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Abstract 
 

The performance of deep face recognition depends heav- 

ily on the training data. Recently, larger and larger datasets 

have been developed for the training of deep models. How- 

ever, most face recognition training sets suffer from the 

class imbalance problem, and most studies ignore the ben- 

efit of optimizing dataset structures. In this paper, we study 

how class-balanced training can promote face recognition 

performance. A medium-scale face recognition training set 

BUPT-CBFace is built by exploring the optimal data struc- 

ture from massive data. This publicly available dataset 

is characterized by the uniformly distributed sample size 

per class, as well as the balance between the number of 

classes and the number of samples in one class. Experi- 

mental results show that deep models trained with BUPT- 

CBFace can not only achieve comparable results to larger- 

scale datasets such as MS-Celeb-1M but also alleviate the 

problem of recognition bias. 
 

 
1. Introduction 

 

In recent years, face recognition technology is becoming 

more mature and applicable. A lot of public face recogni- 

tion training sets [5, 13, 31, 33, 46] are developed to meet 

the needs of training deep models. The recognition perfor- 

mance on public benchmarks such as LFW [18] are also 

becoming saturated. However, the class imbalance prob- 

lem [2, 3, 14, 15, 20] remains a bottleneck in the field of 

deep face recognition, which means, the number of sam- 

ples in majority classes is much more than that in minority 

classes in the training sets. The imbalanced data distribu- 

tion is characterized by the long tail distribution [28, 51]: a 

few classes have many face images as the “head” data, and 

most classes have fewer face images as a long “tail”. 

Developing a face recognition system using imbalanced 

training sets, which is a common practice, can really impair 

the representation ability of the model. First, the recogni- 

tion accuracy is affected. As shown in the upper part of Fig- 

ure 1, if the model is trained with class-imbalanced training 

sets, the volume of different classes in the feature space is 
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Figure 1: Upper: imbalanced training set leads to unequal 

feature space. Lower: balanced training set leads to equal 

feature space, improving recognition accuracy and fairness. 
 
 

unequal. The majority classes occupy bigger spaces so that 

when the model is applied, samples with similar distribu- 

tion to the minority classes have a greater chance of being 

misidentified. In contrast, if the number of samples in each 

class in the training set is the same, as shown in the lower 

part of Figure 1, the model can reserve equal volume space 

for different identities. Second, fairness is affected. Due to 

the limitation of data collection methods, different popula- 

tions have different probability of appearing in the dataset. 

For example, most face recognition training sets are com- 

posed of celebrities [13, 36, 46], so that the proportion of 

men is much larger than that of women, the proportion of 

Americans is much larger than that of Africans, and the pro- 

portion of elderly and infants is seriously insufficient. As a 

result, women, Africans, the elderly and infants have less 

chance to be well learned by the model, leading to the bias 

in face recognition. Some bias-related researches [19, 40] 

prove the existence of this kind of misidentification and un- 

fairness. We firmly believe that in face recognition, every- 

one should be treated equally, and the unfairness can be al- 

leviated with balanced training data. 

Besides the class imbalance problem, the data structure 

of the dataset is also worth studying. Zhou et al. [52] prove 

that when training a small portion of a large dataset, using 
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the “head” part can reach a better recognition result on the 

LFW [18] than randomly sampling classes. However, as the 

number of selected classes increases, “head” data begins to 

suffer from the long tail problem, resulting in performance 

degradation, although the number of images and identities 

for training is indeed increasing. This suggests that feeding 

a large amount of data to the model does not necessarily 

lead to better training results. Carefully selected classes and 

well-designed sample distributions also play vital roles in 

the effectiveness of face recognition. 

In this paper, we study the impact of dataset structure 

on deep face recognition, and especially observe the phe- 

nomenon produced by class-balanced training. Extensive 

experiments are performed to compare face recognition per- 

formance on the long-tailed and uniformly distributed train- 

ing data, showing that the long tail phenomenon is likely 

to be one of the important factors that restrict the perfor- 

mance of a dataset. In addition, the issues of class selection 

and balance between the number of classes and the number 

of samples per class are also well studied experimentally. 

Finally, in light of the experimental observations, an opti- 

mized training set BUPT-CBFace is built for efficient deep 

face recognition. As shown in Figure 2, BUPT-CBFace is a 

class-balanced face dataset, which is constructed by search- 

ing optimal data structure for face recognition. 

Based on state-of-the-art ResNet [16] architecture and 

ArcFace loss [9], compared to the widely-used CASIA- 

WebFace [46] dataset, training deep models using BUPT- 

CBFace of the same size can improve the accuracy on 

LFW [18], RFW [40] and IJB-C [29] by a large margin, 

and reach state-of-the-art performance on MegaFace chal- 

lenge 1 [21] under the small protocol with 79.57% identi- 

fication accuracy and 95.20% verification accuracy. More- 

over, BUPT-CBFace even outperforms the large-scale face 

dataset MS-Celeb-1M [10, 13], exceeding it by 2.10% on 

the average accuracy of five verification sets with eight 

times fewer training images. To encourage more class bal- 

ance researches, the BUPT-CBFace dataset is made publicly 

available   at   http://whdeng.cn. 
 

2. Related Work 
 

Class Imbalance Problem In recent years, a  lot  of 

work [2, 15, 20] has been devoted to addressing the problem 

of imbalanced training samples in deep learning. In terms of 

algorithm, UP [12] imposes a penalty on the norm of weight 

vectors so that minority classes can have comparable feature 

space volume with majority classes. Wu et al. [44] propose 

a center invariant loss that aligns the feature centers of the 

minority classes to the majority. Fair loss [24] uses rein- 

forcement learning to balance different classes. Zhong et 

al. [51] train the head data and tail data separately to re- 

duce the long tail effect. Ring loss [50] applies soft feature 

normalization to augment standard loss functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Sample distributions of widely-used long-tailed 

datasets and BUPT-CBFace. The two axes are normalized. 
 
 

Some other work improves in terms of data, such as data 

resampling and data augmentation. SMOTE [6] combines 

over-sampling the minority classes and under-sampling the 

majority classes to achieve better classifier performance. 

BalanceCascade [26] trains the learners sequentially, where 

in each step, the majority class examples that are correctly 

classified by the currently trained learners are removed 

from further consideration. OOB and UOB [41, 42] build 

an ensemble model overcoming class imbalance in real- 

time through resampling and time-decayed metrics. Lin et 

al. [23] use a clustering technique during the data prepro- 

cessing step for data undersampling. REPAIR [22] learns 

weights for different classes to re-sample data to remove 

representation bias. However, in the field of deep face 

recognition, no attempt has been made to directly establish 

a class-balanced training set. In this paper, we try to ex- 

plore the gains of training a face recognition model in the 

case of absolute fairness in terms of the number of samples 

between all classes. 

Face Recognition Datasets Large-scale face recognition 

training datasets are critical to recognition performance. 

CASIA-WebFace [46] is the first large-scale dataset for ef- 

ficient deep face recognition. VGGFace2 [5], MS-Celeb- 

1M [13] and MegaFace2 [31] provide over one million 

training images, pushing the face recognition benchmark 

performance to a new level. However, existing large-scale 

datasets are usually composed of in-the-wild face images 

collected from the web rather than in the laboratory, which 

makes them suffer from the imbalance of classes. Fig- 

ure 2 shows the normalized identity distribution of four 

widely-used training datasets, i.e., CASIA-WebFace [46], 

MS1M-IBUG [10] (cleaned from MS-Celeb-1M [13]), 

MegaFace2 [31] and VGGFace2 [5]. The curves are drawn 

by arranging all classes according to the number of their 

images in descending order. The long tail problem of 

MegaFace2 [31] is the most serious. VGGFace2 [5] han- 

dles this problem better, but it only contains 9,131 classes. 

Unfortunately, previous studies mostly keep the natu- 
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Dataset # of photos # of subjects STD 

MillionCelebs 18.8M 636.2K - 

MS1M-IBUG 3.8M 84.2K - 

CASIA-WebFace 494.4K 10.6K - 

Long-tail 500.0K 10.0K 65.5 

Uniform 500.0K 10.0K 0.0 

BUPT-CBFace 500.0K 41.6K 0.0 
 
 

Table 1: Face datasets used in the experiments for training 

recognition models. The MillionCelebs dataset [47] is used 

to extract subsets of 500k images under different conditions. 
 
 

ral distribution of the web-collected datasets for deep face 

recognition model training, and the impact of the dataset 

structure has not been well studied. One possible reason is 

that the data size is too small to select partial data for effec- 

tive training, so researchers tend to use all available data. 

However, it is meaningful to explore whether the recogni- 

tion model can benefit from better data distribution. It is 

possible that, by adjusting sample distribution and select- 

ing classes, medium-scale datasets also achieve compara- 

ble training effects of a larger-scale one. Besides, such an 

3.1. Experimental Setup 
 

Evaluation   Metrics   Face   recognition    performance 

is evaluated on 10-fold verification sets LFW [18], 

CALFW [49], CPLFW [48], CFP [35] and AgeDB [30]. 

The RFW [40] benchmark is used to test model perfor- 

mance on four kinds of races so that the degree of algorithm 

fairness can be measured by the standard deviation (STD) 

of the four races. Moreover, the MegaFace Challenge1 [21] 

evaluates face recognition performance under one million 

distractors, and the IJB-C [29] benchmark evaluates 

template-wise face recognition performance. CMC curves 

and Rank-1 are adopted to evaluate face identification 

performance, while ROC curves and TPR at given FPR are 

adopted to evaluate face verification performance. 

CNN Architecture and Loss Function Many CNN ar- 

chitectures [7, 16, 17] and loss functions [9, 38, 43] are 

developed to promote the face recognition ability. In this 

paper, ResNet-X [16] and MobileNetV2 [34] are deployed 

to test data performance at different network scale. ResNet- 

X refers to a ResNet [16] architecture with X layers. For 

measuring training loss, the cross-entropy Softmax loss LS 

and large-margin ArcFace loss [9] LA are used:  
 

T 

“efficient” dataset may benefit the training of a lightweight 1  
N 

eW
 xi +byi        yi   

model that is important for industrial applications. LS = − 
N

  
i=1 

log 
),n 

j=1 

W T xi +bj 
(1)

 

3. How Does Class Balance Help Training? 
 

In this section, we explore the effects of class imbalance 

and data structure distributions on face recognition perfor- 

mance through experiments. Specifically, we hope to an- 

swer the following three questions: 

 

where xi ∈ Rd denotes the deep feature of the i-th sample, 

yi denotes the label of xi. W is the weight matrix and b is 
the bias term. N and n is batch size and class number. For 
simplicity, we fix b = 0 as in many works [9, 12, 25, 37]. 

1. Can  a  uniformly  distributed  dataset  with  balanced 1   
N

 
 

es cos(θ 
 

+m) 
       yi   

classes lead to better recognition performance? 

2. Does the class imbalance contribute to recognition bi- 

LA = − 
N

  
i=1 

log 
es cos(θy 

 

j=1,j/=yi  
e 

 

s cos θ 
 
j 

(2) 

ases such as racial bias and gender bias? 

3. Can training classes be deliberately selected to im- 

prove recognition performance? 
 

For a fair comparison, we study these issues by training 

deep models with training sets of same level data size as 

CASIA-WebFace [46]. The training sets are built by ex- 

tracting samples from MillionCelebs [47], which is a well- 

cleaned long-tailed face dataset with abundant images and 

identities so that it is suitable for extracting such subsets for 

specific studies. Table 1 shows the information of related 

datasets. For data preprocessing, we use MTCNN [45] face 

detector to localize five landmarks, then align and crop the 

images to 112×112 face warps. The images are normalized 
by subtracting 127.5 and being divided by 128. In training, 

all input images are horizontally flipped with probability 0.5 

for data augmentation. All experiments in this paper are im- 

plemented by MXNet [8]. 

where θj is the angle between Wj and xi, m is the angular 

margin that aims to enlarge the gradient towards the class 

prototypes, and s is the scale of l2 normalized feature vec- 

tors. m and s are set 0.5 and 64. 

Training All experiments are performed on two NVIDIA 

GTX 1080Ti GPUs with batch size 256. The initial Stochas- 

tic Gradient Descent (SGD) learning rate is set 0.1, then 

is divided by 10 three times when the loss plateaus. The 

hyper-parameters weight decay and momentum are set 

0.0005 and 0.9, respectively. 
 

3.2. Face Recognition Accuracy 
 

To study the class imbalance issue of existing face recog- 

nition training sets, we build a synthetic set called “Long- 

tail” by simulating their long tail distribution. Specifically, 

“Long-tail” is extracted from a big dataset in the following 

three steps: 
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Architecture Loss Dataset LFW CALFW CPLFW CFP AgeDB Avg. U. - L. 

 

 
ResNet-18 

 

Softmax 
Long-tail 

Uniform 

98.67 

98.78 

86.70 

87.18 

78.98 

79.55 

92.31 

92.27 

90.53 

90.40 

89.44 

89.64 

 

0.20 

ArcFace 
Long-tail 

Uniform 

99.47 

99.45 

92.80 

93.07 

83.58 

84.42 

93.76 

93.56 

94.97 

95.13 

92.92 

93.13 
0.21 

 

 
MobileNetV2 

 

Softmax 
Long-tail 

Uniform 

98.40 

98.60 

85.93 

86.37 

76.57 

76.85 

90.81 

91.10 

89.60 

89.57 

88.26 

88.50 

 

0.24 

ArcFace 
Long-tail 

Uniform 

98.90 

99.15 

90.35 

90.83 

81.43 

81.18 

92.24 

91.69 

92.65 

93.33 

91.11 

91.24 
0.13 

 

 

Table 2: Face recognition accuracy (%) of the “Long-tail” and the “Uniform” with different architectures and loss functions. 

“Avg.” means average accuracy on the 5 test sets. “U. - L.” means how the “Uniform” surpasses “Long-tail” on average. 
 
 

1. Simulate the long tail curve. Simulate the long tail 

shape of a dataset D and scale its distribution to i iden- 

tities, with a total number of m images. Then this long 

tail curve can be expressed using a discrete function 

S(k), k = 1, 2, · · · , i, where 

i   
S(k) = m (3) 

k=1 
 

2. Determine source distribution. In a big dataset B, 

intercept its head identities with the number of face 

images greater than n. 
 

3. Extract subset. Randomly select i identities from the 

intercepted head part, rearrange them from 1 to i. For 

identity k, randomly select S(k) images to generate 

the subset. 
 

To construct the “Long-tail” dataset, we set i = 10, 000, 

m = 500, 000, and n = 90 to ensure that every class has 

enough images to choose from. B and D refers to Mil- 

lionCelebs [47] and CASIA-WebFace [46], respectively. A 

comparative “Uniform” dataset is also constructed by us- 

ing the same classes and data size as the “Long-tail” but 

each class has 50 randomly selected images. By control- 

ling the variables, we ensure that the accuracy differences 

between the experimental results of the two datasets de- 

pend only on whether the classes are balanced. Table 2 

compares performances of deep models on five validation 

sets by different architectures and loss functions. It is ob- 

served that class-balanced training data can effectively en- 

hance face recognition performance on average for all tested 

architectures and loss functions. For example, when train- 

ing a MobileNetV2 [34] model with Softmax as loss func- 

tion, Uniform outperforms Long-tail on four out of the five 

test sets and increases the mean accuracy by 0.24%. When 

the ResNet [16] architecture or ArcFace loss [9] is used, the 

class-balanced dataset also achieves higher accuracy. 

Figure 3 shows the loss decreasing curves of Long-tail 

(red) and Uniform (green). It is observed that the Softmax 

 
 

(a) Softmax on ResNet-18 (b) Softmax on MobileNetV2 

 
 

(c) ArcFace on ResNet-18 (d) ArcFace on MobileNetV2 
 
 

Figure 3: Comparison of loss curves. Softmax loss of a 

class-imbalanced dataset decreases earlier. ArcFace loss [9] 

of a class-balanced dataset decreases lower. 
 

 
loss of an imbalanced training set converges faster at the 

beginning. This is because the majority classes can quickly 

converge due to its large number of training samples, but 

this does not help improve the final training effect. On the 

other hand, the ArcFace loss [9] of Uniform can decrease 

lower than Long-tail. This shows that balanced classes are 

easier to fit into the large margin feature space, so the model 

performance is also improved as expected. 

 
3.3. Bias in Recognition 

 

In Section 1, it is analyzed that imbalanced training sets 

hinder the fairness among people of different races and gen- 

ders, resulting in bias in face recognition. The Long-tail and 

Uniform sets are helpful to explore existence of such bias. 
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# Dataset Caucasian African Indian Asian STD 
 

1 
Long-tail 

Uniform 

92.17 

93.73 

82.25 

83.97 

88.47 

88.83 

85.02 

86.23 

3.72 

3.63 
 

2 
Long-tail 

Uniform 

90.42 

90.57 

78.43 

79.05 

85.77 

86.02 

83.18 

83.50 

4.33 

4.17 
 
 

Table 3: Performance on the RFW benchmark of ResNet- 

18 [16] (#1) and MobileNetV2 [34] (#2) trained with Ar- 

cFace loss [9]. The class-balanced training set can reach 

higher accuracy (%) on all races with lower standard de- 

viation. Therefore, the fairness of race is guaranteed. 
 
 

RFW RFW [40] is a benchmark for measuring face 

recognition accuracy on four kinds of races, i.e., Cau- 

casian, Asian, Indian and African, which can be used to 

test the bias problem in face recognition. Table 3 reports 

the results on RFW [40] of ResNet-18 [16] (#1) and Mo- 

bileNetV2 [34] (#2) models trained by Long-tail and Uni- 

form with ArcFace loss [9]. It is observed that in the two 

comparative experiments, Uniform not only performs better 

than Long-tail on any race but also has a smaller standard 

deviation in the accuracy of the four races, which means, 

the difference between recognition accuracy for the four 

races is even smaller. It is worth noting that we achieve this 

improvement by only adapting the sample distribution to a 

uniform distribution without using any race-related infor- 

mation to deliberately select the classes. This confirms that 

the class-balanced training is of great benefit to the fairness 

of deep face recognition. 
 

3.4. Class Selection 
 

For a class-balanced training set, there is still great op- 

timization potential. For example, the composition of the 

classes in the dataset can be carefully designed to better fit 

the spatial distribution of the human face. When construct- 

ing the Uniform dataset, n is the main variable controlling 

the choice of classes. It is observed that with the change of 

n, although the generated datasets are in the same shape and 

size, the training effects are totally different. As is shown in 

Figure 4, training ResNet-34 [16] with ArcFace [9] as loss 

function, LFW [18] and CPLFW [48] peak at n = 60, but 

CALFW [49] peaks at n = 90. 

Noted that a big n only considers majority classes while 

a small n can consider more minority classes, this phe- 

nomenon indicates that majority classes perform better on 

the “cross-pose” recognition task, and adding a certain pro- 

portion of the minority classes can improve the performance 

on “cross-age” recognition task. Considering the data col- 

lection process, the majority classes are often composed of 

famous people, who have more pictures on the web, so the 

collecting recall is lower, and the photos after his fame will 

be collected first, which means there is more cross-pose in- 

 
(a) LFW [18] (b) CALFW [49] (c) CPLFW [48] 

 
 

Figure 4: The recognition accuracy on three verification sets 

with the variety of n. The dashed lines represent the results 

of model combination of n = 60 and n = 90. 
 
 

formation. On the contrary, the minority classes are col- 

lected with high recall, including his pictures of different 

ages, so the “cross-age” performance is improved. This 

interesting observation gives guidance on the selection of 

training data. According to the application scenario, there 

should be different emphasis on the majority or minority. 

For comprehensive optimization, it is necessary to have a 

compromise or deploy model combination. The dashed 

lines in Figure 4 show one possible model combination at- 

tempt: we simply concatenate the output features of the 

n = 60 and n = 90 models, then the balance of the recog- 

nition accuracy on different tasks is reached. 
 

4. BUPT-CBFace: Class-Balanced Training 
 

Following previous observations, a novel face recogni- 

tion training set BUPT-CBFace is constructed to help con- 

venient yet effective deep face recognition models training. 
 

4.1. Balance Between Breadth and Depth 
 

There are many studies [1, 4, 39] that discuss whether 

the training set should have more classes or more images in 

one class, but their answers are not the same. We define two 

parameters for a class-balanced dataset: 
 

Breadth The number of identities. 

Depth The number of images per identity. 
 

Keeping the data distribution and data size unchanged, 

we can observe how the variation of breadth and depth af- 

fect training. To this end, we set n = 60 and select seven 

kinds of setups (breadth from 5,000 to 62,500) to build 

training sets, in which the identities and images are still 

randomly selected. Table 4 shows the recognition accu- 

racy of training ResNet-34 [16] with ArcFace loss [9] and 

these datasets. Figure 5 draws the average verification ac- 

curacy and final training loss vary with breadth. It is ob- 

served that when the data size remains constant, the variety 

of dataset shape plays an important role in training. Start- 

ing from 5,000, each increase in breadth brings a significant 

accuracy enhancement. However, the excessive number of 
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Breadth Depth LFW CALFW CPLFW Avg. 

5,000 100 99.28 91.72 84.85 91.95 

10,000 50 99.65 93.12 88.48 93.75 

20,000 25 99.57 94.15 89.22 94.31 

31,250 16 99.68 94.18 89.58 94.48 

41,667 12 99.63 94.60 89.90 94.71 

50,000 10 99.50 94.20 90.30 94.67 

62,500 8 99.58 94.50 89.75 94.61 
 

 

Table 4: At the same data scale (500k images), proper 

breadth and depth of a class-balanced dataset can signifi- 

cantly improve the recognition accuracy (%). 
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Figure 5: The variations of mean verification accuracy and 

final training loss with dataset breadth. 
 
 

classes also leads to insufficient depth, which inhibits the 

training effect. This shows that there is a demand for both 

the number of images and the number of identities in the 

deep model learning, and the performance limit lies in the 

side of the shortboard. Finally, the average recognition ac- 

curacy peaks at the breadth of around 40,000 to 50,000. 

The final loss curve in Figure 5 is also intriguing. As is 

observed, the loss keeps very small when the breadth is less 

than 15,000, which means that a small number of classes 

is easy to fit. When the breadth is greater than 15,000, the 

feature space is gradually saturated so the loss increases. 

However, when the data breadth reaches 30,000 or more, 

the loss falls back to a medium level at around 1.5 because 

the number of images in one class is smaller, so that they 

are easier to fit into the feature space. It confirms that deep 

learning can gain from depth and breadth, separately. 

Comprehensive consideration, we regard the dataset with 

41,667 classes and 12 images per class as the BUPT- 

CBFace dataset. Figure 6 shows images of five classes in 

BUPT-CBFace. In addition to its balanced classes, it also 

strikes a balance between depth and breadth. In recogni- 

tion tasks, BUPT-CBFace not only considers the balance 

between cross-age and cross-pose recognition but also re- 

duces recognition bias to certain extent. Due to its small 

size and good recognition performance, BUPT-CBFace can 

 

 
 
 

Figure 6: Images of five classes in BUPT-CBFace. There 

are twelve images in each class with rich facial information 

such as poses, lighting and expressions. 
 
 

be easily trained on a single NVIDIA GTX 1080Ti GPU to 

achieve the same level results as large-scale parallel training 

like training on the MS-Celeb-1M [13] dataset. 
 

4.2. Evaluation Results 
 

We evaluate the benchmark performance of BUPT- 

CBFace comparing with the other two public training sets 

CASIA-WebFace [46] and MS1M-IBUG [10] under the 

same training environments. Table 5 reports face recogni- 

tion accuracy of the ResNet-50 [16] models trained with 

Softmax or ArcFace loss [9]. BUPT-CBFace reaches the 

highest accuracy on three of the five verification sets, even 

more than MS1M-IBUG [13] that has nearly eight times 

more face images of it. Especially on the cross-pose test 

set CPLFW [48] and CFP [35], BUPT-CBFace surpasses 

MS1M-IBUG [13] by 5.75% and 5.27% with  ArcFace 

loss [9], which means that it contains a large amount of 

pose-related information. BUPT-CBFace also obtains the 

highest average accuracy of the 5 verification sets, surpass- 

ing MS1M-IBUG [13] by 2.10% to reach 95.60%. 

IJB-C The IJB-C benchmark [29] tests  template-wise 

face recognition performance. Training ResNet-50 [16] 

with Softmax or ArcFace loss [9], the verification TPR at 

1e-4 FPR and identification Rank-1 on IJB-C [29] are re- 

ported in Table 5. BUPT-CBFace reaches higher accuracy 

than CASIA-WebFace [46] and MS1M-IBUG [13] on all 

tests. Trained with ArcFace loss [9], BUPT-CBFace reaches 

93.95% identification accuracy and 92.99% verification ac- 

curacy. Figure 7 shows the corresponding CMC and ROC 

curves. In Figure 7a, BUPT-CBFace has the highest Rank- 

N accuracy for any N in all comparisons, which shows its 

strong identification ability. In Figure 7b, when trained with 

ArcFace loss [9], MS1M-IBUG [13] can reach higher TPR 

at 1e-5 FPR. This shows that when the requirements for 

identifying negative pairs become stricter, the number of 

training samples becomes more important. However, in or- 
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Methods Id. Ver. Protocol 

DeepSense 70.98 82.85 small 

SphereFace [25] 75.77 90.05 small 

FaceAll V2 76.66 77.61 small 

GRCCV 77.68 74.89 small 

FUDAN 77.98 79.20 small 

CVTE V2 78.32 94.42 small 

CASIA-WebFace + ResNet-34 76.22 91.48 small 

BUPT-CBFace + ResNet-34 78.35 93.45 small 

BUPT-CBFace + ResNet-50 78.75 93.81 small 

BUPT-CBFace + ResNet-100 79.57 95.20 small 

 

 
 

Loss 
 

Training Dataset Size(M) 
 

LFW 
 

CALFW 
 

CPLFW 
 

CFP 
 

AgeDB 
 

Avg. 
IJB-C 

Id. Ver. 

 
Softmax 

CASIA-WebFace 0.5 98.77 86.38 80.88 92.37 88.83 89.45 79.82 69.23 

MS1M-IBUG 3.8 98.97 90.92 79.98 87.46 92.38 89.94 79.05 56.53 

BUPT-CBFace 0.5 99.05 89.67 83.32 92.93 90.47 91.09 85.73 81.21 

 
Arcface 

CASIA-WebFace 0.5 99.52 92.55 87.17 95.33 95.20 93.95 88.05 80.44 

MS1M-IBUG 3.8 99.62 94.85 84.95 90.97 97.13 93.50 93.54 92.86 

BUPT-CBFace 0.5 99.65 94.80 90.70 96.24 96.60 95.60 93.95 92.99 
 

 

Table 5: Face recognition accuracy (%) of different datasets with ResNet-50 [16] as backbone and Softmax or ArcFace [9] 

as loss function. Training with BUPT-CBFace can obtain a better performance than other two datasets with smaller data size. 
 
 

 

(a) CMC curves (b) ROC curves 
 
 

Figure 7: Identification CMC curves and verification ROC 

curves on the IJB-C [29] benchmark. 

 
 

dinary scenes, a medium-scale class-balanced training set is 

more suitable for face recognition tasks. 

MegaFace MegaFace challenge 1 [21] evaluates face 

recognition performance under one million distractors. It 

measures TPR at 1e-6 FPR for verification and Rank-1 

retrieval performance for identification. Adopting Face- 

Scrub [32] as probe set, Table 6 shows BUPT-CBFace and 

comparative methods on the official leaderboard under the 

“small” protocol. Corresponding CMC and ROC curves of 

the highest official published methods are drawn in Fig- 

ure 8. BUPT-CBFace and CASIA-WebFace [46] trained 

with ArcFace loss [9] are included for comparison. Train- 

ing the same ResNet-34 [16] architecture with ArcFace 

loss [9], BUPT-CBFace exceeds CASIA-WebFace [46] by 

2.13% identification accuracy and 2.03% verification accu- 

racy. When training ResNet-100 [16] architecture with Ar- 

cFace loss [9], BUPT-CBFace reaches state-of-the-art per- 

formance on both face identification and verification tests 

under small protocol, outperforming CVTE V2 by 1.25% 

identification accuracy and 0.78% verification accuracy. 

RFW In Section 3.3, it is proved that a class-balanced 

training set can obtain higher accuracy and lower recog- 

nition bias for different races. Table 7 compares train- 

ing results of CASIA-WebFace [46] and BUPT-CBFace on 

RFW [40]. For fairness, MS1M-IBUG [13] is excluded for 

comparison because RFW [40] is a subset of MS-Celeb-1M 

Table 6: FaceScrub [32] results (%) of the MegaFace chal- 

lenge 1 [21] under small protocol. BUPT-CBFace reaches 

state-of-the-art performance on the official leaderboard. 
 
 
 
 

 
   
    
    

 
(a) CMC curves (b) ROC curves 

 
 

Figure 8: Identification CMC curves and verification ROC 

curves of all official published methods under the MegaFace 

challenge 1 [21] small protocol. 
 

 
 

and the identity duplication can cause serious interference. 

It is observed that the accuracy of BUPT-CBFace in all races 

greatly exceeds that of CASIA-WebFace [46]. For example, 

the ArcFace [9] model trained by BUPT-CBFace are 6.25% 

higher on the worst performed Asian faces, and 2.82% 

higher on the best performed Caucasian faces. Therefore, 

differences in accuracy between races are also reduced. The 

standard deviation of different races decreases to 1.61 from 
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Datasets Angle (Mean) Norm (STD) 

CASIA-WebFace 

MS1M-IBUG 

BUPT-CBFace 

15.29 0.13 

17.34 4.96 

14.01 0.03 

 

 

 
 
 
 
 
 
 
 

(a) CASIA-WebFace [46] (b) MS1M-IBUG [13] (c) BUPT-CBFace 

 
 

Figure 9: Visualization of randomly selected 50 classes of three datasets on t-sne [27] feature space. 
 
 

# Dataset Caucasian African Indian Asian STD 

1 
CASIA-WebFace 

BUPT-CBFace 

87.65 

89.98 

76.38 

81.93 

80.98 

85.30 

76.73 

83.38 

4.54 

3.04 

2 
CASIA-WebFace 

BUPT-CBFace 

94.43 

97.25 

88.53 

93.53 

89.85 

94.87 

86.88 

93.13 

2.81 

1.61 

 
 

Table 7: Face recognition accuracy (%) and standard devia- 

tion on the RFW [40] benchmark of ResNet-50 [16] trained 

with Softmax loss (#1) and Arcface loss [9] (#2). 
 
 

2.81 of CASIA-WebFace [46], so that the recognition bias 

problem is greatly alleviated. 
 

4.3. Analysis and Discussion 
 

Weight Matrix As many studies [9, 12] show, the weight 

matrix W in Equation 1 can reflect the training quality 

of the model. Table 8 shows the mean of the angle be- 

tween Wj  and the corresponding embedding feature cen- 

ter and standard deviant of lWj l for all classes of three 
datasets.  First, the angle between Wj  and centers of fea- 

ture embeddings xi of samples belong to class j shows 
how the training samples are fitted to the model.  In the 

model trained with BUPT-CBFace, the mean angle is 1.18◦ 

smaller than CASIA-WebFace [46] and 3.33◦ smaller than 

MS1M-IBUG [13], which means the output feature embed- 

dings of training classes are closer to Wj and therefore more 

representative, and the model converges better on the train- 

ing set. On the other hand, a majority class j usually leads 

to a larger weight vector norm lWj l, while a minority class 
usually leads to a smaller weight vector norm. In this case, 

if the vectors are not l2 normalized, the decision bound- 
ary is shifted towards the smaller-norm classes (see analy- 
sis in [11] and [12]). When training with the class-balanced 

BUPT-CBFace, weight vector norms lWj l have very small 
standard deviation 0.03, which is 4.93 smaller than that of 
MS1M-IBUG [13] and 0.10 smaller than that of CASIA- 
WebFace [46]. Therefore, even if no additional constraints 

are added on the norms of weight vectors, the norms of dif- 

ferent classes in BUPT-CBFace tend to be more consistent. 

Table 8: Statistics of weight matrix of ResNet-50 [16] mod- 

els trained with ArcFace loss [9] and different datasets. 

“Angle (Mean)” refers to  the  mean  of  angles  between 

Wj   and  the  corresponding  embedding  feature  center. 

“Norm (STD)” refers to the standard deviation of lWj l. 
 
 

Visualization In Figure 9, we visualize the feature distri- 

butions of randomly selected 50 classes from three train- 

ing sets, where each class is represented by one color. The 

ResNet-50 [16] models with ArcFace loss [9] are used 

to extract deep features, and t-sne [27] is used to gener- 

ate visual embeddings. It is observed that both CASIA- 

WebFace [46] and MS1M-IBUG [13] have extremely un- 

even sample spaces. On the one hand, the majority classes 

occupy a large volume of space, on the other hand, the mi- 

nority classes are squeezed closer and difficult to separate. 

So the class imbalance causes biases in the recognition ef- 

fect between the majority and the minority. In contrast, the 

spacial volumes of different classes in BUPT-CBFace are 

basically equal, so the recognition fairness is guaranteed. 

 
5. Conclusion 

 

In this paper, we study the impact of class balance and 

data structures on deep face recognition. A class-balanced 

face recognition training set BUPT-CBFace is built by care- 

fully adjusting data shapes and classes. BUPT-CBFace has 

a significant recognition performance and fairness improve- 

ment compared to long-tailed datasets of the same scale. 

Moreover, BUPT-CBFace can be easily trained on a single 

NVIDIA GTX 1080Ti GPU to achieve the same level re- 

sults as large-scale parallel training, which is very friendly 

to many institutes. BUPT-CBFace is publicly available as 

an alternative option to the existing long-tailed datasets. 
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