live migration. Despite the tremen-
dous benefits of the offload of network traffic and the task
outsourcing in the cloud computing, it is compromising to
transfer the sensitive information or key management to exter-
nal networks. Thus, secure outsourcing services are in great
need to not only protect sensitive information but also validate
the integrity of the computation results. Although the over-
encryption methods are effective to achieve secure multiparty
computation (SMC), their computational overload should be
considered. For instance, an oblivious transfer and a fully ho-
momorphic encryption (FHE) [53] protocol, which performs
computations on encrypted data without decrypting, are pos-
sible solutions. Melis et al. [54] investigated the effect of
using cryptographic primitives, e.g., FHE and public-key en-
cryption, in order to preserve the privacy of the outsourcing of
network functions. These solutions need to use heavy crypto-
graphic primitives, which result from tradeoffs between privacy
and performance.

Evidently, live VM migration in a secure manner requires a
secure interface with the authorized access for source and des-
tination parties. Furthermore, a mechanism to detect and report
any malicious activities during the migration is required. To ad-
dress these considerations, the root of trust prepared by TPM,
enables remote attestation by hashing the software components
[40]. In this view, vTPM offered by the Intel’s TxT solution,
notwithstanding the mentioned limitations, is qualified. More-
over, the solutions such as security-preserving live migration
protocol and LMDF might be considered to perform a secure
live migration.

Tables 1, 2, and 3 summarize the common virtualization
threats of NFV’s entities and recommend the techniques and
solutions which address these threats.

Table 2: Security threats of VNF provider and solutions

Security Threats Countermeasures

Task outsourcing:
Malware injection,
Eavesdropping, Functional
violation, Confidentiality
compromising

Secure outsourcing services,
Over-encryption connection,
Integrity validation:
TPM [57], Intel’s TxT [43], and
Remote Attestation (e.g., Intel’s
OAT)

Multi-tenancy:
Side-channel attacks between
co-hosted VNFs

Hiding the access management,
Secure database interfaces,
Dedicating resource instance,
Obfuscating the service struc-
ture:
Intel’s VT-d, OAT, TxT, SGX
[58], STEALTHMEM [51],
HomeAlone [52], VANFC

Live VM migration:
MitM attack, Traffic sniffing,
Stackover flow, DDoS attack

Source and destination authenti-
cation, Authorized access to in-
terface, Detecting malicious ac-
tivity:
Security-Preserving Live Migra-
tion [41], LMDF [42], and
vTPM [40]

Compromise infrastructure
provider:
Interfering the function of the
hosted VNF, Violate the
operation, Threatening privilege
information

Monitoring mechanism to detect
anomalous behavior, Traffic val-
idation techniques:
TPM, Intel’s OAT, and DynaFL

4.2. Practical models

Basically, the secure isolation and introspection are the fun-
damental bases for NFV environment. To achieve a secure envi-
ronment, secure computing platforms based on the trusted com-
puting (TC) technologies are recommended. The TC technolo-
gies, developed by the trusted computing group (TCG), are a
set of specifications, products, and techniques that are designed
in both hardware and software to provide resource isolation,
validation mechanism, and trust management.

The TC technology leads to hardware-based “roots of trust”
at the edge of the network and at the endpoints in the boot
and launch environment (e.g., BIOS and virtual machine man-
agers). The TPM [57], initially specified by TCG to deploy on
PC platform, but it is deployed widely on the virtualized plat-
forms [59]. Although the early versions of TPM (e.g., TPM
1.1 or TPM 1.2) showed some shortcomings, but gradually,
TPMs (TPM 2.0) have been able to overcome the limitations
and become a mainstream component to provide isolated and
secure storage, attesting the identity of the running software
[60]. Basically, TPM is a trusted hardware component to store
encryption keys and hash measurements to provide a chain of
trust [47]. As the practical models based on the TC technol-
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Table 3: Security threats of user and recommended solutions

Security Threats Countermeasures

Compromise VNF provider and
infrastructure provider:
Privacy and confidentiality
violation

Trust management to ensure
information integrity provision,
Cryptographic techniques:
TPM, and Intel’s TxT

Malicious user:
Information leakage, Service
violation

Cryptographic techniques, Hid-
ing co-serving instance:
Intel’s SR-IOV

ogy to memory protection and resource isolation, there are the
follow technologies such as the Intel’s VT-d, and Intel’s TxT
technologies. The Intel’s VT-d technology [56] is a hardware-
based virtualization solution which provides isolation and pro-
tection across partitions, and Intel’s TxT technology [43] de-
fines platform-level enhancements based on cryptographic hash
algorithm to provide the building blocks for creating trusted
platforms.

To provide a safe access management, the remote attestation
service (e.g., Intel’s Open Attestation (OAT) [49]) and trusted
network access control can be considered. The remote attesta-
tion service provides the verification of the software state of a
remote embedded device to manage network access control and
detect software attacks [61]. The trusted network access con-
trol [50] utilizes a cryptographic proof or attestation to manage
access to the network resources. Furthermore, Intel’s SR-IOV
technology [45], which is a feature of Intel virtualization tech-
nology to implement virtual access of a physical network inter-
face directly while bypassing the hypervisor’s virtual switch, is
a good solution for isolation. This technology with the enhance-
ment of virtualization-aware network flow controller (VANFC)
[46] is a safe solution for a NFV’s user to access the network
interface in the presence of suspicious providers. The VANFC
prevents untrusted VM from controlling the throughput and la-
tency of other unrelated VMs using network flow control func-
tionality.

To implement a secure virtualization environment, we need
to consider several security mechanisms. Relying on trusted
third party to perform some mechanisms, such as remote attes-
tation and secure outsourcing, leads to some costs.

As a sequence, a suggested platform for NFV which is pro-
tected with the virtualization technologies is depicted in Fig.
5. With regard to the mentioned security protections, the sug-
gested platform is equipped with the proper protection tech-
nologies and methods. To address each security issue, at least
one protection method is suggested for this platform to pro-
vide a secure virtualization environment. In the view of per-
formance overhead, however, the suggested platform exploits
some technologies which lead to overall time and computa-
tional overheads. For instance, cryptographic solutions for se-
cure outsourcing (as shown in [54] for FHE) or access manage-
ment lead to key management and computational overheads.

Figure 5: A suggested platform for a secure virtualization environment

As another example, TPMs seem improper to perform bulk
data cryptographic operations due to their performance limi-
tations. Moreover, in conventional TPMs implemented in hard-
ware, it is required to have a separated bus to CPU, which may
cause severe latency issues [60]. To overcome the limitations of
hardware-based TPM, firmware-based TPM platforms [60] and
TPM emulators [62, 63] could alternatively be used since they
have shown better performance compared with hardware-based
TPM.

As a practical model based on the secure computing plat-
forms, the High assurance platform (HAP) [64] program, which
is a national security agency (NSA) initiative, is a good exam-
ple to create a secure networked enterprise environments. In
this platform, the root of trust is established based on the TC
technologies and all outsourcing and remote accesses are veri-
fied by attestation and runtime protected. The HAP exploits TC
technologies based on TPM, such as Intel’s VT-d, TxT, OAT,
and SR-IOV, to perform resource isolation, launch-time protec-
tion, trustworthiness verification, and remote attestation which
are required for secure virtualization environments.

5. Conclusion

The considerable properties of NFV lead to a global trend
that network functions are implemented in cloud through virtu-
alization. NFV provides many benefits of the virtualization by
introducing software-based appliances and utilizing cloud com-
puting. Even with such many advantages and revenues, NFV
also faces several significant security challenges driven by the
virtualization and network infrastructure.

In order to understand those security challenges and defense
mechanisms, we presented a categorization of security threats
on the network functions virtualization and their characteristics.
We also proposed possible solutions to address those threats.
As future work, we will implement a testbed for an NFV frame-
work with security resilience through simulation, emulation, or
real implementation in order to prove our concepts for security
in NFV.
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Our observations in this study can generally be extended to
other distributed systems such as grid computing, which en-
ables the sharing, selection, and aggregation of a wide vari-
ety of geographically distributed computational machines [65].
In grid computing, if a computational machine is attacked, the
entire system may have also become completely compromised
since the system could be synchronized with the compromised
machine. As an extension to this paper, we plan to consider a
security threat categorization to generalize our results for such
grid computing situations.
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[40] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van
Doorn. vTPM: Virtualizing the Trusted Platform Module. In 15th Con-
ference on USENIX Security Symposium, volume 15 of USENIX-SS’06,
2006.

[41] F. Zhang and H. Chen. Security-Preserving Live Migration of Virtual
Machines in the Cloud. Journal of Network and Systems Management,
21(4):562–587, 2013.

[42] S. Biedermann, M. Zittel, and S. Katzenbeisser. Improving security of
virtual machines during live migrations. In Privacy, Security and Trust
(PST), 2013 Eleventh Annual International Conference on, pages 352–
357, 2013.

[43] Intel Trusted Execution Technology (Intel TxT), Hardware-based Tech-
nology for Enhancing Server Platform Security, 2012.

[44] MSE: Message Stream Sncryption protocol, Azureu Wiki, http :
//wiki.vuze.com/w/MessageS treamEncryption, 2014.

[45] PCI-SIG SR-IOV Primer, An Introduction to SR-IOV Technology, Intel
SR-IOV, 2011.

[46] I. Smolyar, M. Ben-Yehuda, and D. Tsafrir. Securing Self-Virtualizing
Ethernet Devices. In 24th USENIX Security Symposium (USENIX Secu-
rity 15), pages 335–350, 2015.

[47] X. Zhang, Ch. Lan, and A. Perrig. Secure and Scalable Fault Localization
Under Dynamic Traffic Patterns. In Proceedings of the IEEE Symposium
on Security and Privacy, SP ’12, pages 317–331, 2012.

[48] I. Chen, F. Bao, M. Chang, and J. Cho. Dynamic Trust Management for
Delay Tolerant Networks and Its Application to Secure Routing. IEEE
Transactions on Parallel Distribution Systems, 25(5):1200–1210, 2014.

[49] Intel Trust Execution Technology, (Intel TXT) Enabling Guide, 2015.
330139-001US.
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Highlights for Review

 We analyze potential security threats in NFV and categorize them.

 We  suggest  reasonable  countermeasures  to  cope  with  those  security 

threats. 

 We present a secure virtualization environment to mitigate those threats in 

NFV.


