
Published in IET Software
Received on 4th August 2013
Revised on 7th March 2014
Accepted on 7th July 2014
doi: 10.1049/iet-sen.2013.0165

ISSN 1751-8806

Analogy-based effort estimation: a new method to
discover set of analogies from dataset characteristics
Mohammad Azzeh1, Ali Bou Nassif2

1Department of Software Engineering, Applied Science University, POBOX 166, Amman, Jordan
2Department of Computer Science, University of Western Ontario, London, Ontario N6A 5B9, Canada

E-mail: m.y.azzeh@asu.edu.jo

Abstract: Analogy-based effort estimation (ABE) is one of the efficient methods for software effort estimation because of its
outstanding performance and capability of handling noisy datasets. Conventional ABE models usually use the same number
of analogies for all projects in the datasets in order to make good estimates. The authors’ claim is that using same number of
analogies may produce overall best performance for the whole dataset but not necessarily best performance for each
individual project. Therefore there is a need to better understand the dataset characteristics in order to discover the optimum
set of analogies for each project rather than using a static k nearest projects. The authors propose a new technique based on
bisecting k-medoids clustering algorithm to come up with the best set of analogies for each individual project before making
the prediction. With bisecting k-medoids it is possible to better understand the dataset characteristic, and automatically find
best set of analogies for each test project. Performance figures of the proposed estimation method are promising and better
than those of other regular ABE models.

1 Introduction

Analogy-based effort estimation (ABE) is simplified a
process of finding nearest analogies based on notion of
retrieval by similarity [1–4]. It was remarked that the
predictive performance of ABE is a dataset dependent
where each dataset requires different configurations and
design decisions [5–8]. Recent publications reported the
importance of adjustment mechanism for generating better
estimates in ABE than null-adjustment mechanism [1, 9,
10]. However, irrespective of the type of adjustment
technique followed, the process of discovering the best set
of analogies to be used is still a key challenge.
This paper focuses on the problem of how can we

automatically come up with the optimum set of analogies
for each individual project before making the prediction?
Yet, there is no reliable method that can discover such set
of nearest analogies before making prediction. Conventional
ABE models start with one analogy and increase this
number depending on the overall performance of the whole
dataset then it uses the set of first k analogies that produces
the best overall performance. However, a fixed k value that
produces overall best performance does not necessarily
provide the best performance for each individual project,
and may not be suitable for other datasets. Our claim is that
we can avoid sticking to a fixed best performing number of
analogies which changes from dataset to dataset or even
from a single project to another in the same dataset.
Therefore we propose an alternative technique to tune ABE
by proposing a bisecting k-medoids (BK) clustering
algorithm. The bisecting procedure is used with k-medoids

to avoid guessing number of clusters, by recursively
applying the basic k-medoids algorithm and splitting each
cluster into two sub-clusters to form a binary tree of
clusters, starting from the whole dataset. This allows us to
discover the structure of dataset efficiently and
automatically come up with the best set of analogies as well
as excluding irrelevant analogies for each individual test
project. It is important to note that the discovered set of
analogies does not necessarily include the same order of
nearest analogies as in conventional ABE.
The rest of the article is structured as follows: Section 2

defines the research problem in more details. Section 3
provides the related work. Section 4 the methodology we
propose to address the research problem. Section 5 presents
the results we obtained. Section 6 presents discussion of our
results and findings. Lastly Section 7 summarises our
conclusions and future work.

2 Research problem

Several studies in software effort estimation try to address the
problem of finding optimum number of nearest analogies to
be used by ABE [3, 5, 6, 11]. The conclusion drawn from
these studies that using a static k value that produces overall
lowest mean magnitude relative error (MMRE) does not
necessarily provide the lowest MRE value for each
individual project, and may not be suitable for other
datasets. This shows that every dataset has different
characteristics and this would have a significant impact on
the process of discovering the best set of analogies. To
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illustrate our point of view and better understand this problem
we carried out an intensive search to find the mean effort
value of the nearest k analogies that produces lowest ‘MRE’
for every single test project as shown in Fig. 1. For a
dataset of size n observations, the best k value can range
from 1 to n− 1. Since a few number of datasets were
enough to illustrate our viewpoint, we selected three
datasets that vary in the size (i.e. one small dataset
(Albrecht), one medium (Maxwell) and one large
(Desharnais)). Fig. 1 shows the bar chart of the best
selected k numbers for the three examined datasets, where
x-axis represents project Id in that dataset and y-axis
represents k analogy number. It is clear that every single
project favours different number of analogies. For example
in Albrecht dataset, Three projects (id = 3, 6 and 22)
favoured k = 15 which means that the final estimates for
those project have been produced by using mean efforts of
15 nearest analogies. It is clear that there is no pattern for
the process of k selection. Therefore using a fixed number
of analogies for all test projects will far from optimum and
there is provisional evidence that choosing the best set of
analogies for each individual project is relatively subject to
dataset structure.

3 Related works

Software effort estimation is vital task for successful software
project management [12, 13]. ABE method has been widely
used for developing software effort estimation models based
upon retrieval by similarity [14–16]. The data driven ABE

method involves four primary steps [4]: (1) select k nearest
analogies using Euclidean distance function as depicted in
(1). (2) Reuse efforts from the set of nearest analogies to
find out effort of the new project. (3) Adjust the retrieved
efforts to bring them closer to the new project. Finally, (4)
retain the estimated project in the repository for future
prediction

dxy =
1

m

������������������∑m

i=1
xi − yi
( )2√

(1)

where dxy is the Euclidean distance between projects x and y
across m predictor features.
In spite of ABE generates better accuracy than other

well-known prediction methods, it still requires adjusting
the retrieved estimates to reflect the structure of nearest
analogies on the final estimate [5]. Practically, the key
factor of successful ABE method is finding the appropriate
number of k analogies. Several researchers [7, 9, 14, 15,
17] recommended using a fixed number of analogies
starting from k = 1 and increase this number until no further
improvement on the accuracy can be obtained. This
approach is somewhat simple, but not necessarily accurate,
and relies heavily on the estimator intuitions [14]. In this
direction, Kirsopp et al. [9] proposed making predictions
from the k = 2 nearest cases as it was found the best value
for their investigated datasets. They have increased their
accuracy values with case and feature subset selection
strategies [9]. The conclusion can be drawn from their
empirical studies is that the same k number has been used
for all datasets irrespective of their size and feature types
(i.e. numerical, categorical and ordinal features). Azzeh [14]
carried out an extensive replication study on various linear
and non-linear adjustment strategies used in ABE in
addition to finding the best k number for these strategies.
He found that k = 1 was the most influential setting for all
adjustment strategies over all datasets under investigation.
On the other hand, Idri et al. [18] suggested using all
projects that fall within a certain similarity threshold. They
proposed a fuzzy similarity approach that can select the best
analogies for which their similarity degrees are greater than
the predefined threshold. This approach could ignore some
useful projects which might contribute better when
similarity between selected and unselected cases is
negligible. Also the determination of the threshold value is
a challenge on its own and needs expert intuition.
Another study focusing on k analogies identification in the

context of ABE is conducted by Li et al. [3]. They proposed
a new model of ABE called AQUA which consists of two
main phases: learning and prediction. During the learning
phase, the model attempts to learn the k analogies and best
similarity threshold by performing cross-validation on all
training projects. The obtained k is then used during second
phase to make prediction for different test projects. In their
study Li et al. performed rigorous trials on actual and
artificial datasets and they observed various effects of k values.
Recently, Azzeh and Elsheikh [19] attempted to learn the k

value from the dataset characteristic. They applied the
bisecting k-medoid clustering algorithm on the historical
datasets without using adjustment techniques or feature
selection. The main observation was that while there is no
optimum static k value for all datasets, there is definitely a
dynamic k values for each dataset. However, the proposed
approach has a significant limitation in which they used the
un-weighted mean effort of the train projects of the leaf
cluster whose medoid is closest to the test project to

Fig. 1 Bar chart of k analogies for some datasets

a Albrecht dataset
b Maxwell dataset
c Dehasrnais dataset
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estimate the effort for that test project. Using such cluster does
not ensure that all project in it are nearest analogies. In this
paper, we solve that problem by proposing a more robust
approach in which in this study we focus mainly on
discovering the optimum set of analogies rather than
guessing only number of nearest analogies for each test
project. Further, we want to investigate that whether the
obtained set of analogies works well with different kinds of
adjustment techniques. Hence we chose three well-known
adjustment techniques from the literature besides mean
effort adjustment to investigate the potential improvements
of using our model on the adjustment techniques. The
techniques investigated in this study are:

(1) Similarity-based adjustment: This kind of adjustment aims
to calibrate the retrieved effort values based on their similarity
degrees with a target project. The general form of this
technique involves sum of product of the normalised
aggregated similarity degrees with retrieved effort value as
shown in (2). Examples, on this approach, from literature
are: AQUA [3]; FGRA [14]; and F-Analogy [18]

ex =
∑k

i=1 SM(x, yi)× ei∑k
i=1 SM(x, yi)

(2)

Where ex and ei are the estimated effort and effort of ith
source project, respectively. SM is the normalised similarity
degree between two projects (SM = 1− d, where d is the
normalised Euclidean distance obtained by (1)), and k is the
number of analogies.
(2) Genetic algorithm (GA)-based adjustment [15]: this
adjustment strategy uses GA to optimise the coefficient αj
for each feature distance based on minimising MMRE as
shown in (3). The main challenge with this technique is
that it needs too many parameter configurations and
user interactions such as chromosome encoding, mutation
and crossover which makes replication is somewhat
difficult task

ex =
1

k

∑k
i=1

ei +
∑M

j=1
aj × (fxj − fij)

( )
(3)

where fxj is the jth feature value of the target project. fij is the
jth feature value of the nearest project yi.
(3) Neural network (NN)-based adjustment [17]: This
technique attempts to learn the differences between effort
values of target project and its analogies based on
difference of their input feature values. These differences
are then converted into the amount of change that will be
added to the retrieved effort as shown in (4). The NN
training function stops when MSE drops below the
specified threshold = 0.01, and the model is trained based
on back-propagation algorithm

ex =
1

k

∑k
i=1

ei + f (Sx, Sk)
( )

(4)

f (Sx, Sk) is the neural network model. Sx is the feature
vector of a target project and Sk is the feature matrix of the
top analogies.

4 Methodology

4.1 Proposed bisecting k-medoids algorithm

The k-medoids [20] is a clustering algorithm related to the
centroid-based algorithms which groups similar instances
within a dataset into N clusters known a priori [20–22]. A
medoid can be defined as the instance of a cluster, whose
average dissimilarity to all the instances in the cluster is
minimal, that is, it is a most centrally located point in the
cluster. It is more robust to noise and outliers as compared
to k-means because it minimises the sum of pairwise
dissimilarities instead of the sum of squared Euclidean
distances [20]. The popularity of making use of k-medoids
clustering is its ability to use arbitrary dissimilarity or
distances functions, which also makes it an appealing
choice of clustering method for software effort data as
software effort datasets also exhibit very dissimilar
characteristics. Since finding the suitable number of clusters
is kind of guess [20] we employed bisecting procedure with
k-medoids algorithm and propose BK algorithm. BK is a
variant of k-medoids algorithm that can produce
hierarchical clustering by recursively applying the basic
k-medoids. It starts by considering the whole dataset to be
one cluster. At each step, one cluster is selected and
bisected further into two sub-clusters using the basic
k-medoids as shown in the hypothetical example in Fig. 2.
Note that by recursively using a BK clustering procedure,
the dataset can be partitioned into any given number of
clusters in which the so-obtained clusters are structured as a
hierarchical binary tree. The decision whether to continue
clustering or stop it depends on the comparison of variance
degree between childes and their direct parent in the tree as
shown in (5). If the maximum of variance of child clusters
is smaller than variance of their direct parent then clustering
is continued. Otherwise it is stopped and the parent cluster
is considered as a leaf node. This criterion enables the BK
to uniformly partition the dataset into homogenous clusters.
To better understand the BK algorithm, we provide the
pseudo code in Fig. 3

Variance = 1

n

∑n

j=1,yj[Ci
yj − vi

∥∥∥ ∥∥∥2 (5)

where ||·|| is the usual Euclidean norm, yj is the jth data object
and vi is the centre of ith cluster (Ci). A smaller value of this
measure indicates a high homogeneity (less scattering).

4.2 Proposed k-ABE methodology

The proposed k-ABE model is described by the following
steps:

Fig. 2 Illustration of BK algorithm
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(1) For each new project, say x, we first cluster training
datasets into C clusters using BK algorithm.
(2) The Euclidian distance between project x and all training
projects are computed. Then we sort all training projects
according to their closeness to project x, smallest first.
(3) Find first nearest neighbour from training dataset, Say y.
(4) Find the cluster where project y belongs, say Cy.
(5) Cluster the projects according to the distance values using
BK algorithm as well. The cluster of most nearest projects
(Cn) is selected.
(6) The set of nearest projects is the intersection between
clusters Cy and Cn. this set will be the optimum set of
analogies for the new project. In other words, that is, we
choose to use k many analogies for estimation. Compute
Average of Effort values of all projects in that cluster using (6)

ex =
1

k

∑k

i=1
ei (6)

4.3 Experimental design

As it was reported in [5], most of the methods in literature
were tested on a single or a very limited number of
datasets, thereby reducing the credibility of the proposed
method. To avoid this pitfall, we included 9 datasets from
two different sources namely PROMISE [23] and ISBSG
[24]. PROMISE is data repository consists of datasets
donated by various researchers around the world. The

datasets come from PROMISE are: Albrecht, Kemerer,
COCOMO, Maxwell, Desharnais, Telecom, China and
NASA. The Albrecht dataset contains 24 software projects
were developed by using third generation languages such as
COBOL, PL1, etc. The dataset is described by 7 features:
input count, output count, query count, file count, line of
code, function points and effort. 18 projects were written in
COBOL, 4 projects were written in PL1 and the rest were
written in database management languages. The kemerer
dataset consists of 15 projects described by 6 features for
which two of them are categorical: software, hardware and
4 are continuous: rawfp, ksloc, adjfp and effort. COCOMO
dataset consists of 63 software projects that are described
by 17 features. The actual effort in the COCOMO dataset is
measured in person-months which represents the number of
months that one person would need to develop a given
project. The desharnais dataset consists of 81 software
projects collected from Canadian software houses. This
dataset is described by 11 features: teamexp, managerexp,
yearend, duration, transactions, entities, adjfp, adjfactor,
rawfp, dev.env and effort. The Maxwell dataset is a
relatively new dataset, which consists of 62 projects
described by 23 features, collected from one of the biggest
commercial banks in Finland. The dataset includes larger
proportion of categorical features with 22 features which is
hardly to be listed in this paper. Both telecom and nasa
datasets are considered small-size datasets with only 3
features each. China dataset is a very large dataset with 499
projects and 18 features, most of them are continuous. The
other dataset comes from ISBSG data repository (release
10) [24] which is a large data repository consists of more
than 4000 projects collected from different types of projects
around the world. Since many projects have missing values
only 500 projects with quality rating ‘A’ are considered. 10
useful features were selected, 8 of which are numerical
features and 2 of which are categorical features. The
features used are: AFP, input_count, output_count,
enquiry_count, file_count, interface_count, add_count,
delete_count, changed_count and effort.
The descriptive statistics of such datasets are summarised

in Table 1. From the table, we can conclude that datasets in
the area of software effort estimation share relatively
common characteristics [17]. They often have a limited
number of observations that are affected by
multicollinearity and outliers. We can also observe that all
the datasets have positive skewness values which range
from 1.78 to 4.36. This observation indicates that the
datasets are extremely heterogeneous, which make sure that
we test the proposed model adequately.
For each dataset we follow the same testing strategy, we

used Leave-one-out cross-validation where in each run, one

Fig. 3 BK algorithm

Table 1 Statistical properties of the employed datasets

Dataset Feature Size Effort data

unit min Max mean median skew

Albrecht 7 24 months 1 105 22 12 2.2
Kemerer 7 15 months 23.2 1107.3 219.2 130.3 2.76
NASA 3 18 months 5 138.3 49.47 26.5 0.57
ISBSG 10 505 hours 668 14938 2828.45 1634 2.1
Desharnais 11 77 hours 546 23940 5046 3647 2.0
COCOMO 17 63 months 6 11400 683 98 4.4
China 18 499 hours 26 54620 3921 1829 3.92
Maxwell 27 62 hours 583 63694 8223.2 5189.5 3.26
Telecom 3 18 months 23.54 1115.5 284.33 222.53 1.78
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project is selected as test and the remaining projects as
training set. This procedure is performed until all projects
within dataset are used as test projects. In each run, The
prediction accuracy of different techniques is assessed using
MMRE, pred(0.25) performance measure [25, 26]. MMRE
computes mean of the absolute percentage of error between
actual and predicted project effort values as shown in (7),
(8). pred(0.25) is used as a complementary criterion to
count the percentage of MREs that fall within less than
0.25 of the actual values as shown in (9)

MREi =
|ei − êi|

ei
(7)

MMRE = 1

N

∑N

i=1
MREi (8)

where ei and êi are the actual value and predicted values of ith
project, and N is the number of observations

pred(0.25) = 100

N
×

∑N

i=1

1 if MREi ≤ 0.25

0 otherwise

{
(9)

The Boxplot of absolute residuals and Wilcoxon sum rank
test are also used to compare between different methods.
The reason behind using these tests is because all absolute
residuals for all models used in this study were not
normally distributed. In turn, the obtained results from the
proposed approach have benchmarked to other regular ABE
models that use a fixed number of k analogies. In addition
to that we used win–tie–loss algorithm [5] to compare the
performance of k-ABE to other regular ABE models as

shown in Fig. 4. To do so, we first check if two methods
Mi; Mj are statistically different according to the Wilcoxon
test; otherwise we increase tiei and tiej. If the distributions
are statistically different, we update wini; winj and lossi;
lossj, after checking which one is better according to the
performance measure at hand E. The performance measures
used here are MRE, MMRE, median of MRE (MdMRE)
and pred.

5 Results

In this paper we proposed BK algorithm to automatically
come up with the optimum set of k analogies for each
project based on analysing the characteristics of a dataset.
To demonstrate that, we executed k-ABE over all
investigated datasets and recorded the best obtained set for
every test project. Fig. 5 shows the relationship between
numbers of k analogies sorted from 1 to 100 (please note
that we took a part of results) and numbers of the projects
selected these k values over all datasets. The x-axis
represents k nearest analogies for the first 100 analogies,
and y-axis represents number of projects selected a
particular k value. The variability of k values demonstrates
the capability of k-ABE model to dynamically discovering
the different k analogies for individual projects that take
into account the characteristics of each dataset.
Furthermore, the procedure of selecting has become easier
than first (i.e. where the estimator intuition was heavily
used to choose the optimum number of analogy) since the
entire best k selection process has been left to the BK.
For the sake of comparison we used the common ABE

models that use fixed k value for all test instances. For
example ABE1 represents the ABE variant that uses only
the first nearest analogy, ABE2 represents the ABE variant
that uses mean of the nearest two analogies and so forth.
Apart from being able to identify optimum set of analogies
for each test instance, the k-ABE method outperforms all
the other regular ABE models as can be seen in Table 2.

Fig. 5 Relationship between number of projects and their associated k nearest analogies over all investigated datasets

Table 2 MMRE results of ABE variants

Dataset k-ABE ABE1 ABE2 ABE3 ABE4 ABE5

Albrecht 30.5 71.0 66.5 77.8 73.9 72.4
Kemerer 38.2 55.9 77.7 77.4 86.2 86.0
Desharnais 34.3 60.1 51.5 50.0 50.2 50.0
COCOMO 29.3 157.1 363.2 350.4 327.3 325.2
Maxwell 27.7 182.6 132.7 120.6 149.3 144.0
China 31.6 45.2 44.2 46.7 48.5 51.7
Telecom 30.4 60.0 45.3 62.5 77.4 89.5
ISBSG 34.2 72.6 73.1 74.0 74.2 72.8
NASA 25.6 81.2 97.5 88.5 77.6 71.1

Fig. 4 Pseudo code for win–tie–loss calculation between method
Mi and Mj based on performance measure E [5].
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When we look at the MMRE values, we can see that in all
nine datasets, k-ABE has never been outperformed by other
methods with lowest MMRE values. This suggests that
k-ABE has attained better predictive performance values
than all other regular ABE models. This also shows the
capability of BK to support small-size datasets such as in
Kemerer and Albrecht. However, although it proved
inaccurate in this study, the strategy of using fixed
k-analogy may be appropriate in situations where a potential
analogues and target project are similar in size feature and
other effort drivers. On the other hand, There may be little
basis for believing that either increasing or decreasing the
k-analogies effort values of ABE models does not improve
the accuracy of the estimation. However, overall results
from Tables 2 and 3 revealed that there is reasonable
believe that using dynamic k-analogies for every test project
has potential to improve prediction accuracy of ABE in
terms of pred. Concerning discontinuities in the dataset
structure, there is clear evidence that the BK technique has
capability to group similar projects together in the same
cluster as appeared in the results of Maxwell, COCOMO,
Kemerer and ISBSG.
The variants of ABE methods are also compared using

Wilcoxon sum rank test. The results of Wilcoxon sum rank
test of absolute residuals are presented in Table 4. The solid
black square indicates that there is significance difference
between k-ABE and the variant under investigation.
Predictions based on k-ABE model presented statistically

significant and accurate estimations than others, confirmed
by the results of MMRE as shown in Table 2. Except for
small datasets such as Albrecht, Kemerer, Telecom and
NASA, the statistical test results demonstrate that there are
significant differences if the predictions generated by any
k-ABE and other regular ABE models. Hence it seems that
the small datasets are the most challenging ones because
they have relatively small number of instances and large
degree of heterogeneity between projects. This makes
difficult to obtain a cluster of sufficient number of instances.
The win–tie–loss results in Table 5 shows that k-ABE

outperformed regular ABE models with win–loss = 102.
Also these results are confirmed by the Boxplots of
absolute residuals in Fig. 6 which demonstrates that k-ABE
has lowest median values and small box length than other
methods for most datasets.
The obtained performance figures raised a question

concerning the efficiency of applying adjustment techniques
to k-ABE. To answer this question we carried out an
empirical study on the employed datasets, using three
well-known adjustment techniques: Similarity-based
adjustment, GA-based adjustment and NN-based adjustment
in addition to the proposed BK technique. Their
corresponding k-ABE variants are denoted by k-ABESM,
k-ABEGA and k-ABENN, respectively. The obtained
performance figures in terms of MMRE and pred(0.25) are
recorded in Tables 6 and 7. In general there is no
significant difference when applying various adjustment
techniques than basic k-ABE. One possible reason is
because of small number of instances in some clusters. It is
well-known that both GA and NN models need sufficient
number of instances in order to produce good results;
however this may not suitable for small datasets such as
Albrecht, Kemerer, NASA, and Telecom. In contrast, there
are little improvements on the accuracy when applying
adjustment techniques than other regular ABE models for
some datasets especially large ones.
On the other hand, when comparing adjustment techniques

to the basic k-ABE model we can note that there is substantial
improvement on the accuracy for all datasets except small
ones. The statistical significant test in Table 8 and win–tie–
loss in Table 9 show that in general there is significance
difference between the results of k-ABE and all other
adjustment techniques: k-ABESM, k-ABEGA and k-ABENN.
This suggests that the predictions generated by k-ABE are
different than that of other adjustment techniques.
Boxplots of absolute residuals in Fig. 7 show that there is

significant difference between k-ABE and all other variants
of k-ABE. The Boxplots suggest that:

(1) All median values of k-ABE are very close to zero,
indicating that the estimates were biased towards the
minimum value where they have tighter spread. The median
and range of absolute residuals of k-ABE are small, which
revealed that at least half of the predictions of k-ABE are
accurate than other variants. The box of k-ABE overlays the
lower tail especially for Albrecht, COCOMO, Maxwell and
China datasets, which also presents accurate prediction.
(2) Although the number of outliers for ISBSG and China
datasets is fairly high comparing to other datasets, they are
not extremes like other variants. This demonstrates that the
k-ABE produced good prediction for such datasets.

Another important raised issue is the impact of feature
subset selection (FFS) algorithm on the structure of data,

Table 4 Wilcoxon sum rank test results between k-ABE and
other ABE variants

Dataset ABE1 ABE2 ABE3 ABE4 ABE5

Albrecht – – – – –
Kemerer – – – – –
Desharnais ∎ ∎ ∎ ∎ ∎
COCOMO ∎ ∎ ∎ ∎ ∎
Maxwell ∎ ∎ ∎ ∎ ∎
China ∎ ∎ ∎ ∎ ∎
Telecom – – – – –
ISBSG ∎ ∎ ∎ ∎
NASA – – ∎ – ∎

Table 3 pred(0.25) results of ABE variants

Dataset k-ABE ABE1 ABE2 ABE3 ABE4 ABE5

Albrecht 41.7 29.2 33.3 33.3 37.5 41.7
Kemerer 26.7 40.0 20.0 20.0 13.3 20.0
Desharnais 40.3 31.2 31.2 37.7 37.7 39.0
COCOMO 57.1 12.7 19.0 19.0 15.9 22.2
Maxwell 56.5 9.7 19.4 17.7 14.5 17.7
China 46.7 38.3 43.5 43.3 41.9 39.7
Telecom 55.6 33.3 50.0 38.9 44.4 22.2
ISBSG 38.8 39.6 30.7 30.9 29.7 26.5
NASA 44.4 33.3 38.9 44.4 22.2 22.2

Table 5 Win–tie–loss results of ABE variants

ABE variant win tie loss win–loss

k-ABE 108 21 6 102
ABE1 64 45 26 38
ABE2 21 52 62 −41
ABE3 29 59 47 −18
ABE4 16 39 80 −64
ABE5 13 38 84 −71
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and thereby on the obtained k-values. Many research studies
in software effort estimation reported the great effect of
feature selection on the prediction accuracy of ABE [4, 14].
This paper also investigates whether the use of FSS

algorithm can support the proposed method to deliver better
predication accuracy. In this paper we used brute-force
algorithm that is implemented in ANGEL tool to identify
the best features for each dataset. It is recommended to

Fig. 6 Boxplots of absolute residuals for ABE variants
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re-apply the adjustment techniques using only the best
selected features. This requires applying feature subset
selection algorithm [4] prior to building variant methods of
k-ABE. Although, typically, FSS should be repeated for
each training set, it is computationally prohibitive given the
large numbers of prediction systems to be built. Instead we
performed one FSS for each treatment of each dataset,
based on a leave-one cross-validation and using ‘MMRE’.
This means that the same feature subset is used for all
training sets within a treatment and for some of these
training sets it will be sub-optimal. However, since a
previous study [9] has shown the optimal feature subset
varies little with variations in the randomly sampled cases
present in the training set, this should have little impact on
the results.
The performance figures in Tables 10 and 11 show that

although the number of MMRE and pred(0.25) that has
been improved when applying FSS is large, the MMRE and
pred(0.25) differences for each method over a particular
dataset are still poor. Generally, The percentage of
improvements for k-ABE in both MMRE and pred(0.25) is
83.3%, while for k-ABESM is 88.8%, for k-ABEGA is
61.1%, and for k-ABENN is 77.7%. However, the
significance tests between the k-ABE variants with all

features and when using only the best features do not show
significant differences, hence we can conclude that the
proposed method works well with all features without the
need to apply features subset selection algorithms, and this
will reduce computation cost of the whole prediction model
especially for large datasets.
To see the predictive performance of k-ABE against the

most widely used estimation methods in the literature, we
compare k-ABE with three common methods: stepwise
regression (SR); ordinary least square regression (OLS); and
categorical regression tree (CART) using the same
validation procedure (i.e. leave-one cross-validation). We
have chosen such estimation methods since they use
different strategies to make estimate. The remarkable
difference between SR and OLS is that OLS generates
regression model from all training features while SR
generates regression model from only significant features.
Since some features are skewed and not normally
distributed, it is recommended, for SR and OLS, to
transform these features using log transformation such that
they resemble more closely a normal distribution [27]. Also,
all categorical attributes should be converted into
appropriate dummy variables as recommended by [27].
However, all required tests such as normality tests are
performed once before running empirical validation which
resulted in a general regression model. Then, in each
validation iteration a different regression model that
resembles general regression model in the structure is built
based on the training data set and then the prediction of test
project is made on training data set. Table 12 presents a
sample of general SR regression models.
As can be seen from Table 12 that the SR model for

Desharnais dataset uses the dummy variables L1 and L2
instead of the categorical variable (Dev.mode). The R2 for
COCOMO and ISBSG shows that their SR models were
very poor with only 18–21% of the variation in effort being
explained by variation in the significant selected features.
However, this is not an indicative to the worst of their
predictive performance. On the other hand. The log
transformation is used in OLS and SR models to ensure that
the residuals of regression models become more
homoscedastic, and follow more closely a normal

Table 6 MMRE results of k-ABE variants

Dataset k-ABE k-ABESM k-ABEGA k-ABENN

Albrecht 30.5 59.7 94.8 71.7
Kemerer 38.2 45.7 52.8 72.6
Desharnais 34.3 40.2 47.2 100.5
COCOMO 29.3 73.6 70.1 118.5
Maxwell 27.7 55.2 54.7 60.3
China 31.6 61.4 64.6 76.0
Telecom 30.4 58.4 59.8 80.4
ISBSG 34.2 47.7 48.0 85.8
NASA 25.6 76.7 31.8 51.9

Table 7 pred(0.25) results of k-ABE variants

Dataset k-ABE k-ABESM k-ABEGA k-ABENN

Albrecht 41.7 16.7 16.7 8.3
Kemerer 26.7 33.3 20.0 13.3
Desharnais 40.3 29.9 20.8 14.3
COCOMO 57.1 11.1 9.5 7.9
Maxwell 56.5 22.6 21.0 22.6
China 46.7 13.0 11.8 12.6
Telecom 55.6 27.8 22.2 5.6
ISBSG 38.8 22.2 23.2 15.2
NASA 44.4 5.6 38.9 22.2

Table 9 Win–tie–loss results of k-ABE variants

ABE variant win tie loss win–loss

k-ABE 77 4 0 77
k-ABESM 19 25 37 −18
k-ABEGA 19 31 31 −12
k-ABENN 13 20 48 −35

Table 8 Wilcoxon sum rank test results between k-ABE variants

Dataset k-ABE Vs.
k-ABESM

k-ABE Vs.
k-ABEGA

k-ABE Vs.
k-ABENN

k-ABESM Vs.
k-ABEGA

k-ABESM Vs.
k-ABENN

k-ABEGA Vs.
k-ABENN

Albrecht ∎ ∎ ∎ – – –
Kemerer – – ∎ – – –
Desharnais ∎ ∎ ∎ – ∎ ∎
COCOMO ∎ ∎ ∎ – – –
Maxwell ∎ ∎ ∎ – – –
China ∎ ∎ ∎ – – –
Telecom – – ∎ – ∎
ISBSG ∎ ∎ ∎ – ∎ ∎
NASA ∎ – ∎ ∎ – –
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distribution [8]. Tables 13 and 14 show the results from the
comparison between k-ABE and other regression models:
SR, OLS, CART over all datasets. The overall results
indicate that the k-ABE produces better performance than
regression models, but with exception to China and NASA

datasets that failed to be superior in terms of MMRE and
pred(0.25).
Table 15 demonstrates the sum of win, tie and loss values

that are resulted from the comparisons between k-ABE, SR,
CART and OLS. Every method is compared with three

Fig. 7 Boxplots of absolute residuals for k-ABE variants
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other models, over three error measures and nine datasets,
hence the maximum value that either one of the win, tie,
loss statistics can attain is: 3 × 3 × 9 = 81. Note that the tie
values are in 12–25 range. Therefore they would not be so
informative as to differentiate the methods, hence we
consult to win and loss statistics. There is considerable
difference between the best and the worst methods in terms
on win and loss. The results show that the k-ABE is top
ranked method with win–loss = 37 followed by SR in the
second place with win–loss = 8. Interestingly, OLS has the
minimum number of loss over all datasets.

6 Discussion and findings

This work is an extension of our previous work presented in
[19]. In the previous work, the authors tried to learn the k
analogy value using the bisecting k-medoid clustering
algorithm on historical datasets and they found that there is
no static k value for all datasets. In spite of this discovery,
the previous work has several limitations. First, no
adjustment techniques or feature selection methods were
used. Furthermore, the effort was estimated using
un-weighted mean trained effort of the train projects of the
leaf cluster. Limitations of the previous work has been
addressed in this extended paper by extending the previous
approach, so that the optimum k value is discovered rather
than guessed (as in the previous paper). Moreover, in this
new paper, we carried out research to show that the
discovered set of analogies work well with different kinds
of adjustments techniques such as similarity-based
adjustment, GA-based adjustment and neural network-based
adjustment. Main findings of this paper are presented below.

6.1 Findings

Based on the obtained results and figures we can summarise
our findings as follow:

Finding 1. Having seen the bar chart in Figs. 1 and 5, there
is sufficient believe that the k number of analogies is not fixed
and its selection process should take into account the
underling structure of dataset as shown in Fig. 5. On the
other hand, we conjecture that prior reports on discovering
k analogies were restricted to limited fixed values staring
from 1 to 5. For example Azzeh et al. [14] found that the
k = 1 was the best performer for large datasets and k = 2 and
3 for small datasets. In contrast, Kirsopp et al. [9] found
k = 2 produced superior results for all employed datasets.
Therefore the past believe about finding k value was
extremely subject to the human intuition.
Finding 2. Using many datasets from different domains

and sources show that the proposed method has capability
to discover their underlying data distribution and
automatically come up with optimum set of k analogies for
each individual project. The BK method works well with
small and large datasets and those that have a lot of
discontinuities such as in Maxwell and COCOMO.
Finding 3. Observing the impact of FSS on the BK method,

we can see that our results with FSS are not significantly
different than the results without FSS. Hence they are
sufficiently stable to draw a conclusion that FSS is not
necessary for any variant of k-ABE as they are highly
predictive without it.
Finding 4. Although regular ABE models are deprecated

by this study, the simple ABE1 with only one analogy is
found to be good choice especially for large datasets.
Hence, proponents of this method might elect to explore
more intricate form than just simple ABE1.
Finding 5. The top ranked method is k-ABE confirmed by

collecting win–tie–loss for each variant of ABE method as
shown in Table 16. When we look at the win–tie–loss
values in Table 4, we see that in all nine datasets, k-ABE
has the highest win− loss values. This suggests that k-ABE

Table 10 MMRE with feature selection results for k-ABE
variants

Dataset k-ABE k-ABESM k-ABEGA k-ABENN

Albrecht 27.5 50.0 64.3 57.9
Kemerer 31.6 44.5 50.8 67.5
Desharnais 31.8 42.6 47.3 64.2
COCOMO 44.0 70.1 94.5 97.3
Maxwell 23.7 45.3 55.2 79.5
China 28.3 60.0 60.2 76.5
Telecom 30.1 57.1 40.3 73.5
ISBSG 32.7 44.7 46.7 66.0
NASA 24.6 76.3 37.9 48.9

Table 11 pred(0.25) results with feature selection results for
k-ABE variants

Dataset k-ABE k-ABESM k-ABEGA k-ABENN

Albrecht 48.7 20.8 29.2 25.0
Kemerer 36.7 30.0 26.7 13.3
Desharnais 49.0 35.6 27.3 15.6
COCOMO 38.1 18.0 9.5 10.8
Maxwell 57.1 25.4 14.5 26.1
China 48.5 14.4 16.4 10.0
Telecom 55.6 32.2 33.3 11.1
ISBSG 41.8 27.1 32.0 20.6
NASA 46.4 30.6 27.8 33.3

Table 12 General regression models

Dataset SR model R2

Albrecht Effort =−16.203 + 0.06 × RawFP 0.90
Kemerer Ln(Effort) =−1.057 + 0.9 × Ln(AdjFP) 0.67
Desharnais Ln(Effort) = 4.4 + 0.97 × Ln(AdjFP)− 1.34 ×

L1− 1.37 × L2
0.77

COCOMO Ln(Effort) = 2.93− 3.813 × PCAP + 5.94 × TURN 0.18
Maxwell Ln(Effort) = 633.1234 + 11.273 × Size 0.71
China Ln(Effort) =−2.591 + 4.299 × Ln(AFP) + 3.151 ×

Ln(PDR_AFP)
0.48

ISBSG Ln(Effort) = 5.9318 + 0.261 × Ln(AFP) + 0.066 ×
Ln(ADD)

0.21

Telecom Effort = 62.594 + 1.6061 × changes 0.53
NASA Ln(Effort) =−50.1815 + 34.142 × Ln(KLOC)−

0.8693 ×ME
0.90

Table 13 MMRE results of k-ABE variants against Regression
models

Dataset k-ABE SR CART OLS

Albrecht 30.5 85.6 114.45 57.3
Kemerer 38.2 38.5 96.5 63.3
Desharnais 34.3 41.0 48.73 42.6
COCOMO 29.3 58.3 138.74 48.8
Maxwell 27.7 73.5 57.1 75.3
China 31.6 24.2 29.82 35.5
Telecom 30.4 81.2 77.82 75.4
ISBSG 34.2 58.0 82.9 66.4
NASA 25.6 17.1 27.6 30.5
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has obtained lower MRE values than all other methods.
Indeed, k-ABE has a loss value of 0 for eight datasets
(except Maxwell dataset) and this shows that k-ABE has
never been outperformed by any other method in all
datasets for statistically significant cases.
Finding 6. Observing win–tie–loss results, we can draw a

conclusion that the adjustment techniques used in this study
do not significantly improve the performance of k-ABE
variants, hence, the basic k-ABE without adjustment is still
the most performer model among all variants. This may
reduce the computation power needed to perform such
estimation especially when number of features and projects
is extremely large.

6.2 Threats to validity

This section presents the comments on threats to validities of
our study based on internal, external and construct validity.
Internal validity is the degree to which conclusions can be
drawn with regard to configuration setup of BK algorithm
including: (1) the identification of initial medoids of BK for
each dataset, (2) determining stopping criterion. Currently,
there is no efficient method to choose initial medoids,
hence we used random selection procedure. We believe that
this decision was reasonable even though it makes the
k-medoids is computationally intensive. For stopping
criterion we preferred to use the variance performance
measure to see when the BK should stop. Although there
are plenty of variance measures we believe that the used
measure is sufficient to give us indication of how instances
in the same clusters are strongly related.
Concerning construct validity which assures that we are

measuring what we actually intended to measure. Although
there is criticism regarding the used performance measures
such as MMRE and pred [28, 29], we do not consider that
choice was a problem because (1) they are practical options
for majority of researchers [7, 30, 31], and (2) using such
measures enables our study to be benchmarked with
previous effort estimation studies.
With regard to external validity, which is the ability to

generalise the obtained findings of our comparative studies,

we used nine datasets from two different sources to ensure
the generalisability of the obtained results. The employed
datasets contain a wide diversity of projects in terms of
their sources, their domains and the time period they were
developed in. We also believe that reproducibility of results
is an important factor for external validity. Therefore we
have purposely selected publicly available datasets.

7 Conclusions

In this paper, we presented the problem of discovering the
optimum set of analogies to be used by ABE in order to
make good software effort estimates. However, it is well
recognised that the use of fixed number of analogies for all
test projects is not sufficient to obtain better predictive
performance. In our paper we defined four research
questions to address the traditional problem of tuning ABE
methods: (1) understanding the structure of data and (2)
finding a technique to automatically discovering the set of
analogies to be used for every single project. Therefore we
proposed a new technique based on utilising BK clustering
algorithm and variance degree. Therefore rather than
proposing a fixed k value a priori as the traditional ABE
methods do, what k-ABE does is starting with all the
training samples in the dataset, learning the dataset to form
BK binary tree and excluding the irrelevant analogies on
the basis of variance degree and discovering the optimum
set of k analogies for each individual project. The proposed
technique has the capability to support different size of
datasets that have a lot of categorical features. The main
aim of utilising BK tree is to improve the predictive
performance of ABE via: (1) building itself by discovering
the characteristics of a particular dataset on its own and, (2)
excluding outlying projects on the basis of variance degree.
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Table 14 pred(0.25) results of k-ABE variants against
regression models

Dataset k-ABE SR CART OLS

Albrecht 41.7 33.3 12.5 37.5
Kemerer 26.7 66.7 6.7 13.3
Desharnais 40.3 39.0 36.4 43.2
COCOMO 57.1 36.5 11.1 49.2
Maxwell 56.5 54.2 79.2 25.8
China 46.7 70.2 65.73 27.5
Telecom 55.6 38.9 38.9 27.8
ISBSG 38.8 26.5 29.5 21.2
NASA 44.4 83.3 50.0 45.2

Table 15 Win–tie–loss results for k-ABE and other regression
models

ABE variant win tie loss win–loss

k-ABE 48 22 11 37
SR 32 25 24 8
CART 19 23 39 −20
OLS 5 12 64 −59

Table 16 Win–tie–loss values for variants of k-ABE and
multiple k values over all datasets

Method FSS win tie loss win–loss

k-ABE no 169 40 7 162
yes 174 30 12 162

k-ABESM no 51 86 79 −28
yes 46 84 86 −40

k-ABEGA no 43 96 77 −34
yes 48 75 93 −45

k-ABENN no 22 76 118 −96
yes 21 90 105 −84

ABE1 no 68 73 75 −7
yes 123 66 27 96

ABE2 no 37 123 56 −19
yes 104 87 25 79

ABE3 no 39 114 63 −24
yes 98 90 28 70

ABE4 no 41 93 82 −41
yes 87 87 42 45

ABE5 no 52 73 91 −39
yes 92 72 52 40
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