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Empirical Studies of a Two-Stage Data Preprocessing
Approach for Software Fault Prediction
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Abstract—Software fault prediction is a valuable exercise in soft-
ware quality assurance to best allocate limited testing resources.
Classification is one of the effective methods for software fault pre-
diction. The classification models are trained based on the datasets
obtained by mining software historical repositories. However, the
performance of the models depends on the quality of datasets. In
this paper, we propose a novel two-stage data preprocessing ap-
proach which incorporates both feature selection and instance re-
duction. Specifically, in the feature selection stage, we first per-
form relevance analysis, and then propose a threshold-based clus-
tering method, called novel threshold-based clustering algorithm,
to conduct redundancy control. In the instance reduction stage,
we apply random under-sampling to keep the balance between
the faulty and non-faulty instances. In empirical studies, we chose
datasets from real-world software projects, such as Eclipse and
NASA. Then we compared our approach with some classical base-
line methods, and further investigated the influencing factors in
our approach. The final results demonstrate the effectiveness of our
approach, and provide a guideline for achieving cost-effective data
preprocessing when using our two-stage approach.

Index Terms—Software fault prediction, data preprocessing,
feature selection, instance reduction, redundancy control, feature
ranking, classification model.

ACRONYMS AND ABBREVIATIONS

SFP Software fault prediction
FP Fault-prone
NFP Non-fault-prone
NTC Novel threshold-based clustering algorithm
RUS Random under-sampling
ROS Random over-sampling
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Feature selection stage of our approach in which
X is used as the relevance measure, and Y as the
similarity measure

is the feature selection stage as the above
described, and Z is the another instance reduction
stage

ALL Included all original feature set
CFS Correlation-based feature selection
Consist Feature selection method Consistency
ROC Receiver operating characteristic curve
AUC Area under ROC measure

NOTATION

IG Information gain measure
CS Chi-Square measure
RF ReliefF measure
SU Symmetric uncertainty measure
COS Cosine similarity measure

The original given dataset
The th feature belongs to the dataset
The class label
The similarity threshold for feature clustering
The final feature set
The number of original features
The similarity between any pair of two features
The neighbor cluster of the feature
The average similarity of

I. INTRODUCTION

S OFTWARE fault prediction (SFP) is a hot research topic
in the domain of software engineering [1]–[17]. It can al-

locate the limited test resources effectively by predicting the
fault proneness of software modules. Classification is one of the
prevalent methods used for software fault prediction. Its main
task is to categorize modules, represented by a set of software
metrics, into two classes: fault-prone (FP), or non-fault-prone
(NFP). For a specific classification model, the classifier should
be trained in advance based on the training data obtained by
mining historical software repositories, such as change logs in
software configurationmanagement, bug reports in bug tracking
systems, and the e-mails of developers.
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In recent years, researchers have found that the quality of
software datasets had serious effect on the performance of pre-
dicting software faults. Issues concerned in data quality include
biased datasets [18]–[21], noise [22], [23], a large number of
features [24]–[26], and class imbalance [17], [27], [28]. In this
paper, we focus on the latter two aspects to improve the quality
of software datasets.
One is the high dimensionality problem caused by too many

unnecessary features (i.e., software metrics), and the other is
the class imbalance problem caused by superfluous instances of
some classes. The former can be solved by feature selection,
which selects a small fraction of the features by removing irrel-
evant or redundant ones. The latter is handled by instance sam-
pling (or reduction), which samples a subset of the instances
from majority classes. Both have been proven useful by pre-
vious experimental studies [4], [29]–[31].
However, to the best of our knowledge, few researchers have

combined feature selection and instance reduction simultane-
ously to improve data quality in software fault prediction. In
this paper, we provide a novel two-stage data preprocessing ap-
proach. In particular, for feature selection, we first perform rele-
vance analysis to remove irrelevant features, and then propose a
threshold-based clustering algorithm for redundancy control to
eliminate redundant features. For instance reduction, we apply
random under-sampling to reduce the NFP instances to keep
balance between the two classes.
We design experiments based on real-world software projects

to demonstrate the effectiveness of our approach. Based on the
experimental studies, we found that the two-stage approach can
greatly reduce both the number of features and the number of
instances of original datasets, without sacrificing the prediction
performance of the classifier built after. Compared with other
commonly used data preprocessing methods, our approach
has presented consistently better performance over different
datasets and classification models.
This paper extends our previous research work [16] by

incorporating more datasets from real-world projects, feature
relevance measures, feature similarity measures, as well as by
making more extensive empirical studies. The main contribu-
tions of the paper can be summarized as follows.
• To the best of our knowledge, we propose a novel two-
stage data preprocessing approach, which performs both
feature selection and instance reduction in sequence, for
SFP.

• In the feature selection phase, we propose a novel algo-
rithm using both feature selection and threshold-based
clustering for relevance analysis and redundancy control.
Then, in the instance reduction phase, we apply random
under-sampling.

• We use real-world projects to conduct empirical studies
to verify the effectiveness of our proposed approach, and
further investigate the influencing factors in our approach
to provide a guideline for effectively using our approach.

The remainder of this paper is organized as follows.
Section II introduces background and related work on data pre-
processing for software fault prediction. Section III describes
our proposed approach in detail, including the framework,
and the methods used for either feature selection or instance

reduction. Section IV describes the experimental design, in-
cluding the subject datasets, and the performance measure.
Section V performs result analysis, and discusses some threats
to validity. Finally, Section VI concludes this paper, and dis-
cusses plans for future work.

II. RELATED WORK

In this section, first we briefly introduce the background of
software fault prediction. Second, we describe some related
work in data preprocessing, especially on feature selection and
instance reduction.
Software fault prediction is valuable to predict the

fault-proneness of software modules. Numerous researchers
have successfully used classification models to categorize soft-
ware modules into faulty and non-faulty, based on the features
(i.e., metrics) collected from each module by mining software
development repositories [1]–[17]. These classification models
require training data collected from previous projects where
faulty modules have been identified. Evidence [18]–[23], [28],
[32] shows that the quality of the datasets is essential for high
prediction performance.
The quality of software datasets can be improved by data

preprocessing [25]–[27], which includes feature selection
and instance reduction (or sampling). Feature selection is the
process of identifying and removing irrelevant and redundant
features from a dataset, so that only beneficial features are
left for training the classification models. A variety of feature
selection methods have been developed, which can be roughly
grouped into two categories: filter-based, and wrapper-based.
Filter-based methods evaluate and select the most relevant
features, based on the correlation between the features and
class labels. Wrapper-based methods require feedback from the
classification model, and compose the feature set iteratively,
which may lead to high computational complexity [33].
Researchers have made comparisons among available fea-

ture selection methods for software fault prediction. Shivaji
et al. [26] evaluated five feature selection methods (including
three filter-based ranking methods, and two wrapper-based
ones) using two different classification models (i.e., Naive
Bayes, and SVM). Their experimental results showed that all
the feature selection methods were effective to improve the
prediction performance, while the extent of improvement was
more evident between the two classifiers than among the feature
selection methods. Gao et al. [25] compared feature selection
methods in predicting faulty software modules of a large legacy
telecommunication system. They employed seven filter-based
methods, and three wrapper-based ones implemented by search
based greedy techniques. Their experimental results demon-
strated that removing 85% of the software features did not
decrease the prediction accuracy, and in some cases did even
better. Wang et al. [24] presented a comprehensive empirical
study evaluating 17 ensembles of 18 feature ranking methods.
Their results suggested that the ensemble of a few (e.g., 2 to 4)
rankers may improve the prediction performance.
Instance reduction is the process of selecting a representative

subset of the instances (i.e., software modules) to build the
training data for a classification model [29]. Recently, instance
reduction has drawn more attention by both researchers and
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practitioners for software fault prediction [27]. By removing
superfluous instances, the problem of inter-class imbalance can
be alleviated. One efficient method to handle instance reduc-
tion is random sampling, which is effective in minimizing the
impact of imbalanced distributions among classes [34]. Wang
et al. [28] investigated different types of instance sampling
methods before the training of multiple classification models
for software fault prediction. The results showed that, for highly
imbalanced data, the combination of random under-sampling
and Naive Bayes could be a good option. Pelayo et al. [35]
compared random under-sampling and over-sampling methods
using 6 software datasets. By statistical analysis, they proved
that under-sampling was useful in improving the prediction
performance of the classifiers trained afterward. Khoshgoftaar
et al. [36] discussed the effects of random sampling combined
with other data preprocessing methods (including feature
ranking). Their results also proved the effectiveness of random
sampling in dealing with imbalanced datasets.
While both feature selection and instance reduction are ef-

fective in improving the performance of classification models,
to the best of our knowledge, few researchers have combined
them in handling data preprocessing for software fault predic-
tion. Liu et al. [37] combined feature selection with instance
sampling. But the purpose of the instance sampling was to re-
duce the total number of instances instead of handling class im-
balance. Khoshgoftaar et al. [36] combined filter-based feature
ranking methods and random under-sampling. Their purpose
was to use instance sampling for selecting features iteratively,
but they did not train the classifier with balanced data. Different
from their work, we designed a new approach for data prepro-
cessing, which involved both feature selection and instance re-
duction, and built the classification model after the data pre-
processing. Specifically, for feature selection, we made a rel-
evance analysis to remove irrelevant features, and proposed a
threshold-based clustering algorithm for redundancy control to
eliminate redundant features.

III. THE TWO-STAGE DATA PREPROCESSING APPROACH

In this section, we present our two-stage data preprocessing
approach for software fault prediction, which combines feature
selection and instance reduction to eliminate both irrelevant and
redundant units in software datasets. In particular, for the fea-
ture selection, we propose an improved version of our previous
method [38]. First, feature ranking is used to eliminate irrelevant
features. Second, a novel threshold-based clustering algorithm
is used to remove redundant features. For the instance reduction,
because the similarity amongNFP instances (i.e., softwaremod-
ules) is usually high (which will be demonstrated in Section V),
random sampling is applied to reduce the NFP instances. By
the above two-phase preprocessing, we could get a balanced,
high quality dataset for training the classification models, which
would improve the performance of fault prediction.

A. The Framework of Our Approach

Fig. 1 gives the framework of our two-stage approach. Specif-
ically, the feature selection stage aims to eliminate irrelevant and
redundant features, and then the instance reduction stage aims

Fig. 1. The Framework of the Two-stage Approach.

Fig. 2. The Process in the Feature Selection Stage.

to reduce the NFP instances, so that the balance of the dataset
can be achieved.
In the framework, the feature selection (FS) stage performs

feature ranking and threshold-based clustering in sequence,
while the instance reduction (IR) stage uses random sampling
to reduce the NFP instances. Here, FS is performed before IR
(denoted as FS IR) in our approach. For feature selection,
we need to keep as much information as possible to select the
valuable features, and after eliminating instances the ranking
of the features may be changed. On the other hand, as random
sampling is used for instance reduction in our approach, the
effect of feature selection on it can be ignored.

B. The Feature Selection Stage
Fig. 2 gives the process in the feature selection stage. The first

step is performing relevance analysis to remove irrelevant fea-
tures, and the second step is performing redundancy control to
eliminate redundant features. Feature ranking is used for the first
step, where individual features are ranked according to the im-
portance (i.e., weights) in differentiating instances of different
classes (i.e., FP or NFP). The subset of features from the top- of
the ranking list is selected. Here, is set to select
features from the total set, as recommended by Song et al. [39],
where is the number of features in the original data set.
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To weight the relevance of a feature to the class, we should
measure the correlation between them. The commonly used
measures can be categorized into three groups: entropy based
(such as information gain, gain ratio, and symmetric uncer-
tainty), statistical based (such as chi-square), and instance
based (such as Relief and ReliefF). In our method, we choose
one representative from each group, each of which has been
proven good in software fault prediction [42]. These measures
are information gain (IG), chi-square (CS), and ReliefF (RF).
1) Information Gain (IG): Given a feature , IG measures

the amount of information can provide about whether an in-
stance is FP or NFP [9]. The IG measure can be computed by
the following formula.

(1)

In (1), computes the entropy of a discrete random vari-
able (i.e., the class). Let denote the prior probability of a
value of . can be computed by the following formula.

(2)

computes the conditional entropy which quantifies
the uncertainty of given the observed variable (i.e., the
feature). Let denote the posterior probability of given
the value of . can be computed by the following
formula.

(3)

2) Chi-Square (CS): Given a feature , Chi-Square is a non-
parametric statistical measure that examines the correlation be-
tween the distribution of and that of the class [43]. We use
the Pearson Chi-Square statistic, which can be computed by the
following formula.

(4)

In (4), is the number of distinct values of the feature, is the
number of classes (here is 2), is the observed number
of instances with the feature value in the class , and is
the expected (i.e., mean) number of instances with any value
in the class .
3) ReliefF (RF): ReliefF can measure how well a feature

differentiates instances from different classes by searching for
the nearest neighbors of the instances from both the same and
different classes [44]. The ReliefF measure can be computed by
the following formula.

(5)

In (5), is the random variable representing a feature, is
the total number of instances sampled, and is the feature value
of the th instance. For the instance , both its nearest neighbor
from the same class, and the nearest neighbor from the other
class, are determined first. Then the differences between the fea-
ture values (i.e., for the former, and

for the latter) are computed. The function is defined
by the following formula, where , and stand for the
maximum, and minimum values of respectively.

(6)

All the three measures (i.e., IG, CS, and RF) range from 0 to
1. The greater the measure, the more relevant the feature is to
the class.
The novel threshold-based clustering algorithm (NTC) is

used for the second step. Algorithm 1 shows the details of NTC.
At first, features are grouped into clusters using a pre-specified
threshold . To cluster these features, the algorithm starts
by computing the similarity between each pair of features,
and constructs a -nearest neighbor graph over the features.
The nodes of the graph correspond to the features, and a link
between two features and exists iff the similarity is no
less than . After that, the feature which has the most compact
neighborhood (i.e., the average similarity of its neighbor set
is the highest) is selected, while all the remaining neighbors
are removed. Finally, the graph is reconstructed without the se-
lected feature and its neighbors. This procedure is repeated until
all the features are either selected or removed. The methods
for computing the similarity between any pair of features will
be described in the following. Then the optimal setting of ,
which needs to be considered for NTC, will be discussed later
in Section V.
To measure the similarity between any pair of features,

we choose the non-linear similarity measure Symmetric Un-
certainty (SU) [45], and the commonly used linear similarity
measure Cosine Similarity (COS).
1) Symmetric uncertainty (SU): Symmetric uncertainty [45]

measures the entropy coefficient between two random variables,
and has been used to evaluate the similarity between features by
many researchers [39], [46], [47]. The paper [48] approved that
SU can compensate for the information gain's bias toward vari-
ables (i.e., features) with more values, and restrict its values to
the range [0,1]. SU can be computed by the following formula.

(7)

In (7), and denote the two features. The functions
, and are defined in (1), and (2) respectively.

2) Cosine similarity (COS): Cosine similarity measures the
cosine of the angle between two Euclidean vectors, constructed
by the values of the two features according to the instance order
[49]. One of the merits of COS is that the scaling factor has no
effect on it. COS can be computed by the following formula.

(8)

In (8), and denote the two features, while and are
the feature values in the instance for features and .
Both the SU and the COS measures range from 0 to 1. The

greater the measure, the more likely the two features are similar.
In Algorithm 1, computes the similarity between

any pair of features, denotes the neighbor set (i.e., cluster) of
the feature is the set of constructed
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Fig. 3. The Details of the Two-stage Data Preprocessing Approach.

(or remained) clusters in the nearest neighbor graph, and
denotes the average similarity of . The algorithm is rather ef-
fective, and can be optimized. The most time-consuming part is
the computation of the similarities between pairs of the features.
But the similarity computation is commutative, and at most

times are required.

C. The Instance Reduction Stage
In the instance reduction stage, we apply random sampling

to reduce the NFP instances. Random sampling is a simple but
effective technique for instance reduction [40]. It may bear the
risk of losing information by removing valuable instances, be-
cause all the instances are treated similarly. However, during our
experiments, we found that the similarities among the NFP in-
stances are usually higher than 0.9 on average, no matter which
function is used to compute them. Because the datasets used in
our experiments are commonly used by other researchers, we
think it is reasonable to reduce the NFP set by random sampling
without replacement, which leads to the simplest implementa-

tion. To keep balance between the FP and NFP classes, we set
the FP/NFP ratio as the terminal condition of sampling. In the
experiments, the FP/NFP ratio is set to 35%/65% according to
the recommendation by Khoshgoftaar et al. [41].
In summary, Fig. 3 shows the details of our proposed

approach.

IV. EXPERIMENTAL SETUP
In this section, we design experiments to demonstrate the

effectiveness of the two-stage data preprocessing approach.
First, we design the research questions for the empirical study.
Second, we describe the datasets used in the experiments.
Third, we put forward the experimental design based on the
research questions. Last we introduce the performance measure
used in our research.

A. Research Questions
The empirical study is performed in two steps: one is to val-

idate whether the novel threshold-based clustering algorithm
NTC of the feature selection stage can improve the performance
of the classification models built after. The other is to testify
whether the instance reduction stage is valuable in enhancing
further the final prediction performance. Hence, we design ex-
periments to study the following five research questions.
• RQ1. In the feature selection stage, what is the optimal
scheme of our approach, concerning the relevance func-
tions, the similarity functions in Section III-B, and the sim-
ilarity threshold in Algorithm 1, to result in good-enough
performance of the classification models built after?

• RQ2. Is our two-stage approach better to improve the per-
formance of the classification models built after, compared
with other commonly used feature selection methods?

• RQ3. Taking the feature selection stage alone, by adding
the proposed algorithm NTC, can our method produce
better performance compared with other feature selection
methods?

• RQ4. Does combining the feature selection and instance
reduction together have a more significant improvement
than by using any one of them individually for dataset
preprocessing?

• RQ5. What are the effects of the characteristics of indi-
vidual datasets, including level of instance sufficiency, and
temporal issues, on the final performance of the approach,
and the selection of ?

B. Datasets
To evaluate the effectiveness of our proposed approach, we

design and perform a series of experiments using datasets col-
lected from real-world software projects, including the Eclipse
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projects, and the NASA software projects, which are commonly
used by researchers in software fault prediction. In particular,
the Eclipse projects are used in [50]–[54], and the NASA soft-
ware projects are used in [1], [4], [6], [23], [55]–[58].TheEclipse
datasets are obtained from the PROMISE data repository, [59]
while the NASA datasets are obtained from the publicly avail-
able MDP (Metrics Data Program) repository [60].
For the Eclipse datasets, three releases of Eclipse (i.e., Eclipse

2.0, Eclipse 2.1, and Eclipse 3.0) are collected with instances
measured at the Java class level. Each of the Eclipse datasets
contains 198 features, including the code complexity measures
(such as LOC, cycloramic complexity, and number of classes),
the syntax tree basedmeasures, andmany others [50]. Before the
experiments,weperform the following treatments to thedatasets.
1) Remove all the non-numeric measures. 2) Transform the

post-release faultsmeasure (which counts the number of faults in
the post release versions) into the binary class label. In particular,
those containing one or more faults are labeled as FP, whereas
those with zero faults are labeled as NFP. 3) Remove the mea-
sures which have only one distinct value. After performing these
treatments, each Eclipse dataset leaves 155 features.
For the NASA datasets, the measures collected from each

project are different from one another, while the commonly used
measures include LOC, Halstead complexity metrics, and Mc-
Cabe complexity metrics [4]. The instances are generally mea-
sured at the method level. Before the experiments, we select
10 out of the 13 datasets from the MDP repository. The selec-
tion is based on two principles: one requires the dataset con-
taining enough features (e.g., ), which makes feature selec-
tion sensible; the other requires enough ratio of fault instances
to total (e.g., %), which makes instance reduction and classi-
fication meaningful. For the selected datasets, we remove mea-
sures which have only one distinct value. Table I lists the statis-
tics of all the selected datasets used in the experiments.

C. The Experimental Design
To study the research questions, 6 different preprocessing

schemes for the feature selection stage are designed according
to the combinations of the relevance measures and similarity
measures. Combined with options for the instance reduction
stage, these schemes are applied with three different classifica-
tion models to comprehensively study the effects on the perfor-
mance of software fault prediction. All the experiment results
are averaged over 10 10-fold cross validation, which means
10-fold cross validation repeated 10 times in each experiment.
A 10-fold cross validation means that the dataset is equally di-
vided into 10 parts, and instances of each part are used in turn
as the testing set, while the remaining instances are used as the
training set [2], [11], [22], [49], [61]. The performance measure
is averaged over the 10 folds. To further overcome the effect of
randomness, the 10-fold cross validation is repeated 10 times,
and the grand average value over the 10 repetitions is used as
the final performance measure.
1) Feature Selection Methods: To study the feature selection

stage, besides our proposedmethod, which includes both feature
ranking and threshold-based clustering, another four baseline
methods are also implemented for comparison.

TABLE I
THE DETAILS OF THE SELECTED DATASETS

For feature selection, our method combines both relevance
analysis and redundancy control to select the most relevant fea-
tures while eliminating redundant ones. Feature ranking is used
to implement the relevance analysis, while NTC is used to im-
plement the redundancy control. During the experiments, for
feature ranking, we set the number of pre-selected features
to be ( is the number of original features), as
suggested by Song et al. [39]. For NTC, the threshold is set
to result in a comparable size of the final feature set, to match
those resulted by other feature selection methods. The optimal
assignments of will also be studied. To denote these different
methods, we use both the relevance and the similarity measures,
e.g., means that IG is used as the relevance measure,
and COS as the similarity measure.
For the baseline methods, first, we implement ALL, which

means no feature selection is applied. Second, we implement
pure feature ranking using the relevance measure IG (denoted
as IG), which can outperform the other pure ranking techniques
[62]. Here we select the top features, as suggested
by Gao et al. [25]. Third, we implement two well-known fea-
ture selection methods other than ranking. One is Correlation-
Based Feature Selection (CFS) [46], which selects features that
are both highly relevant to the class labels and little correlated
with each other. The other is Consistency (denoted as Consist)
[63], which searches for the feature set that separates the classes
consistently.
2) Instance Reduction Methods: For the instance reduction

stage, we use random under-sampling (RUS), which randomly
discards instances from the NFP class to build a more balanced
dataset. To make a comparison, we also implement random
over-sampling (ROS), which randomly duplicates instances
in the FP class until the dataset reaches a balanced radio. The
ratio of the #NFP class to the #FP class, which is set to about
65% (NFP) to 35% (FP), as recommended by Khoshgoftaar et
al. [41], is used as the terminal condition of both the sampling
methods.
Because the ordering of the instances may have significant

effects on the sampling methods [64], which is not the subject
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Fig. 4. The Configurations of the Empirical Study.

of this study, we perform 10-fold cross validation, and repeat it
10 times. Each time, the order of the instances is randomized
first, so that the order effect in a dataset can be effectively ob-
viated [1].
3) ClassificationModels: We implement three different clas-

sification models, which are commonly used in software fault
prediction. The models are Naive Bayes (NB), C4.5 decision
tree (C4.5), and -Nearest Neighbors ( , denoted as IB1).
NB is a simple probabilistic classifier, which assumes the fea-
tures are statistically independent of each other. It can provide
good enough classification results, even though some of the
features are inter-related [49]. C4.5 implements a decision tree
[65], where nodes are built by the features according to the in-
formation entropy against the classes. IB1 uses a simple dis-
tance measure to vote appropriate features weighted by the (in-
verse) distances from the nearest neighbors [39]. In our experi-
ments, we use the implementation of three classification models
provided by the Weka package [49] to avoid external threats to
validity.
Fig. 4 summarizes the configurations of our empirical study.

For RQ1, we will discuss the optimal schemes of our approach
in the feature selection stage. For RQ2, we will compare our
two-stage approach to other feature selection methods. For
RQ3, we validate if NTC is valuable for feature selection. For
RQ4, we add the methods in the instance reduction stage, and
validate if random sampling can further improve the prediction
performance.

D. The Performance Measure

In the empirical study, leveraging the receiver operating
characteristic (ROC) curve, we use the area under the ROC
(AUC) measure to evaluate the performance of the classifica-
tion models built on the datasets, which have been preprocessed
by different approaches. The ROC curve characterizes the
trade-off between the true positive rate and false positive rate
obtained by a classifier, and illustrates the classifier's perfor-
mance under a varied decision threshold (i.e., a value between
0 and 1 that separates the FP and NFP classes) [66]. AUC
can provide a general indication of the predictive potential of
the classifier [4], [67], and has been widely used to evaluate
the performance of classifiers for software fault prediction.
Evidence has shown that AUC has lower variance, and thus
is more reliable than other performance measures, such as
precision, recall, or F-measure [49]. AUC is a single-value
measure that ranges from 0 to 1, where an AUC value closer to
1 means better performance.

V. RESULT ANALYSIS

In this section, we study the five research questions based on
the experimental results. After that, we give a brief discussion
on the main findings. Finally we describe the possible threats to
the validity of the empirical study.

A. RQ1: The Optimal Scheme of the Approach
To investigate the optimal scheme of our two-stage data pre-

processing approach, we do experiments on all the combinations
of the relevance (i.e., IG, CS, and RF) and the similarity mea-
sures (i.e., SU and COS). Totally, we have six different feature
selection schemes, and all of them added by RUS for instance
reduction.
The similarity threshold used in the algorithm NTC is al-

tered to investigate its effects on each scheme. By the way, the
three classification models (i.e., NB, C4.5, and IB1) are trained
after each scheme respectively, and the AUC measures are used
to compare the performance.
Fig. 5 shows the AUC measures of the six schemes using

three different classifiers, when is increased from 0.1 to 1.0
by steps of size 0.1. Note that, when is set to 0, all the features
will be removed by NTC, and as is set higher, lesser features
will be removed. can be set to 1.0, which means only identical
features (judged by the similarity measure) can be removed; and
if is set higher than 1.0, no feature will be removed, which
means NTC is ignorable. In each subfigure, six lines with dif-
ferent colors and styles are used to represent different schemes.
The dots on each line represent the mean values across the 13
datasets (Table I). For space consideration, the prediction results
on singular datasets are not given.
From Fig. 5, we observe that, between the two similarity mea-

sures, SU always has a better, steadier performance than COS,
no matter which one of the three relevance measures or the
three classifiers is used. The schemes , and

always outperform the counterparts using COS, and
the classifiers make little difference. Considering the threshold
, a scheme (X denotes one of the relevance measures)

always comes close to the best performance, when is still
small, while usually needs a great value, which
means more features are required.
On the other hand, among the three relevance functions,
, and have more stable performance than ,

over the settings of , and the three classifiers. The only excep-
tion is in NB; when is between 0.4 and 0.7, outper-
forms CS SU. However, when is greater, CS SU performs
better again. The possible reason for the poor performance of
RF is that RF already maximizes the differences among the se-
lected features, which makes NTC less effective.
From Fig. 5, considering the threshold used in NTC, we

find that, on the whole, a greater value will result in a better
prediction performance with few exceptions, for all the three
classifiers trained after the six schemes. The AUC measure will
become steady when reaches a big enough value, e.g., 0.8 in
NB or C4.5, and 0.7 in IB1. However, if only taking SU into
consideration, as discussed above, this threshold in becomes
much smaller, i.e., 0.4 in all the three classifiers.
Moreover, it is valuable to investigate which features are

more likely to be selected by our approach. Table II lists the
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Fig. 5. Comparison of the Prediction Performance among the Six Schemes by Varying Values, and Using Different Classifiers. (a) NB. (b) C4.5. (c) IB1.

TABLE II
THE TOP 10 FEATURES SELECTED BY OUR TWO-STAGE APPROACH

TABLE III
THE SETTING OF THE THRESHOLD OF NTC FOR THE DATASETS

top 10 features selected by both IG SU, and CS SU from
the Eclipse datasets, and the NASA datasets respectively (each
has distinct feature types and numbers), over the settings of
. The average frequency of selection (i.e., the proportion of

appearance in the selected feature sets) by the two schemes is
used to order the features. For the Eclipse datasets, the defect
based features are mostly selected by the two schemes. The
other useful features are relevant to the counting of the syntax
units in codes and Javadocs, such as parameter (PAR), Field,
and Import. For the NASA datasets, the selected feature sets
show more diversity. The reason is that the features used in
the NASA datasets are different from each other. Among the
top selected features, the McCabe based features are dominant.
The rest are relevant to LOC and the counting of syntax units
in codes. All these features are relatively easy to collect. Addi-
tionally, it may be useful to weight the features according to the
collection costs, which can be used to improve our approach in
our future work.

Based on the above analysis, in the following experiments,
we choose and as representatives of our
approach, and set the threshold for each dataset to obtain
the comparable sizes of the final feature sets to the baseline
methods. The purpose is to demonstrate the potential of our
approach in improving the prediction performance of the
classifiers trained after, instead of to find the best possible
scheme, which may be specific to the classifier and dataset
used. Table III lists all the values set for each dataset ( is
slightly different between the two schemes because IG and CS
will lead to dissimilar feature sets).

B. RQ2: Effectiveness of the Two-Stage Approach
To investigate the effectiveness of the two-stage data prepro-

cessing approach for software fault prediction, we compare the
approach to other commonly used feature selection methods,
with or without instance reduction. To make a fair comparison,
we need to control both the proportion of selected features for
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TABLE IV
PROPORTION (IN PERCENT) OF SELECTED FEATURES

BY DIFFERENT FEATURE SELECTION METHODS

the first stage, and the balance of instances for the second stage.
Table IV lists the proportion of selected features by our ap-
proach, and the other baseline methods over the 13 datasets.
From Table IV, on average the proportion of features selected
by is 11.27%, and by is 11.13%; both are
smaller than the proportions selected by the other methods, in-
cluding IG, CFS, and Consist. The only exception is in the
dataset Eclipse 3.0, when compared to IG, both and

select slightly more features.
To balance the instances between the NFP and FP classes,

random sampling is applied. During the experiments, the target
ratio between NFP and FP is set between 65% and 35%, as rec-
ommended by Khoshgoftaar et al. [41]. Table V lists the pro-
portion of instances (to all instances) decreased, or increased
in NFP and FP classes by RUS, or ROS respectively. From
Table V, RUS removes 60.5% instances on average, which sug-
gest a serious imbalance exists in most datasets (except kc1 and
mc2, which have relatively few instances, as shown in Table I).
On the other hand, ROS makes replication of 21.5% of the orig-
inal instances on average. The effects of ROS will be further
studied in Section VII-D.
Tables VII through IX present in more detail the expected pre-

diction performance (AUC) of the three classifiers (NB, C4.5,
and IB1) built after the six feature selection methods with or
without instance reduction. Our two-stage approach is repre-
sented by and with RUS. Additionally,
both the random sampling methods are applied after the base-
line methods including ALL, which means all features are used.
Each AUC value is the mean result by 10 10-fold cross vali-
dation, and averaged over the 13 datasets using one of the three
classifiers.
In the following, we mainly investigate the effects of our ap-

proach (denoted as and ),
and the three baseline methods (IG, CFS, and Consist), either
with or without random under-sampling (postfixed by RUS).

Table VI summarizes the comparison results using AUC values
over all three classifiers.
In Table VI, the first row presents the methods in descending

order according to the average value of AUC, which is listed
in the second row. The third row gives the Win, Draw, Loss,
which makes detailed comparison between the best method and
the other ones. The last row gives the standard deviation of AUC
for each method.
From Table VI, the representative of our

approach is the top best method according to the average AUC.
By adding RUS, the performances of all the three baseline
methods are improved. This result demonstrates the merit of
instance reduction for software fault prediction. To validate
the significance of the ranking, we apply the Friedman test
[68], which is a non-parametric statistical test to check whether
the ranking of multiple columns (i.e., methods) is consistent
across the rows (datasets) [4], [69]. The resulted -value is
0.019 (smaller than 0.05), which confirms that the ranking
is significant. The Win, Draw, Loss records also support the
dominance of the best method , which always
wins no less than two third of all the 39 cases (3 classifiers
13 datasets). Our approach performs well on datasets which

contain a great volume of features and instances, e.g., the three
Eclipse datasets, and pc5, while less effective on datasets which
contain few features or instances, e.g., on kc4, and mw1. By
checking the standard deviation of AUC, we can find that all the
methods perform rather steadily over the 13 datasets, instead of
the difference among the three classifiers.
Considering the classifiers individually, For Naive Bayes

(refer to Table VII), instance reduction is less effective. Here,
RUS makes little difference in the prediction performance, no
matter which feature selection method is used. As a matter of
fact, the average AUC is slightly decreased by adding RUS,
which is true even when IG SU and CS SU are used for
feature selection. The possible reason is that Naive Bayes is not
sensitive to the imbalance between the classes [70], while the
final performance is affected by RUS as many NFP instances
are removed. However, considering feature selection, ,
and are still the top two best methods, with or without
RUS. The possible reason is that NB depends on the conditional
probability of the classes against individual features; and by
removing redundant features, the conditional probability will
be more distinguishable.
For the C4.5 decision tree (refer to Table VIII), the results are

nearly consistent to Table VI. In C4.5, the decision tree is built
on the information gain of individual features, while the calcula-
tion of SU is based on the same facility. Hence, by eliminating
redundant features according to SU, the tree nodes built after
can make more accurate predictions. Considering instance re-
duction, C4.5 is suffered by the imbalanced dataset. By adding
RUS, the prediction performance is improved significantly for
all the feature selection methods.
For the nearest neighbors IB1 (refer to Table IX), the results

are slightly different from Table VI. By adding RUS, CFS per-
forms the second best, and exceeds . Taking it further,
according to Table IV, in most datasets, CFS selects the greatest
number of features among the feature selection methods (ex-
cept ALL). Because IB1 makes predictions based on the nearest
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TABLE V
PROPORTION (IN PERCENT) OF REMOVED OR REPLICATED INSTANCES FROM EACH DATASET

TABLE VI
COMPARISON AMONG THE DATA PRE-PROCESSING METHODS USING AVERAGE AUC OVER THE THREE CLASSIFIERS

TABLE VII
MEAN AUC OF NB AFTER USING DIFFERENT FEATURE SELECTION OR INSTANCE REDUCTION METHODS OR BOTH

neighbors of the target instances, it could (although not always)
be the case that the more the features are left, the more whole-
some the nearest neighbors are determined. On the other hand,
by removing excessive instances in NFP, RUS can evidently im-
prove the final performance. This outcome may be due to the
reason that it is beneficial for IB1 if the instance sets of dif-
ferent classes have comparable densities in distance, and RUS
is helpful in decreasing the density of the NFP class, making it
comparable to the FP class.
In summary, for RQ2, we can conclude that the two-stage data

preprocessing approach can further improve the prediction per-
formance of the classification models trained after, compared
with other commonly used feature selection methods. For the
feature selection stage, the proposed method NTC is a good
option. In addition, the data preprocessing can greatly reduce
both the number of features (up to 89%) and the number of in-
stances of the original dataset (up to 60%), which will simplify
the training process of the classifiers.

C. RQ3: The Effectiveness of NTC

In this subsection, we investigate whether our proposed algo-
rithm NTC, which is the core part of the feature selection stage,
has advantage over other feature selection methods, including
IG, CFS, Consist, and ALL. Table X summarizes the compar-
ison results using AUC values over all the three classifiers.
Table X is organized in the same fashion as Table VI. From

Table X, the two methods which involve NTC (i.e.,
and ) are the top two best methods, which demonstrate
the merit of NTC for software fault prediction. ALL is not a
good choice; and by Win, Draw, Loss records, it cannot win
Consist, although its statistical mean AUC is slightly higher.
This result demonstrates that feature selection is valuable. To
validate the significance of the ranking, we apply the Friedman
test. The resulted -value is 0.0011 (much smaller than 0.05),
which states that the ranking is significant in general. The Win,
Draw, Loss records support the dominance of the best method
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TABLE VIII
MEAN AUC OF C4.5 AFTER USING DIFFERENT FEATURE SELECTION OR INSTANCE REDUCTION METHODS OR BOTH

TABLE IX
MEAN AUC OF IB1 AFTER USING DIFFERENT FEATURE SELECTION OR INSTANCE REDUCTION METHODS OR BOTH

TABLE X
COMPARISON AMONG THE FEATURE SELECTION METHODS

BY AVERAGE AUC OVER THE THREE CLASSIFIERS

, which always wins more than two thirds of all the 39
cases (3 classifiers 13 datasets). According to the standard
deviation of the AUC values, the variances over the datasets are
small regardless of the different classifiers used.
Considering the three classifiers, both NB (refer to Table VII)

and C4.5 (refer to Table VIII) are generally consistent to the

ordering in Table X, where , and are the
first, and second best feature selection methods. These results
confirm the analysis results in the above section for both NB
and C4.5. However, for IB1, ALL is the second best now, and
outperforms . This outcomemay reinforce the comment
that more features could be better in determining the wholesome
neighbors.
In summary, for RQ3, we can conclude that feature selection

is useful in improving the prediction performance of the classi-
fication models built after. In addition, a redundancy control fa-
cility such as NTC (which leads to the best performance among
all the methods) is valuable in constructing an appropriate fea-
ture set for training the classifiers.

D. RQ4: The Effectiveness of Instance Reduction Facilities
In RQ4, we mainly investigate the possible impact of the in-

stance reduction facilities in the two-stage approach. First, we
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TABLE XI
COMPARISON AMONG THE METHODS WITH DIFFERENT INSTANCE SAMPLING TECHNIQUES BY AVERAGE AUC OVER THE THREE CLASSIFIERS

validate if, by combining NTC and RUS (under-sampling) to-
gether, the performances of the classifiers built after are better
than by using either of them separately. Second, we validate
whether RUS performs better than other instance sampling tech-
niques, such as ROS for software fault prediction. Table XI sum-
marizes the comparison results using AUC values over the three
classifiers.
From Table XI, the two representatives of our approach (

, and ) are the top two best methods.
The third best method is , better than NTC alone
(represented by and ), which
suggests that RUS can be valuable to use before the training of
a classifier for software fault prediction. On the other hand, by
adding ROS, all the performances of the six methods become
worse with few exceptions (refer to Tables VII through IX),
which suggest ROS is unfit for software datasets. To validate
the significance of the ranking, the Friedman test is applied. The
resulted -value is 5.13E-07, far less than 0.05, which states that
the ranking is significant. The Win, Draw, Loss records also
support the dominance of the best method ,
and the standard deviations demonstrate the steadiness of the
performances over the three different classifiers.
In addition, Table XI presents the results when the ratio of the

#NFP class to the #FP class is set to 50%/50%. The performance
ranking of the methods is nearly unchanged compared to the
65%/35% instance ratio. By applying the Friedman test, the
resulted -value is 9.06E-07,which ensures a significant ranking.
Somemethodsare slightly improvedbyusing the50%/50%ratio,
especially those using ROS. Two of the top 3methods which use
RUS are also improved. These results suggest that a balanced
dataset is always beneficial for training the classificationmodels.
Considering the three classifiers, the classifier NB (refer to

Table VII) again performs against the instance reduction stage.
By adding either RUS or ROS, the performances of the six
methods become worse. This result implies that it is neces-
sary to find a good method at the second instance reduction
stage to suit classifiers such as Naive Bayes. For C4.5 (refer
to Table VIII), the results are consistent to Table XI. As stated
under RQ2, C4.5 suffers from imbalanced datasets. However,
although the datasets are made balanced by adding ROS, the
prediction performance is decreased. The possible reason is that,
by adding replicated instances, the calculated information gain
of individual features could be misleading, and make the deci-
sion tree built less useful. For IB1 (refer to Table IX), the best
method is now , supported by both the average AUC
and the Win, Draw, Loss records. This outcome reinforces the

above analysis for IB1, that more features (remaining after fea-
ture selection) would be more helpful in determining suitable
neighbors to make better predictions. In addition, ROS, which
merely adds replicates, makes no difference (other than random
perturbance) in the performance of IB1.
In summary, for RQ4, we can conclude that our proposed al-

gorithm NTC can be further improved by the instance reduction
facility (i.e., RUS) for data preprocessing, at least applied to the
three classification models used for software fault prediction.
According to the experimental results, data imbalance may be a
general issue in software repositories, and the design of suitable
instance sampling techniques deserves further study.

E. RQ5: The Impact of the Dataset Properties

Based on the above analysis, we can find that the final pre-
diction performance after our two-stage approach varies on dif-
ferent datasets. Hence, it is valuable to investigate how the prop-
erties of a dataset take effect on data preprocessing. In this sub-
section, we mainly focus on two such properties: the level of in-
stance sufficiency, i.e., the proportion of the number of instances
to that of features; and the temporal issue, i.e., whether later in-
stances are more useful than earlier ones. We investigate if the
optimal value of may be determined by the level of instance
sufficiency, and if different sections of instances may lead to a
different prediction performance.
1) The Level of Instance Sufficiency: Here we define the level

of instance sufficiency of a dataset as the ratio of the number of
the instances to that of the features. A great instance to feature
ratio means the dataset has sufficient instances to make sensible
classification by the feature values. The datasets used in our
experiments do have great differences in the instance sufficiency
levels, which are listed in Table XII. For example, the dataset
kc1 has 86 features, while it contains only 145 instances, which
leads to the smallest sufficiency level of 1.69. On the other hand,
pc5 contains 17186 instances with only 38 features, which leads
to the greatest sufficiency level 452.26.
To investigate the effects of the instance sufficiency level of

a dataset on the prediction performance, we list the optimal set-
tings of of the two-stage data preprocessing approach over
the three classifiers on each dataset in Table XII. Because the
two-stage approach will decrease both the number of features
and instances, we also list the modified sufficiency levels corre-
spondingly. Refer to Fig. 5; the optimal differs little over the
three classifiers. Because the optimal will hold for a relatively
wide range before the performance drops. The values shown in
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TABLE XII
COMPARISON OF OPTIMAL SETTINGS AMONG THE DATASETS

WITH VARIANT INSTANCE SUFFICIENCY LEVELS

Table XII are those that firstly reach at least 98% of the best per-
formance (leaving 2% to accommodate random perturbance) on
each dataset.
Considering the optimal , according to the third and fourth

columns in Table XII, the two schemes and
have nearly similar settings to accomplish the

best performance over all the datasets. On individual datasets,
the optimal values of are variant. A general trend can be found
when taking into consideration the instance sufficiency level of
each dataset (refer to the second column, where the sufficiency
levels are listed in descending order). The optimal tends to
be small when the sufficiency level is great, and vice versa. For
example, the Eclipse datasets have plenty of instances, and the
optimal can be around a small value (i.e., 0.4), while datasets
mc2 and kc1 are short of instances, so the optimal will require
a great value (i.e., 0.8–0.9, which means a large proportion of
the features are selected). This result partly interprets the phe-
nomenon in Fig. 5, where the best performance will not drop
until reaches 0.8, because some datasets (at least 4 out of 13)
do require a great enough . The dataset pc5 apparently con-
tradicts the negative correlation between the sufficiency level
and the optimal . However, pc5 contains a great number of
17,186 instances with a small number of 38 features. The in-
stances are sufficient enough to support a great number of fea-
tures for making effective classification.
To make clear the effects of the optimal (i.e., effective

data preprocessing), we can investigate the instance sufficiency
level afterwards (shown in the last two columns in Table XII).
Here, the sufficiency levels are consistently greater than the ini-
tial counterparts. Especially on Eclipse 3.0, the sufficiency level
after is made similar to that on pc5, although a great gap exists
between their initial values. This result suggests that a great in-
stance sufficiency level will help enhance the performance of

TABLE XIII
COMPARISON AMONG DIFFERENT TRAINING SECTIONS USING

AVERAGE AUC OVER THE THREE CLASSIFIERS

classification. On the other hand, for software datasets, when
the number of instances is small, the features should not be pre-
sumptuously removed to make a simpler but less effective clas-
sifier for fault prediction. Software is complex, and every fea-
ture may be valuable, especially when the software samples are
insufficient. Further study on this issue will be part of our future
work.
2) The Temporal Issues: The temporal issue, i.e., the time

when an instance (software module) is sampled, may influence
its usefulness in predicting the fault proneness of new modules.
During the experiments, the Eclipse datasets contain traceable
time information [50], and its instances can be assumed as being
stored in time order. To evaluate the effects of temporal issues
on the final prediction performance, we separate the instances
in each of the three Eclipse datasets into three sections (for
training): the Early section, containing the first 30% instances;
theMidterm section, containing instances within 30 to 60%; and
the Late section, containing instances within 60 to 90%. The
last 10% instances are used for testing. Table XIII presents the
average AUC values resulting from the three classifiers using
each of the three sections as the training set, respectively. The
parameter is set at the optimal values (i.e., 0.4) suggested in
Table XII. The last row in Table XIII gives the average AUC
when 90% instances are used for training without considering
the time order.
According to Table XIII, different sections of instances have

variant influences on the final prediction performance. On
average, both the Early section and the Late section are more
useful than the Midterm section. It is hard to determine whether
either the Early section or the Late section is more useful. Each
has cases under which one evidently outperforms the other. By
exploring the datasets, the Early section may contain software
modules whose updated versions appear in the testing set, while
the Late section is temporally closer to software modules under
prediction. The above suggests that temporal issues deserve
consideration during data preprocessing. Further study on this
question will be part of our future work.
By combining all the three sections, the prediction perfor-

mance usually improves greatly. An exception is on Eclipse 3.0,
where both the Early and Late sections can lead to good predic-
tion performance. The reason may be that Eclipse 3.0 has the
greatest number of instances among the three datasets, and a
single section contains enough instances that reach the desired
sufficiency level.
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F. Discussion

In this paper, we design a two-stage data preprocessing ap-
proach which includes the feature selection stage, and the in-
stance reduction stage. The experimental results have proved
the effectiveness of the approach when compared to some typ-
ical baseline feature selection methods, such as IG, CFS, and
Consist, with or without instance sampling.
For feature selection, the NTC is effective in eliminating re-

dundant features while keeping relevant ones. Among the sim-
ilarity functions used for clustering features, symmetric uncer-
tainty, which is non-linear, is proved to be the best, especially
when combined with IG and CS. This conclusion conforms to
the findings of Yu and Liu [48], which suggest non-linear cor-
relations among software measures. The similarity threshold
needs to be set according to the dataset, but the resulted perfor-
mance is quite stable for a large threshold range (e.g., 0.4 to 1.0).
The greater the threshold, the more features will be selected.
For instance reduction, the random under-sampling technique

is proved useful, and can be applied to other feature selection
methods with profitable results, while the over-sampling tech-
nique is not suitable, at least for software datasets. Random sam-
pling is effective in the experiments, because we have found
that similarities among instances in the datasets are usually high
(e.g., the average instance similarity measured by SU is greater
than 0.9 in almost all the datasets).
We also investigate how the properties of a dataset will af-

fect the data preprocessing approach, because its performance
differs on different datasets. First, the optimal may be de-
termined by the level of instance sufficiency, i.e., the ratio of
number of the instances to that of the features. Based on the ex-
periments, when the sufficiency level is great, can be safely
set to a small value, which means a small proportion of the fea-
tures are enough. On the other hand, if the sufficiency level is
small, requires a large value, and the features need to be pre-
served. Overall, can be set within [0.4, 0.6] to get a promising
result.
Second, the temporal issue requires consideration during data

preprocessing. Based on experiments, either temporally adja-
cent software samples or highly coupled coding units may de-
termine the usefulness of the software instances. However, the
above statement still requires clear evidence. Further study on
the issue will be part of our future work.
Additionally, we plan to design a data preprocessing approach

whose effectiveness should be unaffected by the classification
models used. However, the experimental results do not sup-
port such an assumption. Different classifiers may call for dif-
ferent data preprocessing techniques. For example, Naive Bayes
performs worse if any instance reduction technique is applied,
while the -nearest neighbors might perform poorly
with any feature selection technique. The C4.5 decision tree
may require a compliant similarity measure used to eliminate
redundant features. Above all, the two-stage data preprocessing
approach can provide a useful framework to accommodate suit-
able feature selection and instance sampling techniques for im-
proving the performance of the classification models, and in-
corporating new effective techniques into the framework still
remains an open research issue.

G. Threats to Validity

Here we discuss the potential threats to the validity of our
study.
Threats to the external validity include whether the observed

experimental results can be generalized to other situations. To
guarantee the representativeness of our experiments, we choose
the commonly used Eclipse and NASA datasets, which include
13 carefully selected subjects. In addition, we choose three clas-
sification models, which are widely used in software fault pre-
diction, to guarantee soundness of the results.
Threats to the internal validity include the faults that may re-

side in the implementations of the data preprocessing approach
and classification models. To avoid this type of threat, all the
implementations are cross-checked by our research group, and
the classification models and other benchmark methods are
provided by the commonly used Weka package. Moreover,
the datasets are carefully examined, where non-numeric fea-
tures and the features which have only one distinct value are
eliminated.
Threats to the construct validity include whether the per-

formance measures used in the experiments are suitable to
reflect the real-world performance of the two-stage approach.
We choose the AUC measure to evaluate the prediction per-
formance. Compared with other performance measures, such
as precision, recall, or F-measure, AUC has a lower variance,
and is more reliable to indicate the predictive potential of the
methods. Moreover, to alleviate the random effects, we perform
10 10-fold cross-validation, and use the mean AUC measure
to represent the prediction performance. Finally we do the
Friedman test to validate the significance of the performance
ranking of the methods.

VI. CONCLUSION

In this paper, we provide a two-stage data preprocessing ap-
proach, which incorporates both feature selection and instance
reduction, to improve the quality of software datasets used by
classification models for software fault prediction. In the fea-
ture selection stage, we propose a novel algorithm which in-
volves both relevance analysis and redundancy control. In the
instance reduction stage, we apply random under-sampling to
keep the balance between the faulty and non-faulty instances.
We systematically design experiments based on the Eclipse and
NASA datasets, and compare our approach to other commonly
used data preprocessing methods. The results demonstrate the
potential of our approach in enhancing the prediction perfor-
mance of the classifiers built thereafter.
In our future work, we plan to extend the two-stage approach

in several ways. First, we plan to investigate the inter-rela-
tions between the feature selection and the instance reduction
methods, and investigate key factors such as instance suffi-
ciency level or inter-relation among the instances for optimal
parameter setting. Second, we plan to apply our approach to
other real-world software datasets to prove its effectiveness.
Third, the temporal issues deserve more study. Finally, we plan
to use other classification models to validate the generality of
the approach, and design data preprocessing methods suitable
for specific classification models.
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